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Preface to the Second (2018) Edition

This second edition is an attempt at making improvements, correcting errors,
and adding some important material without adding dross. This new addition
incorporates several changes and a few additions. The (alas, many) typos discovered
by many people in the previous edition are all fixed. Having taught this material for
another decade, I have found more effective ways of teaching some of the material.
This especially affected Chap. 4 on 1D hydrodynamics, in which the new text allows
one to avoid teaching Riemann invariants. In other cases, I have learned new things
in the past decade, some of which were unknown to anyone previously. Chapter 3
on equations of state includes a discussion of the suppression of ionization by
degeneracy, which was not known to me at the time, and of the continued evolution
of material structure at very high pressure, which was known to almost no one. This
discussion of boundary conditions in Chap. 5 includes an examination of pressure
variations that is not included in standard treatments and that resolves some issues
that had bothered me for a long time. Chapter 6 now includes a much more extensive
discussion of atomic processes and their rates, a topic I had to abandon for lack of
time previously.

I decided to split the material on radiation hydrodynamics and to provide a
thorough discussion of radiative heat fronts in what is now Chap. 8. This provided
better support for some topics discussed later in the text. I discovered over time
that some things I “learned” in the 1980s about high-Z targets were not correct
and read with interest new research on double ablation fronts in mid-Z targets,
all of which affected the discussion of these topics in Chap. 9. The material on
Z-pinches was moved to the new Chap. 10, which includes a discussion of basic
aspects of magnetized flows. A decade ago there was almost no research in this area.
Thanks both to advances in technology and to improved perspective on the part of
funding agencies, this has now become a very active area. The middle portions of
the chapter on inertial confinement fusion (Chap. 11) were substantially reworked,
in response to experience to date with the National Ignition Facility and to my own
finding time to further explore the modeling of that type of system. The chapter on
laboratory astrophysics (Chap. 12) is now united by a more systematic and more
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viii Preface to the Second (2018) Edition

extensive discussion of scaling across a wider range of experiments. This reflects
both the explosion of work on the laboratory study of dynamical processes that
are relevant to astrophysics and my own evolving opinion that, although we are 20
years into that enterprise, our community does not yet do well enough on scaling
arguments. The final chapter on relativistic systems (Chap. 13) is changed mainly
through an added discussion of betatron radiation, which has become important.
My sense of that area is that the fundamental things one needs to understand have
not changed much, although certainly the detailed understanding and specifically
work on particle acceleration have evolved greatly.

I want to comment on the voice in the text. In the classroom, I teach in the
second person. My goal is that the students and I will join in an intellectual journey
of discovery. My intent has been to write in just this sort of voice. I also greatly
admire the books of Chandrasekhar, who writes this way too. Unfortunately, too
many decades of writing multiauthor papers for publications make it perilously easy
to slip into the kind of second-person discussions one uses there. Please forgive me
if you find this discordant.

I would like to include a few words related to homework. Several of those who
have taught from this book would like to have had homework solutions, and under
pressure from the editors, I agreed to provide solutions for a significant fraction of
the problems. I certainly understand how a time-starved professor would welcome
anything that can help keep all the balls in the air, including homework solutions.
It is worth asking what the point of homework is in a specialized graduate course
such as those taught from this book. Getting the answer in the back of the book is
surely not relevant as such. Gaining an increased understanding of the material is
what seems relevant to me, and surely this must require working some things out for
oneself. This was always the point for me in formulating the homework problems
provided, whether they involve fleshing out a derivation or thinking through some
out-of-the-box question. Consistent with this goal, the solutions provided generally
represent an end point of part of the work on the problem, intended to allow one
to see whether work on that problem is headed in the right direction. The solutions
provided also include very little of the conceptual discussion that should be part of
work turned in.

Once again the text benefitted from discussions with or review by a large number
of colleagues. This has included Igor Sokolov, Guy Malamud, Bart van der Holst,
Pat Hartigan, Justin Wark, Eric Johnsen, and Ryan McBride, and students Jack Hare
and Kevin Ma. Again, there are many others. Of course the book benefited strongly
from many further students and other mentees with whom I have worked in the past
decade, including Mike Grosskopf, Forrest Doss, Channing Huntington, Christine
Krauland, Eliseo Gamboa, Carlos DiStefano, Michael MacDonald, Rachel Young,
Willow Wan, Mario Manuel, Josh Davis, Alex Rasmus, Laura Elgin, and Patrick
Belancourt. In addition to these, Jeff Fein, Matt Trantham, Joseph Levesque, and
Robert VanDervort provided specific material.
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The work itself would not have been possible without the efforts of several
key people in tending to the research and administrative needs of our program
even when I did not. Senior Administrative Assistant Jan Beltran and Financial
Administrator Kathy Norris played their key roles, as they have for many years.
Carolyn Kuranz and Paul Keiter have met the needs of the students, while Sallee
Klein and Matt Trantham have contributed in important ways. The sabbatical leave
provided by the University of Michigan was also essential. Finally, as most authors
report, family support was crucial. I thank my wife Simona for her understanding
and accommodation even when this project kept me distracted for long periods.

Ann Arbor, MI, USA R Paul Drake
July 2017



Preface to the First (2006) Edition

This book has two goals. One goal is to provide a means for those new to high-
energy-density physics to gain a broad foundation from one text. The second goal is
to provide a useful working reference for those in the field.

This book has at least four possible applications in an academic context. It can be
used for training in high-energy-density physics, in support of the growing number
of university and laboratory research groups working in this area. It also can be
used by schools with an emphasis on ultrafast lasers, to provide some introduction
to issues present in all laser–target experiments with high-power lasers, and with
thorough coverage of the material in Chap. 11 on relativistic systems. In addition, it
could be used by physics, applied physics, or engineering departments to provide in
a single course an introduction to the basics of fluid mechanics and radiative transfer,
with dramatic applications. Finally, it could be used by astrophysics departments for
a similar purpose, with the parallel benefit of training the students in the similarities
and differences between laboratory and astrophysical systems.

The notation in this text is deliberately sparse, and when possible, a given symbol
has only one meaning. A definition of the symbols used is given in Appendix A. In
various cases, additional subscripts are added to distinguish among cases of the same
quantity, for example, in the use of �1 and �2 to distinguish the mass density in two
different regions. With the goals of minimizing the total number of symbols and of
using them uniquely, the text avoids various common usages. An example is the use
of � for the coefficient of viscosity, which is avoided, with the viscosity expressed
always as the product or ��, where � is the kinematic coefficient of viscosity.

Much of the homework throughout this text is only feasible using a computa-
tional mathematics program. I prefer Mathematica, which has been an essential
tool in the preparation of this text, but there are now and will be several such
programs available. This departure from traditional norms reflects the emergence
of such programs as effective tools. They should be part of the standard toolkit of
all future scientists. This dramatically changes the meaning of “simple” solutions
to problems. For example, an eighth-order polynomial equation is not necessarily
difficult to deal with.
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xii Preface to the First (2006) Edition

A word on the use of units is in order. The metric system in a broad sense is the
common language of science. But the world in general and high-energy-density
systems, in particular, are not conveniently analyzed within any single standard
subsystem of these units. Each of the SI system, the Gaussian cgs system, and other
systems are the most convenient for certain problems, as are a few other specific
units such as the electron volt. This is why these systems exist. It is an essential
tool for a practicing scientist to be able to readily convert between systems of units
“on the fly.” This is true because the existing literature is presented for the most
part in convenient units, which working scientists use because they are convenient.
But comparisons of one system to another are very important as checks on one’s
reasoning, and this often leads to the need to convert units. Thus, I am an adamant
opponent of the SI purists who would commit nothing to print that is not in SI
units and an adamant advocate for defining one’s units in all work one does. When
feasible, the equations in this book are written in a unit-independent form. When this
is not possible, for example, with the Lorentz force, the units are specified and are
usually in the Gaussian cgs system, which is the most convenient for most plasma
applications. The units are also specified when practical equations are given. At least
this was the my intent. Please let me know where I failed. Finally, the appendix
on units in Jackson’s Classical Electrodynamics is an excellent reference on this
subject.

Bibliographic references are sparse in most chapters of this text. Most of the
references are published books that address a certain topic in more detail than is
feasible here. The journal literature is cited only when there are as yet no relevant
books, and such citations often fail to reflect the scope of work in the journal
literature. This was deliberate for several reasons. One of my goals has been to write
a book that will prove useful for many years. The archival literature changes rapidly,
and the present era is one of the very rapid advances in high-energy-density physics
and in astrophysics. As a result, any references to the current literature will rapidly
become dated. In addition, the era of immediate bibliographic database searches is
here to stay, so future readers will readily be able to find up-to-date references in the
archival literature of their time.

The second goal has been to present the material here with a common voice,
because in my opinion, this is pedagogically most effective. A book that ties itself
too closely to published literature can become disjointed. The third goal has been to
show that this material is “simple,” in the sense that a physicist would use. A rich
panoply of phenomena evolves straightforwardly from what are at root a few and
simple starting equations. In the spirit of Richard Feynman, one can understand a
great deal without needing more than clear thinking (though one must add that a
computational mathematics program helps a lot for some nonlinear problems). The
greatest departure from this goal has been in Chaps. 3 and 8, where to avoid very
protracted discussions, we have been forced to ask the reader to accept some details
without much explanation.
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Throughout this text, there are a number of figures showing the results of
computer simulations, in order to display hydrodynamic and radiation hydrody-
namic phenomena. Unless otherwise noted, these simulations were done using the
HYADES computer code authored by Jon Larsen and available at this writing from
Cascade Sciences Inc. A number of similar tools exist; they prove very useful for
calculations to evaluate possible experiments and to identify the most important
physical mechanisms in specific physical systems of interest.

Writing acknowledgments is rather daunting, given the many individuals who
contribute to a project such as this. To those overlooked, remind me and I will at least
buy you dinner. I must thank my family and my current research group for tolerating
the time required for such a project. Dmitri Ryutov has been a source of inspiration,
instruction, and encouragement, in addition to a vital collaborator, for a number of
years, and also reviewed two chapters. Alexander Velikovich reviewed two chap-
ters, made time for several delightful conversations, and significantly broadened
my understanding of several issues. Harry Robey provided valuable insight into
hydrodynamic instabilities and found an important error. Robert Kauffman and
David Montgomery provided specific useful figures. Enam Chowdhury provided
useful input and graciously allowed me to use some of his work. Michael DesJarlais,
Warren Mori, Mordecai Rosen, Mark Hermann, James Knauer, Riccardo Betti, and
Bedros Afeyan found time to comment on or discuss some of the material. Farhat
Beg and William Kruer taught from the draft text. Ralph Schneider was a source of
enduring encouragement.

The students in the lectures at Michigan in 2003 and 2005 and the 28 attendees of
the summer school in 2004, though too numerous to list, helped identify errors and
provided opportunities to improve the text. My own current graduate students Amy
Reighard, Carolyn Kuranz, Eric Harding, and Tony Visco suffered through working
with the draft while providing continuing motivation. Korbie Dannenberg, in addi-
tion to having done some of the work reflected in examples herein, kept my group
moving forward when I was off writing. Jan Beltran provided a wide range of admin-
istrative assistance with the summer school and with the book, all of which I greatly
appreciate. Of course, the responsibility for the errors in the text rests solely with me.

Beyond this specific group, I have enjoyed collaborations with a large community
of scientists, engineers, and technicians during the past 20-plus years. A few
of the key individuals not mentioned above are Dave Arnett, Jim Asay, Hector
Baldis, Steve Batha, Bruno Bauer, Serge Bouquet, Jim Carroll, John DeGroot, Kent
Estabrook, Adam Frank, Gail Glendinning, Martin Goldman, Tudor Johnston, Jave
Kane, Paul Keiter, Alexei Khokhlov, Marcus Knudson, Barbara Lasinski, Sergey
Lebedev, Dick McCray, Tom Mehlhorn, Aaron Miles, Steve Obenschain, Ted Perry,
Diana Schroen, Wolf Seka, Bob Turner, David Villeneuve, Russell Wallace, Bob
Watt, James Weaver, and Ed Williams. There are many others. I also appreciate
the positive interactions and encouragement from my editor at Springer, Dr. Chris
Caron.
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I love to work in coffee shops and was fortunate that my local favorite, Espresso
Royale, opened a branch in Plymouth Road near my home early during this project.
I did a lot of writing, editing, and deriving at their tables. To Sarah and all the staff
who have worked there, thanks for the hospitality.

Finally, this book would not exist without two people. E. Michael Campbell
talked me into entering this field when it had troubled times, supported doing the
science needed to make inertial fusion succeed, and helped me move on when
the time came for that. Bruce A. Remington talked me into jumping into the
astrophysical applications of high-energy-density tools when this was a new idea
and has continued to be a valuable collaborator since that time. I thank them both.

Ann Arbor, MI, USA R Paul Drake
December 2005



About the Front Cover Image

The image on the cover shows a portion of the Crab nebula as we see it today.
Many of the mechanisms that contribute to its structure also appear in this book.
The small fingers seen in the image are often produced by the magnetized Rayleigh
Taylor instability. This and other instabilities were active during and after the
explosion of the star, as were radiative shocks. The pulsar at the core of the nebula
generates the electrons and positrons that drive the jets which emerge along its axis.
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Chapter 1
Introduction to High-Energy-Density Physics

Abstract This chapter begins by introducing and defining the field of high-energy-
density physics. It goes on to compare its domain with those of other areas of
science and to survey the historical developments that led to the emergence of this
field as a discipline. The chapter then identifies and discusses the regions within
which various physical effects, such as Fermi degeneracy, become important. Brief
introductions to inertial confinement fusion and to laboratory astrophysics at high
energy density follow. The chapter concludes with a discussion of the connections
between the present book and various other books, and some discussion of variables
and notation.

This book concerns itself with the physics of matter within which the density of
energy is high. The first formal definition of the field, early in the twenty-first
century, was in a report of the National Research Council of the United States,
entitled Frontiers in High-Energy-Density Physics: the X-games of Contemporary
Science. It suggested a definition of high-energy-density systems as those having a
pressure above one million atmospheres. The units of this pressure can be designated
by 1 Mbar, 1011 Pa, 1011 J/m3, 1012 dynes/cm2, or 1012 ergs/cm3. We will tend to
express the pressure in Mbars, as this is the most common of these units found in
the relevant literature. This definition reflected several observations. For example,
one learned in school that solids and liquids are “incompressible,” but this is not
strictly true. If one applies a pressure exceeding �1 Mbar to ordinary solid matter, it
compresses. Another way to make this point is to say that the internal energy density
of a hydrogen molecule is �1 Mbar.

Thinking further, one might realize that once the energy that holds a collection
of particles together, whether as applied pressure or as binding energy, becomes
of the order of the internal energy of the molecules and atoms, their behavior will
change. Beyond this point, the system will behave more as ions and electrons than as
neutral particles. In the decade since the definition suggested above, it has become
clear that solid matter exhibits novel behavior once the medium begins to ionize,
creating free electrons. This can occur at a pressure as low as about 0.1 Mbar. This
has led some researchers to suggest revising the above definition by lowering the
threshold pressure. But in the absence of newly freed electrons, one does not get any
novel behavior. In addition, the field as it functions includes the study of plasmas
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Fig. 1.1 Connection of the high-energy density regime to other physical and astrophysical systems

produced using devices that can create high-energy-density conditions, even when
their density of energy is somewhat smaller. So the present author suggests the
following revised definition of high-energy-density physics:

High-energy-density physics is the laboratory study of matter that has a pressure of at least
0.1 Mbar (10 Gpa) and contains free electrons not present in the solid state, and of lower-
pressure matter produced using experimental systems that can produce pressures above
0.1 Mbar.

Figure 1.1 shows how the realm of high-energy-density physics connects to
other physical and astrophysical systems. At temperatures below about 10,000 K
and densities below some multiple of the density of water, one finds the realm of
solids, liquids, and gasses one learns of early in school. So-called “ideal plasmas,”
discussed in Chap. 2, exist at higher temperatures and lower densities. The high-
energy-density regime is found to the right of the approximate boundary labeled
“1 Million atmospheres pressure.” As one crosses the vertical portion of this
boundary, increased compression leads to delocalization of increasing numbers of
electrons. As one crosses the diagonal portion, thermal ionization has the same
effect. After the big bang, the early universe expanded and cooled along a path
toward lower density at very high temperature. Stars are hottest and densest at
their cores, becoming progressively less hot and less dense toward their surfaces.
Planets have a similar structure at lower temperature. There is a small bubble labeled
“WDM” near the kink in the 1 Mbar curve. This stands for warm dense matter. In
this region, the models of condensed matter that work well to the left of and below
this bubble fail, as ionization begins, while the ideal-plasma models that work to
the left and above the bubble fail, as particle correlations become important. Some
authors extend the WDM region to the right of and below the bubble. This did not
seem well-justified in 2005, but seems more so now. The succeeding decade has
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seen the discovery of unanticipated complexity throughout this region, as discussed
in Chap. 3. Finally, quark-gluon plasmas are a form of high-energy-density matter
produced by colliding relativistic heavy ions. They have a temperature of order
1012 K, and a density far to the right of those shown here.

We will discuss some further aspects of the transition into the high-energy-
density regime in Sect. 1.2. Matter at high energy density is ionized, with the
exception of a small region at low temperature discussed in Chap. 3. The author
believes that the proper definition of a plasma is “an ionized medium”, and so high-
energy-density matter is plasma. In contrast, traditional plasma theory developed in
the mid-twentieth century, concerned only with space plasmas and with laboratory
devices at very low pressure, defined a plasma as “an ionized medium for which the
theory is easy”. (These were not the words used, but that is the upshot.) Plasmas
for which the theory is relatively easy, whose details we will discuss further in
Chap. 2, are known as “ideal plasmas”. We will see that ideal-plasma theory is
not valid for a large fraction of the high-energy-density regime. Thus, another
way to characterize high-energy-density systems is as plasma that is too dense for
traditional plasma theories, or that has other features not included in such theories.
One of the key aspects of these differences, having several components, is that the
matter itself often does not behave as an ideal gas. We explore these components
and the fundamental description of high-energy-density matter in Chap. 3. In brief,
Chaps. 4 through 5 then discuss how such matter moves and Chaps. 6 through 8
discuss how radiation affects it.

Chapter 9 discusses how to create high-energy-density conditions. One might
like to take this up sooner, but in fact the concepts developed in Chaps. 3–8
are essential to presenting a comprehensive and comprehensible discussion. For
example, one might launch a shock wave that converts ordinary matter into high-
energy-density matter. Such shock waves have velocities above 10 km/s. At constant
pressure, shock velocities increase as density decreases, so that shock waves above
100 km/s (>360,000 km per hour) are common in high-energy-density physics.
Alternatively, one might produce an intense beam of photons, electrons, or ions that
can penetrate the matter and directly heat it, and particle beams themselves may
reach this regime.

High-energy-density physics encompasses more than the regime of dense
plasma, in the sense just described. It also includes conditions in which pressures
>0.1 Mbar result from very high temperature at very low density. For example, air
at a density of 1 mg/cm3, of the order of atmospheric density, reaches a pressure
of �0.1 Mbar at a temperature above 1 keV. (Throughout this text we express
temperature in the energy unit of an electron Volt, so that the Boltzmann constant
is 1.6 � 10�12 ergs/eV or 1.6 � 10�19 J/eV.) A temperature of 1 keV is roughly
10 million Kelvin, so that temperatures of millions of Kelvin or more are common in
high-energy-density physics. As the density decreases further, conditions in which
the pressure remains above one Mbar soon become relativistic, and thus also outside
the realm of traditional plasma theory. Overall, what high-energy-density systems
have in common with traditional plasmas and with condensed-matter systems
is that collective effects are an essential aspect of the behavior. The difference
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from traditional plasma physics is that the particles are more correlated, and/or
relativistic, and/or essentially radiative. The difference from traditional condensed-
matter physics is that ionization and Coulomb interactions are essential. Various
chapters that follow are focused on one or more aspects of these differences.

The present text was the first book to be written as a textbook in high-energy-
density physics. (We place it in the context of prior work later in this chapter.) This
reflects the fact that high-energy-density physics is in some sense a new field. One
can see that the regimes just discussed offer some challenges beyond established
areas of physics, but one might wonder both in what sense this is new and why. The
material discussed here, as in condensed-matter physics and other areas, is entirely
built on the foundations of classical and modern physics as established from the mid-
nineteenth to the mid-twentieth century. In addition, much of the material discussed
herein is discussed in more depth in one of a dozen or so more-advanced books.
The fundamental sense in which this is a new area is that there are new tools and
that new tools beget new areas of science. It is now practical for scientists in an
academic or laboratory setting to perform experiments to study the fundamental
behavior of high-energy-density systems over a significant range of parameters. This
creates a need for the treatment of this material as an integrated subject, moving
from fundamentals to their applications, for the presentation of the material in a
common voice suitable for graduate courses and as a first working reference, and
for a discussion that spans the range of conditions now (or soon to be) available for
study. Hence the emergence of high-energy-density physics as a distinct field and
hence this text.

1.1 Some Historical Remarks

Let us consider the new tools and some key people that brought this about,
with the goal of giving the flow of key developments as opposed to a thorough
historical review. The development of spectroscopy and modern astronomy in the
later nineteenth century led Eddington, Schwarzschild, Chandrasekhar, and others
to seek to understand the structure of stars through the first half of the twentieth
century. Key outcomes of this work included the theory of the radiative transfer
of energy, discussed in Chap. 6, and understanding on the production of energy in
stars by nuclear fusion. This last was a key step leading toward research into inertial
confinement fusion, discussed in Chap. 11. The development of particle accelerators
in the 1930s began the effort to focus large numbers of particles to small areas. The
advent of nuclear weapons in the 1940s produced high-energy-density conditions,
but not in a way that permitted systematic study. The development of the light-
gas gun in the 1950s and 1960s eventually led to the ability to study matter at the
low-pressure edge of the high-energy-density regime. These were all key technical
developments, but it was the invention of the laser that most directly led to the
emergence of this field.
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Work in the 1950s led to the invention of the laser by Townes, Gould, and others
late in that decade. It then became sensible to ask whether lasers might be used to
produce controlled thermonuclear fusion. This would be accomplished by creating
momentary collections of burning fusion fuel, held together by only their inertia.
In their book Atzeni and Meyer-Ter-Vehn (2004) review the foundations for this
specific development, some of which were in classified research programs, and
credit a number of key contributors not mentioned here. The effort to address this
question in the USSR was led by Basov. In 1972, Nuckolls, Thiessen, and Wood
published the key paper in Nature arguing that this approach to fusion might be
feasible. Programs to pursue what became known as inertial confinement fusion
were begun in the U.S., the Soviet Union, Europe, and Japan. A key figure during
the development of the necessary lasers was John Emmett, who led the program at
Lawrence Livermore that first produced lasers delivering >1 kJ in 1 ns. By the end
of the 1970s, there were lasers in several countries that could deliver a number of kJ
to volumes of a cubic mm or less in pulses of order 1 ns in duration. One Mbar is
100 J/mm3, so these systems produced high-energy-density conditions.

In the 1950s the ill-fated Z pinch had been developed, in pursuit of controlled
thermonuclear fusion for power production. The Z pinch was intended at first to
gradually compress and heat matter through the attraction of parallel channels of
current, but this failed notoriously as a path to controlled thermonuclear fusion
in the laboratories. But by the late 1970s, devices that could drive currents above
1 MA for short periods, known as pulsed-power devices, were developed. These
were motivated in part by their potential application to inertial confinement fusion.
In the U.S. this was done at Sandia National Laboratories. The initial intent was
that these devices could create inertial fusion using particle beams, but in the end
they contributed to the revolution in Z-pinches described below. Other lasers were
also developed as high-energy sources, including CO2 lasers at the Los Alamos
Laboratory and Iodine lasers in the Soviet Union. These lasers did not work out for
fusion, but in some sense they encouraged the development of KrF lasers, pursued
further in the U.S. at the Naval Research Laboratory and at this writing a potentially
of use in producing electricity powered by inertial fusion.

These tools could create high-energy-density systems, but not in a way that
permitted systematic study. During the 1970s a few research projects and programs
began to do systematic fundamental science at high energy density, notably in
Europe and at the Naval Research Laboratory. This is perhaps too harsh, as one
can find a sequence of refereed journal papers tracing progress in the science from
all of the participants. But all such efforts were hampered by a lack of experimental
technique and diagnostic hardware. They were also hampered by a tendency to focus
on the goal of fusion to the exclusion of its fundamental underpinnings. (As an
extreme example, the head of the project to build the Nova laser, completed in
the mid-1980s, once told the author that the only diagnostic needed by Nova for
the success of inertial fusion was a single neutron detector. This proved to be far
from the truth. It took a decade to develop diagnostics and perform experiments
addressing a range of issues, and to make substantial improvements to the facility
itself, before Nova could achieve the compression of DT fusion fuel to 100 times
liquid density—a remarkable accomplishment.)
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I date the emergence of high-energy-density physics as a field from 1979, for
two reasons. First, this was approximately the first year one could do a range of
physics experiments at high energy density using lasers. The reason is that multi-
beam, high-energy laser facilities now existed, and one could use these beams for
several independent purposes. Some beams could strike a target to produce a desired
system, other beams might be used to drive some process or event in that system,
and still others might be used as diagnostics, often by producing X-rays whose
transmission or scattering could be measured. (Low-energy lasers had been in use
as probe beams for some time, and this continued.) These sophisticated experiments
required that the beams be independently timed and controlled, which is easy to say
but imposes considerable additional cost and complexity. Second, this was the year
that the first user program for such a laser facility came into existence. This was the
National Laser User Facility, which provided facility access and financial support
for investigator-driven research at the Omega laser. This peer-reviewed program,
and a later version of Omega, still exist at this writing. While other facilities have
contributed much science, Omega is widely recognized as the most successful and
productive research facility for high-energy-density physics.

The early 1980s saw the realization and demonstration of affordable instrumen-
tation that could obtain data on a sub-ns timescale, including snapshots and time
histories as images or as spectra. This was in part driven by an increased focus on
studying the elements of the physics that were required for inertial fusion. While
many researchers around the world contributed to this developing focus, the one
individual who had the biggest impact in the biggest program was a young group
leader named Michael Campbell, at the Lawrence Livermore National Laboratory.

The 1980s also saw the invention of chirped pulse amplification by Gerard
Morou, described in Chap. 13. This made it practical to drive the energy flux of
lasers above 1018 W/cm2, and to begin to produce relativistic effects. Such systems
have short pulses, typically below 1 ps, and so are known as ultrafast lasers. They
have contributed the tools that enable exploration of the low-density, relativistic
regime of high-energy-density physics. We will discuss some basic aspects of this
regime in Chap. 13.

The available experimental tools for high-energy-density physics expanded again
in the 1990s with the development of the wire-array Z pinch. A modification known
as the fast Z pinch had been under exploration for fusion since the late 1970s. A fast
Z pinch avoids the magnetohydrodynamic instabilities that disabled the Z-pinches
of the 1950s, by using the pinch to briefly accelerate material inward, after which
the stagnation of the imploding material converts kinetic energy to internal energy.
There is hope that this might provide an alternative approach to fusion. Whether or
not this works out, such pinches are large and efficient radiation sources. When they
distribute the current across hundreds of metallic wires, they can produce energies
of MJs in volumes of cubic centimeters. This development, also discussed further in
Chap. 10, provided yet another environment for the pursuit of high-energy-density
physics, and there was a veritable explosion in such activity using pinches at around
the turn of the century.
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Meanwhile, particle accelerators continued to develop, driven primarily by the
needs of particle physics. By the 1990s, these accelerators could also produce suf-
ficient densities of relativistic particles to be the high-energy-density regime. Both
ion beams and electron beams can produce high-energy-density conditions. As one
example, the Stanford Linear Accelerator has been used to produce bunches of
order 1010 electrons at an energy of 50 GeV, in a 5 ps pulse. These bunches form
a 3�m spot, and so have an energy flux of 1020 W/cm2. They deliver 150 J per
pulse to a target, and they arrive at a rate that can exceed 100 Hz. These electrons
are themselves a high-energy-density medium and can be caused to interact with
materials of choice. The more-recent emergence of free-electron lasers that produce
coherent, intense beams of X-rays has provided yet another way to produce and
study matter at high energy density.

All of the above developments produced an environment within which it became
possible to pursue questions in high-energy-density physics for their own sake.
Researchers around the world can now address the properties of matter, the
development of dynamic structure and of instabilities, the properties and transport of
radiation, the effect of radiation on the dynamic behavior, and relativistic phenom-
ena in this regime. These fundamentals are what we take up in the next eight chapters
and Chap. 13. Researchers can then use this knowledge to invent novel approaches
to inertial fusion (Chap. 11), to learn things relevant to astrophysics (Chap. 12),
and to develop technologies ranging from improved lithographic systems to novel
medical therapies. Before turning to these tasks, the following provides some further
overview of the regimes of high-energy-density physics and of its applications to
fusion and to astrophysics.

1.2 Regimes of High-Energy-Density Physics

Figure 1.2 shows some important physical regimes and boundaries for high-energy-
density physics. This figure merits an extensive discussion, which will point the way
to much of our work throughout this text. The horizontal axis shows ion density
in cm�3. The vertical axis shows temperature in eV. The axes are logarithmic,
so that this figure spans 11 orders of magnitude in density and more than 10
orders of magnitude in temperature. It shows a number of boundaries and curves.
These boundaries and curves nearly all assume that the matter and radiation are
approximately in equilibrium. We will work our way through these and see what
they tell us. One can see the dark black curve labeled “1 Mbar” from Fig. 1.1. Focus
first on the diagonal line crossing this curve and labeled Te D �Fermi, which shows
the boundary where the electron temperature, Te, equals the Fermi energy, �Fermi.
Below this boundary the electrons are Fermi-degenerate, and above it they are not.
We discuss in Chap. 3 how sharp the transition is. When the electrons are Fermi-
degenerate, the pressure is above and often far above the ideal-gas value one would
find in an ideal plasma.
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Another fundamental aspect of dense plasmas is the magnitude of the energies
associated with Coulomb forces. When these are strong, the particle locations
become correlated and ideal-plasma theory fails. If one expresses the average
electric potential experienced by a particle as �, then the average energy of
interaction is je�j, where the electronic charge is e. The key comparison is between
this energy and the thermal energy, kBTe, and the strong coupling parameter is
defined as � D je�j=.kBTe/. The plot shows three curves where � D 1. The
straight, thin-dashed line labeled �HiZ D 1 would correspond to an imaginary very
heavy atom whose free electrons result strictly from ionization, and which ionizes
according to the simplest equilibrium model. The curve that splits off from this,
labeled �H D 1, changes its slope at the place where H becomes ionized. The curve
�Al D 1 has different behavior at low density and temperature, reflecting the fact that
Al in the solid-state has about three, free, conduction electrons. Above this curve is
another one, labeled �Al D 0:1, which shows that the transition to conditions where
the particles are weakly correlated is fairly gradual. Thus, there may be a region
where the electrons are not Fermi-degenerate but the plasma is not an ideal plasma.
The gray region in the lower-right corner of the plot is where the matter is both
Fermi-degenerate and strongly coupled.

As the plasma heats to hundreds of eV (or sometimes less, especially at lower
densities), the transport of energy by radiation becomes important or even dominant.
The structure and dynamics of the plasma are affected in turn. In this regime the
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plasma is a radiative plasma, shown on the plot above the region of non-ideal plasma
just discussed. The radiative energy transfer alters the plasma dynamics, and so the
system is within the realm of radiation hydrodynamics, discussed in Chap. 7. At
high-enough temperatures, the radiation pressure will directly affect the dynamics.
At pressures below 1 Mbar, radiative effects may still be dominant, for which cases
one will find the relevant models within books and papers on high-energy-density
physics but not within those on the physics of ideal plasmas. The plot shows this
region, labeled “Ideal or radiative”, in light gray. Within this region, plasmas of
sufficient size must be described using radiation-hydrodynamic theory. In the upper
part of this region, plasmas of very large size (too large to be laboratory plasmas)
will have radiation pressures above 1 Mbar. Finally, when the electron temperature
reaches hundreds of keV the electrons become relativistic. This region is accessed
using ultrafast lasers and particle accelerators, and is discussed in Chap. 13.

However, Fig. 1.2 also provides an incomplete picture of high-energy-density
physics, because it assumes equilibrium. What is missing is dynamical processes.
Phenomena such as shock waves, radiation waves, material ablation, radiative
cooling, and hydrodynamic instabilities are not included. Much of Chaps. 4, 5, and 7
and 8 are concerned with these dynamical processes. In addition, and independent
of the information provided by Fig. 1.2, the dynamics of interest may involve
magnetized flows, discussed in Chap. 10, Dynamical processes are also essential to
the production of high-energy-density conditions (Chap. 9), to the achievement of
inertial fusion (Chap. 11), and to experiments relevant to astrophysical phenomena
(Chap. 12). In what follows we provide a summary introduction to inertial fusion
and to experimental astrophysics before we proceed to our detailed task.

1.3 An Introduction to Inertial Confinement Fusion

We mentioned in Sect. 1.1 that inertial confinement fusion or ICF is the application
that has driven much of the development of high-energy-density technology and
science. Chapter 11 discusses ICF, beginning with fundamentals. ICF can produce
a net energy gain because light elements release energy when they are combined to
form heavier elements. This requires a high temperature, to overcome the Coulomb
repulsion of the nuclei, but the energy released can be used to sustain the high
temperature. This is very much like ordinary combustion, and so fusion fuel is
said to ignite and to burn under the proper conditions. The applications of ICF will
expand as the energy gain of ICF systems increases. Here energy gain is the ratio of
the electricity used to produce an ICF event to the energy of the neutrons (or X-rays)
it produces. At modest gains, even of order 1, ICF will produce large amounts of
neutrons and/or X-rays that can be used for further areas of research. At larger gains
(of order 10), the neutrons from ICF events might be used to breed fuel for electric
power plants powered by nuclear fission. At large enough gains (of order 100), ICF
events might be used directly as the energy source in electric power plants.
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Fig. 1.3 Inertial fusion
targets. (a) A hohlraum target
containing a fusion capsule.
(b) Image of a thin-walled
hohlraums showing where the
laser beams strike. Credit:
Lawrence Livermore National
Laboratory

An ICF power plant would operate on a rhythmic cycle that has been compared
to the cycle of an internal combustion engine. (The author is unsure whom to
credit for this analogy.) Let us work our way through this cycle, discussing its
elements. The cycle of an ICF power plant would begin with injection of an ICF
target into a reactor chamber, in analogy to the injection of fuel into the cylinder of
an engine. The target is a structure designed to produce energy by fusion when
energy is delivered to it in a specific way. The target will include a capsule of
fusion fuel (probably DT fuel—deuterium and tritium—and very likely spherical
in shape) covered by a material known as an ablator. The target may also include
other structures necessary for the operation of a specific fusion design. Figure 1.3a
shows an example. Here the spherical object is a fusion capsule while the cylindrical
structure surrounding it is an object known as a hohlraum (see Chap. 9 and the
discussion below). In Fig. 1.3a the target is mounted on a glass stalk; in a power
plant it would be dropped into position, very likely while spinning to help maintain
its orientation.

The phase in internal combustion that follows injection is compression of the
fuel, generally by the motion of a piston. This provides energy to the fuel as
it compresses the fuel. This phase exists in ICF, though it is somewhat more
involved. The first element is to deliver energy to the target with the required spatial
distribution and uniformity. The device that provides the energy is called a driver
in the jargon of ICF. It might be a laser beam or a particle beam or conceivably an
intense photon source. The target might be driven by direct irradiation (a condition
known as direct drive) or indirectly (known as indirect drive). Indirect drive might



1.3 An Introduction to Inertial Confinement Fusion 11

be accomplished, for example, through the conversion of the energy from the driver
into some other form of energy such as thermal X-ray photons. The hohlraum of
Fig. 1.3a converts laser energy into X-rays, producing an X-ray environment with a
temperature of order 2 million degrees (200 eV). Figure 1.3b, obtained with a thin
hohlraum that allows one to see where the laser beams strike the interior walls,
shows an example of such irradiation.

This delivery of energy to the ablator causes it to ablate away (hence the name).
This, however, is not a passive process. The delivery of energy to the ablator
produces temperatures of millions of degrees and pressures of order 100 million
atmospheres. High-velocity, ablated material is propelled away from the hot, high-
pressure material at the surface of the ablator. In reaction, the remaining material and
the fuel are accelerated inward. This process is identical to rocket propulsion, so that
an ICF capsule is sometimes described as “spherical rocket”. The material moving
inward is accelerated to hundreds of km/s. When the fuel converges at the center,
it must stop. This stagnation event converts the kinetic energy of motion to internal
energy, enabling high compression even of Fermi degenerate fuel. This completes
the compression phase of the cycle. The fuel is compressed somewhat more than
hydrocarbon fuels are, reaching a final density of 1000 to several thousand times the
density of liquid DT.

The next phase of the cycle in both internal combustion and ICF is ignition. One
can have spontaneous ignition, as in diesel engines, or spark ignition, as in gasoline
engines. Both these approaches are possible in principle for ICF. On the one hand,
one can design the target so that the fuel at the center of the imploding capsule
ignites when the fuel stagnates. This is known as ignition from a central hot spot.
On the other hand, one can compress the fuel and then use an external energy source
to ignite it. Variations on this approach are known as fast ignition and shock ignition.
At this writing, it is not clear which of these will prove at first most productive, or in
the long run most practical. The ignition and subsequent burning of the fusion fuel
creates a large quantity of energy, completing this phase of the cycle.

The next phase of the cycle is energy extraction. In internal combustion, this
occurs as the expanding hot gas does work on the piston. It is more complicated
in ICF, as neither neutrons nor X-rays, nor even high-energy particles, are able to
push effectively on solid matter. They penetrate rather than push. Instead one must
extract their energy in some other way. When ICF uses DT fuel, most of the energy
emerges as neutrons, and the only known way to extract their energy is to use them
to heat a large volume of matter. This hot matter can in turn heat water to drive a
steam cycle, in which energy is extracted by driving large turbines with steam. This
may or may not prove economical for electric power production. Steam cycles are
not particularly efficient, so one may hope that in the long run one can use fusion
fuel that produces only charged-particle output. This is more demanding but offers
the potential of directly extracting the energy, with high efficiency. In the absence
of new physics, the compact fusion plants that drive many spaceships in science–
fiction would only be possible using these advanced fuels.
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Returning our focus to high-energy-density physics, many elements of the ICF
process depend upon such physics for their success. These include the production of
the energy that drives the target, the delivery of energy to the ablator, the implosion
process itself, the final properties of the fuel, and any attempt at fast ignition. ICF
depends upon the properties of high-energy-density matter (Chap. 3), on the pro-
duction of shock waves and related effects (Chap. 4), on limitation of hydrodynamic
instabilities (Chap. 5), on the transport of radiation within the target (Chap. 6), and
on the impact of radiation on material motions (Chap. 7). Furthermore, the basic
approaches to ICF reflect the various options for producing high-energy-density
conditions (Chap. 9). This makes it fairly clear why the science of high-energy-
density physics grew out of ICF and its facilities, and why knowledge of this physics
is essential if one is to deeply understand ICF.

1.4 An Introduction to Experimental Astrophysics

We made the point above that new sciences arise from new tools. A second and
more specific example of this is the emergence of high-energy-density experimental
astrophysics. One might say that the human brain as a tool gave rise to astronomy.
Adam Frank has observed that the spectrometer can be argued to have given rise to
astrophysics. In the same sense, the ability to do high-energy-density physics in the
laboratory has given rise to this branch of experimental astrophysics. Remington
et al. (2006) provide a review of work in this area through 2004. Some summary
remarks follow here. Various examples are given throughout the text. In Chap. 12
we will take up the specific problem of doing experiments that are sensibly scaled
from the astrophysical system to the laboratory. This field has blossomed in the early
twenty-first century. In the chapter, we address four specific types of experiment, to
show how to construct the scaling arguments that are necessary to understand the
relation between the laboratory and astrophysical systems.

The potential for contributions to astrophysics from high-energy-density physics
is clear from Fig. 1.1. That figure leads one to focus on the possibility of measuring
the equation of state, which for example might relate the pressure, density, and
temperature of materials of astrophysical interest. At this writing, for example, it
is not yet clear just when and how dense hydrogen enters its metallic state. This is
particularly important for gas giant planets such as Jupiter. Figure 1.4 shows a pie-
shaped slice to illustrate a segment of the spherical cross section of this planet. The
equation of state of hydrogen determines whether Jupiter must have a rock core. The
nature of the transition to the metallic state constrains how the dynamo in Jupiter
produces its magnetic fields. This connection has been recognized for some time
but equation of state experiments are difficult, as they require very high precision.
By the 1980s one could begin to attempt measurements using the tools capable of
such work at that time. These were principally devices called gas guns and rail
guns that can accelerate slabs of material to high velocity, producing high pressure
when they collide with other slabs of material. Until recently, such guns could not
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Fig. 1.4 Schematic interior
of Jupiter

produce pressures as large as 1 Mbar. The emergence of pulsed-power devices that
could drive 10 MA currents, and of lasers capable of creating very large pressures
led at around the turn of the century to work at pressures of several Mbar.

The equation of state is one example of a property of matter in its equilibrium
state that has implications for astrophysics. We discuss the connections in Chap. 3
and the most common approach to measurements, which uses flyer plates, in
Chap. 4. Another example is the X-ray opacity, discussed further in Chap. 6. Much
of the energy transported within stars and other hot, dense objects is carried
by radiation. The absorption of this radiation turns out to control some of the
properties of these objects. Yet this radiation absorption is often dominated by the
electronic transitions in various ions, especially those up to and including ions of
iron. The measurement of the opacity of materials of astrophysical interest, and
the comparison of these measurements with newly available computer codes that
could calculate the opacities accurately, began in the early 1990s. Measurements
of equation of state and opacity carry out the research suggested naturally by
Fig. 1.1, determining important equilibrium properties of materials. More recently,
researchers have devised ways to use fusion capsules to measure some cross-
sections for nuclear reactions, some of which are important for the evolution of
the elements in the Universe. Aside from a few reactions relevant to fusion energy,
though, this book will not pursue this topic further.

An explosion of work in laboratory astrophysics followed the realization, inde-
pendently by Hideaki Takabe in Japan and Bruce Remington in the U.S., that one
could also use high-energy-density tools to explore the large-scale dynamics that
matters for astrophysics. To that point, our Earth-bound knowledge of astrophysical
dynamics depended entirely on computer simulations that could be tested against
one another but not against any benchmark data. Some of the resulting work is
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discussed further in Chap. 12, with a focus on how one establishes the scaling
between systems. Here we provide a partial overview.

There are a sequence of steps required to have meaningful scaling between a
laboratory system and an astrophysical one. First, the same type of equation must
be sufficient in both systems. For example, fluid equations must suffice. Second, the
same terms in the equations must be important in for both systems. For example, if
the growth of fluid structures at small scales is important, then the Reynolds number,
which measures the weakness of viscous dissipation and diffusion, must be large in
both systems. Third, the key parameters in the two systems must have the same value
of a scaling parameter that we will call a Ryutov number, after Dmitri Ryutov, who
initiated the work that defined this approach to scaling. Fourth, the detailed behavior
of the specific dynamical process of interest must be in the same regime, measured
by one or more dimensionless parameters that must be thoughtfully determined. We
will call this the specific scaling.

It is most straightforward to produce a well-scaled experiment in systems that are
purely hydrodynamic, so that viscous dissipation, heat conduction, and radiation
are negligible. This may seem like too much simplification to be worthwhile, but
that is not the case. It turns out that many astrophysical systems behave mostly
or entirely as hydrodynamic systems, in certain portions of their structure and
evolution. These include supernovae, some supernova remnants, blast waves, and
some astrophysical jets. In addition, the complex three-dimensional instabilities
within these systems and interactions among them are beyond the capabilities of
turn-of-the-century simulations to reproduce. This creates a role for experiments.
Early work, around the turn of the century, focused on the unstable phenomena that
occur during supernova explosions. Figure 1.5 shows an example. As a result of
the passage of a blast wave like that in supernovae, the structure at a first interface
affected the evolution of a second interface. Other early experiments in this area also
explored the simulation of processes in supernova remnants, the dynamic behavior
of hydrodynamic astrophysical jets, and the crushing of clouds by shock waves.

Fig. 1.5 Structure produced
when a blast wave crosses
two interfaces. The second
interface is visible only where
a diagnostic tracer is present
behind it. There is little
contrast across the blast wave
itself, making it difficult to
see
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Despite the comparative simplicity of hydrodynamics, we begin Chap. 12 with a
thorough discussion of scaling between systems for such cases.

Once the transport of energy by radiation becomes important in the evolution of
the matter, one has entered the regime of radiation hydrodynamics (Chaps. 7 and 8).
Important astrophysical phenomena in this regime include radiation waves, radiative
shock waves, and radiative jets, not to mention the interiors of stars. Here, however,
one nearly always loses the ability to do a precisely scaled experiment. Instead, one
can hope to scale the essential dimensionless parameters so that the dynamics of
interest to astrophysics are present in the laboratory. One example is the radiative
jet, in which there are three key parameters: (i) the internal Mach number (the ratio
of the jet velocity to the sound speed of the material in the jet), (ii) the ratio of
density in the jet to the ambient density around it, and (iii) the ratio of the distance
along the jet required for significant cooling to occur to the radius of the jet. An
experiment can in principle scale these three numbers. Such an experiment and an
astrophysical jet would be expected to show qualitatively similar behavior, even if
some detailed processes, such as the nature of the radiative cooling, were different.
Similarly, for radiative shock waves there are three key parameters. The first two
are the transmission of radiation by the regions ahead of and behind the density
jump produced by the shock wave. The third parameter is the ratio of the radiation
energy flux produced in the shocked matter just behind the shock to the material
energy flux coming to the shock (in a frame of reference in which the shock is at
rest). These parameters can also in principle be scaled from an experiment to an
astrophysical case.

Magnetic fields play a significant role in the dynamics of many astrophysical
systems, notably including astrophysical jets and accretion flows. We also construct,
in Chap. 12, the requirements for scaling of experiments producing MHD flows. We
apply these to the case of magnetized astrophysical jets and jet launching. It has
proven possible to create, in the laboratory, episodic jets that develop structures
similar to those seen emerging from young stellar objects and other systems. The
analysis of scaling shows that these systems can be well-scaled to the astrophysical
dynamics of interest.

We also provide one example from the scaling of the Weibel instability, relevant
to the formation of collisionless shocks in plasmas that are initially unmagnetized.
This is an example of a case in which one is attempting to produce and study a
process that is important in astrophysics as a fundamental mechanism, with less
emphasis on modeling any particular astrophysical case. Even so, one must develop
dimensionless parameters that enable one to understand how to produce a laboratory
experiment that is in the correct physical regime.

We do not discuss in Chap. 12 experiments driven by ionizing radiation. These
often are driven by radiation from Z-pinches. This is a method used to study opac-
ities, but also can examine other systems of interest. One of these is photoionized
plasmas. Most Earth-bound plasmas are produced by electron-impact ionization,
including those in fluorescent light bulbs, in magnetized laboratory plasmas, and
in laser-irradiated materials. This is also true of many astrophysical environments,
such as the solar corona. However, there are a number of astrophysical environments
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in which the dominant source of plasma is photoionization. (This is also true of
portions of the ionosphere above the Earth.) Indeed, since we depend primarily
upon spectroscopy for the study of astrophysical objects, the data we get from very
energetic environments such as neutron stars and the space near black holes come
from photoionized plasmas. Without well-grounded knowledge of the properties of
such plasmas, we cannot hope to interpret the data to see, for example, whether
Einstein’s theories of gravity accurately describe black holes. Beginning in the
mid 1990s, experiments began to produce photoionized plasmas in well scaled
environments and to measure their properties.

Finally, astrophysical environments often produce relativistic effects. These are
many. A few examples include the production of electron–positron pairs in intense
radiation environments, the alteration of atomic structure in very strong magnetic
fields, the propagation of relativistic jets through magnetic fields, and the evolution
of gamma-ray bursts, which seem likely to involve relativistic radiation hydro-
dynamics. At this writing, the use of ultrafast lasers to explore such phenomena
has begun. We discuss in Chap. 13 the production of positrons using such lasers,
which a step toward being able to study electron-positron plasmas. Such plasmas
are important near pulsars and in other astrophysical systems.

1.5 Background Needed for This Book

This book is heavy on conceptual explanations, and so may provide some benefit to
those who want to know the qualitative description of some topics. However, just
as in other basic graduate books in physics, its fundamental intent is to develop the
combined conceptual and mathematical framework that enables us to understand
the systems we study. Since our primary concern is with the dynamical behavior of
continuous systems, our mathematical language is that of partial differential vector
calculus. The mathematical expertise typically learned in a course on mathematical
methods for physics and engineering is essential, if one is to follow the mathematical
conversation. No background training is needed in fluid dynamics or plasma physics
as such; these are covered here as needed. Background in two other areas is fairly
important. The first of these is statistical and thermal physics. A familiarity with
this subject at the advanced undergraduate level is sufficient for nearly everything
discussed herein. The author is partial to the iconic text by Reif (1965). Only the
most-advanced sections of Chap. 3 would require some graduate-level background
to be understood. The second of these is electricity and magnetism. Here the
knowledge from an advanced undergraduate course is probably sufficient, although
graduate coursework would help, especially in the area of wave behavior. The
book by Jackson (1999) has become the standard reference, and is cited at times
throughout this text.
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1.6 Some Connections to Prior Work

As indicated above, high-energy-density physics is a new field in some sense, having
evolved out of some historical precursors. It might have emerged sooner in the
absence of classification of fusion research. However, it might not have, because the
ability to do systematic experiments remains relatively recent. Even so, there are a
number of historical books in related fields and notably in astrophysics that provide
a deeper discussion of some of the material covered here. This section provides
an overview of some of this work, oriented to the order of the following chapters.
There are two areas for which few or no more detailed books are available. These
are experimental astrophysics (Chap. 12), for which no books exist, and relativistic
high-energy-density physics (Chap. 13), for which there are as of 2016 at least three
(Gibbon 2006; Seryi 2015; Gamaly 2011). These are both relatively new areas of
research at this writing. Some review papers exist, no doubt soon to be superseded
by others. One will have to wait for more book-length treatments.

The properties of matter at high energy density (Chap. 3) could be addressed
more thoroughly by a detailed study of the statistical mechanics of matter in the
high-energy-density regime. Such a work does not exist but various references
approach aspects of this problem. Many books in statistical mechanics address
various fundamentals; one good example is Volume 5 of the series by Landau and
Lifshitz (1987). Even so, the specific issues that arise in ionized media and otherwise
at high energy density are not addressed there. The book on equations of state by
Eliezer et al. (1986) considers some of these issues, as does the book on plasma
spectroscopy and atomic physics by Salzman (1998). They are also dealt with, on
a fairly ad hoc basis, in the books to be highlighted later by Zel’dovich and Razier
(1966) and Mihalas and Weibel-Mihalas (1984). Griem (1997) addresses several
specific issues in his book on plasma spectroscopy, which, alas, is not so easy to
read. Quantum mechanical aspects of the matter also become important at high
density and low temperature, as we also discuss in Chap. 3, but the author is not
aware at present of a book focused on these issues.

The behavior of shock waves, rarefactions, and self-similar systems (Chap. 4)
is addressed to various degrees in a number of texts, notably including those by
Sedov (1959) and by Whitham (1974). Principal among such works, for problems
of interest to high-energy-density physics, is the book by Zel’dovich and Razier
(1966). This book quite rightly has been venerated for many years. If there is a single
text that might be said to be a precursor to the field of high-energy-density physics,
it is this. It has also long been the best general introduction to high-energy-density
physics, despite being too detailed in many respects and incomplete in others. The
author hopes that the present text might take over this function. Even so, Zel’dovich
and Razier (1966) will remain the next book of choice for details of one-dimensional
hydrodynamics and approaches to the key physics based on similarity solutions.

In the area of hydrodynamic instabilities (Chap. 5), the work that stands clearly at
the forefront in the analysis of hydrodynamic instabilities is that of Chandrasekhar
(1961). It is thorough, it is fundamental, and it works a number of problems of
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central interest to high-energy-density systems. Unfortunately, having been written
in the 1950s this text does not discuss some aspects of compressible hydrodynamic
instabilities that are also of substantial interest. For these, to go beyond what little
is done in the present text one must head to the archival literature. In the specific
area of incompressible hydrodynamic turbulence, the outstanding introductory text
is by Tennekes and Lumley (1972) and the thorough and definitive tome is by Hinze
(1959).

For issues relevant to high-energy-density physics, radiative transfer (Chap. 6)
and radiation hydrodynamics (Chaps. 7 and 8) have never been treated in inde-
pendent books, so we will discuss them together. The field of radiative transfer
has many applications, as this kind of process is essential to the behavior of
planetary atmospheres, stellar interiors, energetic astrophysical events, and high-
energy-density laboratory systems. Chandrasekhar for example also contributed a
book on radiative transfer. However, the book that is without question most relevant
to radiative transfer and to radiation hydrodynamics in high-energy-density physics
is that by Mihalas and Weibel-Mihalas (1984). The material on these areas in
Zel’dovich and Razier (1966) is also relevant and is very insightful. Unfortunately,
Mihalas and Weibel-Mihalas (1984) is well known to be difficult to read. This
may be in part because of the excellent connections it makes with the literature
that existed when it was written. The author hopes that the present text, with its
more pedagogical focus and simplified presentation, will provide a foundation that
enables a better appreciation of their thorough discussions. Because of its emphasis
on the essential physics, the present text has steered clear of the issue that occupies
most of the time of most of the people working in radiative transfer and radiation
hydrodynamics, which is the discovery and implementation of computer algorithms
that can produce practical approximate solutions of radiative transfer problems,
either in isolation or in the context of radiation hydrodynamics. There is some
discussion of these issues in Mihalas and Weibel-Mihalas (1984). In addition, Castor
(2004) has published the definitive text in this area in 2004.

We now turn to experiments and applications. The production of high-energy-
density systems touches on a number of areas of research. Some of these have many
more-detailed books while others have none. There are many books, for example,
on lasers, no one of which seems uniquely relevant. Much less is available on what
happens when the laser strikes the target, with the principal reference being the text
on laser–plasma interactions by Kruer (1988). The book on Z pinches by Lieberman
et al. (1999) has some material that is relevant to high energy density, and much that
is not.

It is no surprise that more is available in the area of inertial fusion, as this has
been the driving application. Two books in this area deserve specific mention. Atzeni
and Meyer-Ter-Vehn (2004) published in 2004 an extensive book whose focus is
inertial fusion. This book takes up most of the topics covered here, and a number
of topics not covered here, all in the context of how they impact inertial fusion as
an application and a goal. It is heavy on formulae, including parametric fits to many
complex relationships, and comparatively light on discussion and explanations. As
a result, it will be a very useful tool for experts. An earlier book by Lindl (1995),
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published soon after the declassification of fusion using hohlraums, has more of
an engineering orientation. It addresses primarily the specific issues involved in
producing fusion by this method, about which it includes much useful detail. It also
includes a number of useful formulae based on studies by computer simulation. In
a number of cases, we compare results from a fundamental and simplified analysis
with those given in one of these two books.

1.7 Variables and Notation

One difficulty with work that involves contributions from various disciplines is
conflict of variable definitions. Certain symbols find very common use to mean
different things. For example, 	 is used as the ratio of specific heatsthroughout fluid
dynamics but is also used extensively as the symbol for a growth rate in instability
theory and as the Lorentz factor in relativity. The goal here has been to use a notation
that was consistent throughout the text while keeping close to standard usage where
feasible. For this reason, the book makes extensive use of subscripts. Appendix A
includes a list of variables used in the text, and of the symbols used for a number
of common constants. This list is intended to include all variables that are used in
more than one section and many of the dimensional variables. It may not include
some variables that are used solely within the context of a single derivation or a
single section of the text, especially when these are nondimensional. As discussed
at more length in the preface, the intent in the equations has been to either ensure
that an equation has evident and consistent units, so that any system of units can
be used, or to give the units used explicitly. In nearly all cases, we will write
equations involving a temperature as equations in energy units, representing the
contribution of the temperature as kBT; where kB is the Boltzmann constant and T
is the temperature.

In writing variables and equations, this book uses italic text for scalar quantities
and boldface text for vector quantities. Tensors of the second rank are written either
as underlined boldface symbols, such as P; or as dyadic notation, such as uw:
(The element in the ith column and jth row of a tensor written in dyadic notation
are .uwij D uiwj/. In writing differential equations the derivatives are written as
fractions rather than using a more compact notation.

Finally, geometric unit vectors are represented using a hat, as for example in
Ox; Oy; Oz; and Or.
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Chapter 2
Descriptions of Fluids and Plasmas

Abstract This chapter begins by introducing the simplest equations that are
useful in describing high-energy-density systems (the Euler equations). It proceeds
toward more complex models, introducing a range of forces and energy transport
mechanisms, and ultimately treating the energy content of the electrons, ions,
and radiation independently. Along the way it discusses linearization and the
dimensionless analysis of differential equations. It then introduces multi-fluid
models and kinetic models. The chapter includes a brief discussion of simulations.
It leaves the treatment of magnetized plasmas and flows to Chap. 10 and of most
aspects of radiation to Chaps. 6 through 8.

Not long ago, one could say that 99% of the known universe is plasma. The recent
discovery of dark matter and dark energy imply that this may no longer be true,
but it will remain the case that 99% of the readily observed universe is plasma. The
interstellar medium, stars, and more exotic compact objects are all composed of or
surrounded by ionized matter. Without understanding something about plasmas, one
cannot hope to understand the universe.

It is equally true that knowledge of plasmas is essential to high-energy-density
physics. To reach pressures above a megabar at densities of a few times solid density
or smaller requires temperatures large enough to ionize the matter. Thus, in most
high-energy-density systems the matter is in the plasma state. In various contexts
and regimes, this plasma may behave as a simple fluid, as an ideal plasma, or
as a plasma beyond the scope of traditional plasma theories. In addition, plasma
behavior is essential to the use of lasers to produce high-energy-density systems
(Chap. 9). When the behavior of high-energy-density systems departs from that of
simple hydrodynamic fluids, either plasma effects or radiation effects are typically
responsible. In addition, the models of use in describing plasmas are supersets of
those used to describe simpler fluids. We discuss various approaches to describing
plasmas and fluids here. Radiation and radiation hydrodynamics are described in
Chaps. 6 through 8.

If the reader has studied plasma physics, then parts of this chapter will be review.
If the reader has studied electrodynamics or fluid dynamics, but not plasma physics
as such, then other parts of this chapter will be review. In addition, our focus here
is not at all to span fluid dynamics and plasma physics in a few pages, but rather to
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introduce the models we will need in the pages that follow. Moreover, we assume
here that all motions are non-relativistic. Relativistic motions are considered in
Chaps. 6 and 13.

2.1 The Euler Equations for a Polytropic Gas

In books on plasma physics, it is common to begin with collections of individual
particles, to determine how to describe their behavior statistically using the Boltz-
mann equation, and then to average their behavior in ways that produce simpler
models of plasma dynamics. This is not always possible in fluid dynamics or in high-
energy-density physics, as some forces and energy transport mechanisms are not
readily found by averaging over particle distributions. Here we take the reverse path,
beginning with the very simple averaged equations that are useful in many high-
energy-density contexts, and working our way toward more-complex descriptions
that are more powerful but also less-often necessary. In this spirit, we begin with the
Euler equations for a polytropic gas:

@�

@t
C r � �u D 0; (2.1)

�

�
@u
@t

C u � ru
�

D �rp; and (2.2)

@p

@t
C u � rp D �	pr � u; (2.3)

where u; �, and p are the velocity, density, and pressure, respectively. Here (2.1)
is the continuity equation, describing conservation of mass, (2.2) is the equation
of motion, derived from the conservation of momentum, and (2.3) is the energy
equation, derived from the conservation of energy. Equation (2.3) assumes that
the fluid is polytropic so p / �	 where 	 is the adiabatic index (the ratio of
specific heats). In their volume on fluid mechanics, Landau and Lifshitz (1987)
report that “polytropic processes” is a historic term for processes in which pressure
is proportional to some inverse power of volume. This is why a fluid or gas with p /
�	 is described as a polytropic gas, and why 	 is often called the polytropic index or
polytrope. For a fully ionized nonrelativistic gas (at a high enough temperature and a
low enough density) 	 is equal to 5/3; for a gas where radiation pressure is dominant,
	 is equal to 4/3; for a diatomic molecular gas, 	 is equal to 7/5. We discuss more
general versions of these equations in Sect. 2.3 and more complex models in Chap. 3
for circumstances when 	 is not constant. In some of the later discussion, especially
of shock waves, it will prove useful to have the energy equation in conservative
form, discussed next. In this form the energy equation is
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where the specific internal energy is �. Other useful forms of the energy equation
are discussed later in this section.

Although it is not evident at first glance, all three of these equations are at root
continuity equations, in which the total amount of something is changed only by
sources (sinks are negative sources). They all can be written in “conservative form”,
in which the change in the density, �Q, of some quantity Q is determined by the
flux of that quantity, � Q, having units of Q per unit area per unit time, and the net
volumetric sources of that quantity, SQ. The conservative form is then

@

@t
�Q C r � �Q D SQ: (2.5)

If one integrates such an equation over some volume with a surface, 
 , and applies
Gauss’ law, one obtains
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�Q � dA D Net source in volume; (2.6)

in which the second term is the net flow of Q into or out of the volume and
H



represents the integral over the closed surface 
 .
Equation (2.1) is often referred to as the continuity equation. It constrains the

dynamics of a fixed amount of matter. One can recognize the second term on the left
as the divergence of a flux. As a result, if one integrates this equation over a finite
volume, the change of mass within the volume will equal the flow of mass into or out
of the volume. If there were mass sources or mass sinks, these would appear on the
right-hand side of (2.1). This equation, though simple, is a key factor in the complex
behavior of hydrodynamic systems, because in many cases the variation of both �
and u is important. This makes (2.1) an essentially nonlinear partial differential
equation, not readily solved by any analytic technique.

Equation (2.2) is the momentum equation, or more accurately is an equation
derived from the calculation of the rate of change of momentum density. This
specific equation applies when electric and magnetic fields, viscous momentum
transfer, and radiative forcing are all negligible. The only remaining momentum
source is the pressure gradient, which causes compression or decompression of the
plasma. Its effect is represented by the term on the right-hand side. The second term
on the left arises from the convection of momentum density.

An important simple application of (2.1) and (2.2), for which an analytic
solution is straightforward, is the description of small-amplitude, acoustic waves.
We consider this here as an example of the technique called “linearization”, because
linearization will be important in numerous contexts later in the book. Linearization
is possible when the variation of every variable in a problem can be described as a
small deviation from a constant average value (which might be zero). The essence
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of linearization is the realization that terms that are linear in the small deviations
are vastly larger than terms that are nonlinear in these quantities. Here we use the
subscript o for the average values and the subscript 1 for the small deviations, and
we also assume that p can be described as a function of �. Then with uo = 0, (2.1)
becomes

@�1

@t
C �or � u1 C u1 � r�1 C �1r � u1 D 0 (2.7)

and (2.2) becomes

�o

�
@u1
@t

C u1 � ru1

�
C �1

�
@u1
@t

C u1 � ru1

�
D �@p

@�
r�1: (2.8)

Then the nonlinear terms, with products involving �1 and/or u1, can be discarded as
small. To show this formally one should rework these equations so that every small
quantity is expressed as a ratio that is actually small. This is left as a homework
problem, as is the derivation from these two equations of the acoustic wave equation

@2

@t2
�1 � @p

@�
r2�1 D 0: (2.9)

Here the square of the sound speed, cs, is c2s D @p=@�, which equals 	p=� for
a polytropic gas. The definition of the sound speed squared is often expressed as
the partial derivative of pressure with respect to density at constant entropy. In
more detail, this partial derivative is taken according to the properties of the system
under study. If the fluctuations are adiabatic, then it is taken at constant entropy.
If rapid heat transport keeps the temperature constant, then it is taken at constant
temperature, and so on.

It is also useful preparation for later analysis to discuss the solutions of (2.9). The
standard method of finding the normal modes of a system described by this equation
involves a decomposition of the spatio-temporal structure into plane waves, so that
the parameters, such as �1.x; t/, are expressed as a sum or integral over plane waves
whose amplitudes can be expressed as Q�1.!; k/ � expŒi.k � x � !t/�, in which the
angular frequency of the oscillation is ! and its wavevector is k (whose magnitude k
is related to the wavelength � by k D 2=�). Throughout this book x and t are
used as variables for position and time, with boldface indicating vector quantities.
A formal solution also must include a consideration of how real physical quantities
are to be related to the complex mathematics. (For a discussion of this last point see
for example Chap. 6 of the electrodynamics text by Jackson (1999)). One can find
the dispersion relation for acoustic waves either by considering a single plane wave,
replacing �1 by Q�1, or by taking the Fourier transform of (2.9). One obtains

!2 � c2s k2 D 0; (2.10)
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from which one sees that cs is both the phase velocity (!=k/ and the group velocity
(@!=@k/ of these waves. Note that the fluctuating amplitude Q�1 cancels out of the
dispersion relation. This quantity is thus not constrained by (2.1) and (2.2), until it
becomes large enough that linearization becomes invalid.

An additional aspect of the behavior of acoustic waves of larger amplitude
is worth mentioning. This is acoustic wave steepening, encountered in various
fluid contexts but of unclear importance at high energy density. The crest of a
large acoustic wave is at a higher density than the trough, and the sound speed
is correspondingly larger. This has the effect that any given wave crest tends to
overtake the trough ahead of it. This in turn causes a steepening of the “front” of
the wave. In a system determined by the Euler equations, ordinary acoustic waves
steepen until they become a series of smooth increases in the plasma pressure and
density connected by abrupt decreases. In any actual plasma, finite viscosity will
limit the steepening of the wave fronts.

Equation (2.3) explicitly describes the variation of the plasma pressure but in
fact is the simplified equation obtained by calculating the rate of change of the
energy density in the plasma. For any polytropic medium, the total internal energy
density is proportional to the pressure and is given by p=.	 � 1/. In (2.3) the left-
hand side describes the temporal and convective variation of the plasma pressure.
In an incompressible fluid, for which r � u is zero, this is the entire story of energy
conservation. In a compressible fluid, in contrast, the work done during compression
or decompression, during which r � u is nonzero, is part of the flow of energy. An
important additional point here is that (2.2) and (2.3) describe the pressure as a
scalar quantity. In general the pressure is a tensor, P, and what we write as rp
would in general be the vector given by r � P. In most circumstances in high-
energy-density physics, the concept of an isotropic scalar pressure applies very
well. We allow for the tensorial nature of pressure when including viscous effects
in Sect. 2.3. Other cases where the pressure is not scalar include work with solids,
which can sustain shear stresses and other asymmetric internal forces, and with
well-magnetized plasmas, in which case the behavior along the magnetic field is
fundamentally different than behavior perpendicular to it.

Equation (2.3) also has an important relation to the entropy of the plasma. To be
specific, we consider a polytropic gas, although the conclusion is more general than
this. The specific entropy (the entropy per unit mass) of a polytropic gas, s; can be
expressed (Sedov 1959, p. 261) as

s D cV ln

�
p

�	

�
� cV ln

�
po

�
	
o

�
C so; (2.11)

in which so is the value of s in a reference state, for which p D po and � D �o, and
cV is the specific heat at constant volume. If one evaluates the total derivative of s,
Ds=Dt D @s=@t C u � rs, one finds

1

cV

Ds

Dt
D 1

p

@p

@t
C 1

p
u � rp C 	r � u: (2.12)
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Equation (2.3) then implies that Ds=Dt D 0, so one concludes that specific entropy
is conserved across regions of time and space where (2.3) is continuously valid. Note
that entropy is not conserved across transitions with a discontinuous change in the
fluid parameters, such as shock waves. In addition, heat transport or other dissipative
processes lead to a change of entropy. In simulations of hydrodynamic systems that
include dissipative processes, one can evaluate their importance by examining the
change in entropy of the fluid elements. The ways in which these equations apply
to shock waves are discussed in Chap. 4. (Note that the total derivative, discussed
at more length in texts on fluid dynamics, is the rate of change of some quantity
within some specific parcel of fluid. It includes the inherent time dependence of the
quantity and also the rate of change resulting from fluid motion in the presence of a
spatial derivative.)

The energy equation can be expressed in other useful ways, which will matter for
later chapters. If one expands (2.4) and collects all the terms involving derivatives of
density, one finds that these terms sum to zero by the continuity equation. By taking
the dot product of u with (2.2), one obtains an equation equivalent to conservation
of mechanical energy in the plasma. (A complete equation for mechanical energy
requires taking the dot product of u with the conservative form of the momentum
equation.) Subtracting this from the energy equation, and substituting for r � u
from the continuity equation, one obtains what is sometimes called the gas-energy
equation,

�
@

@t
C u � r

�
� � p

�2

�
@

@t
C u � r

�
� D D�

Dt
� p

�2
D�

Dt
D 0: (2.13)

In the presence of energy sources or heat transport, the right-hand side of this
equation would not be zero. For an ideal gas, with � D p=Œ�.	 � 1/�, this equation
reduces to a particularly useful form:

Dp

Dt
� c2s

D�

Dt
D 0: (2.14)

In this last equation, one has multiplied the equation by .	 � 1/ to simplify it. This
factor must be accounted for when sources of heat make the right hand side non-
zero.

2.2 The Maxwell Equations

Many simplified fluid equations have some electrodynamic component. To under-
stand these, we will need the Maxwell equations of electrodynamics. They are
written here for reference and to allow some discussion of Gaussian cgs and
other units. We write these equations assuming that the media are not inherently
magnetized or electrically polarized, so that we can account explicitly for all charges
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and currents, and can take the polarization and magnetization fields to be zero. This
is common in plasma physics but not in other areas where polarization electric field
and material magnetization are useful concepts. We have the Poisson equation,

r � E D 4k1�c; (2.15)

the absence of magnetic monopoles,

r � B D 0; (2.16)

Faraday’s law

r � E D �k3
@B
@t
; (2.17)

and Maxwell’s generalization of Ampere’s Law

r � B D k2
k1k3

@E
@t

C 4
k2
k3

J: (2.18)

Here �c is the charge density and J is the current density. Here we have followed
Jackson (1999) in expressing these equations in unit-independent form. In most
applications in this text, the equations will be written in Gaussian cgs units,
which turn out to produce convenient expressions for plasma phenomena. In such
equations, B is in Gauss and other quantities are in cgs units. The constants are
k1 D 1; k2 D 1=c2, and k3 D 1=c: In these cases one tends not to be interested
in the electric quantities—few researchers actually use statvolts/cm as a unit of
electric field but researchers working with cgs equations often need to express the
electronic charge as 4:8 � 10�10 statcoul rather than as 1:6 � 10�19 C. The cgs
unit of energy is the erg, which may be of use or may be converted to eV or keV
(1 eV D 1:6 � 10�12 ergs D 1:6 � 10�19 J).

Researchers who need to calculate magnetic fields typically work with the SI
mks version of Ampere law:

1

�o
r � B D �o

@E
@t

C J; (2.19)

in which �o D 4 � 10�7 H/m, �o D 107=.4c2/ F/m (Farads/m) with c in m/s, B
is in Tesla, E is in V/m, and J is in A/m2 (Amps/m2). More generally, for SI mks
units k1 D 1=.4�o/m/F = 10�7c2, k2 D �o=.4/ D 10�7 H/m, and k3 D 1.

One also needs the Lorentz force, which acts on any charge q with velocity v

and is

FL D q

�
E C v � B

c

�
.cgs/

D q .E C v � B/.SI/ ; (2.20)
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in which the units are designated by the text in parentheses.
We will also find it convenient to work with the vector potential, A; so that

B D r � A (2.21)

and

E D �r˚ � 1

c

@A
@t
; (2.22)

in which the scalar potential is ˚ , using the Coulomb gauge, so r � A D 0.
We will also need at times to work with the energy density and energy flux of

electromagnetic field. In cgs units the energy densities WE and WB of the electric
and magnetic fields, respectively, are

WE D E2

8
(2.23)

and

WB D B2

8
: (2.24)

Note that when one averages over many cycles of a fluctuating field to obtain an
averaged energy density, the results equal these quantities are divided by 2. This
is also the case for the Poynting flux, the energy flux carried by electromagnetic
fluctuations,

S D vg

4
E � B; (2.25)

in which the group velocity of the wave is vg.

2.3 More General and Complete Single-Fluid Equations

Figure 2.1 shows an image of the Cygnus loop. This object, six times the size of the
moon when viewed from the Earth, is the result of a supernova that occurred about
15,000 years ago. It features very thin, crenellated layers of matter. Spectroscopic
imaging of the emission from different elements shows where they are produced.
Analysis of these emissions has found that the various features are produced by
shock waves and has revealed some of their properties. The Cygnus loop is of note
here because it cannot be described using only the Euler equations. In this case, the
process that is missing and that matters most is radiative heat transport. There are
many cases in which one or more processes, beyond the interplay of pressure and
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Fig. 2.1 The Cygnus loop supernova remnant. The background image is an optical image from a
ground-based telescope. The inset, from the WFPC2 instrument on the Hubble Space Telescope,
shows the very thin layer of emission (by hydrogen at 656.3 nm) produced by the upward-moving
shock wave in the small box aligned with the arrows. The ground-based image of the Cygnus loop
(shown in the background) measures 3ı � 2ı and was taken by CalTech with the Oschin Schmidt
Telescope and scanned as part of the Digitized Sky Survey. Hubble Image credit: European Space
Agency. http://origins.jpl.nasa.gov/library/story/101100-a_old.html

momentum, are essential to the behavior of a system of interest. Even so, one very
often can ignore the fact that real plasmas include some combination of ions and
electrons. A great deal of the behavior of plasmas, especially including high-energy-
density ones, can be described by treating the plasma as a single fluid that can be
charged, carry currents, and interact with radiation. In this section we discuss such
single-fluid equations and a few specific limits of interest.

2.3.1 General Single-Fluid Equations

We discussed, with reference to (2.4), the general structure of transport equations.
This structure still applies here. The more complex element is that other sources and
fluxes of any given quantity are considered. The problems of concern in this book
do not involve interior mass sources, so the continuity equation,

@�

@t
C r � .�u/ D 0; (2.26)

remains unchanged. The general transport equation for momentum, in the nonrela-
tivistic limit, is

http://origins.jpl.nasa.gov/library/story/101100-a_old.html
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�

�
@u
@t

C u � ru
�

D �rp C FEM C r � �
�

C Fother: (2.27)

Here (2.26) was used to simplify the left-hand side of (2.27); the more complex
expression, involving the time dependence and divergence of the momentum
density, is often more useful for computer simulations. The viscous stress tensor,
� � , is further discussed below. The term designated Fother represents the sum of
all other forces, such as gravity. The radiation momentum density is not included,
because it is insignificant except in relativistic systems.

The total force density due to the interaction of charges with the electromagnetic
fields is designated as FEM. The exact form of this term depends upon the regime.
In the unlikely event that the fluid is charged, it may include the Lorentz force,

�c

�
E C u � B

c

�
;

in which �c is the density of charge, and as always throughout this book the electric
field is E; the magnetic field is B; and the speed of light is c: This form of the Lorentz
force (with the c/ is expressed in Gaussian cgs units. In the magnetohydrodynamic
limit, the current density is J, but the flow of current does not require motion of the
single-fluid plasma, and the associated force is J �B=c. The fluid flow velocity does
not enter because the electrons carry nearly all the current but nearly none of the
momentum. Similarly, the presence of a significant charge density does not require
a significant accumulation of mass.

Under most conditions of interest throughout this book, we will represent FEM

as �rpR, and will identify pR as the radiation pressure. We discuss the definition
and evaluation of pR in Chap. 6. Here we note that pR represents a sum over all
modes present of their pressure, averaged over a time long compared with one cycle
and short compared with hydrodynamic timescales. Using pR is an effective way to
capture the effect of broadband, incoherent thermal radiation on the plasma. In our
typical regime where FEM includes �rpR and possibly other terms, the total-energy
equation is

@

@t

�
�� C �u2

2
C ER

�
C r �

�
u
�
�� C �

u2

2
C ER

�
C .p C pR/u

�
(2.28)

D �r � H � J � E C .FEM � rpR C Fother/ � u:

The energy density of the radiation field, ER, is usually ignorable and is also
discussed further shortly. These equations can be derived either by taking moments
of particle distribution functions or by reasoning about the behavior of small
elements of fluid. Versions of these equations, including or excluding various
specific source terms, can be found in any plasma physics or fluid dynamics text.

The divergence of the energy flux, H, which enters (2.28), is
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r � H D r � �FR C Q � �
�

� u
�
; (2.29)

in which the radiative energy flux is FR and the energy flux from thermal heat
conduction is Q. The penultimate term in (2.28), �J � E, describes the volumetric
(Joule) heating by the currents driven by electromagnetic waves. This term is
typically negligible except in any plasma penetrated by intense laser light.

We can obtain a gas-energy equation from (2.28) by subtracting from it the
equation obtained by taking the dot product of u and (2.27), which is equivalent
to an equation for conservation of mechanical energy density. This can then be
cast in the form of (2.14), for a polytropic equation of state such that .p C pR/ D
.e	 � 1/.� C ER=�/ , to obtain

D

Dt
.p C pR/ � e	.p C pR/

�

D�

Dt
D .e	 � 1/ ��r � .FR C Q/C �

�
� �ru � J � E

�
;

(2.30)

in which �
�

� �ru, the viscous energy dissipation, can be expressed in component
form as 
ij@uj=@xi. When the energy density of the radiation is negligible, e	 is
just 	 as introduced above. In this limit, and when viscosity and Joule heating are
negligible, a form of the gas-energy equation that will be useful to us later is

Dp

Dt
� 	p

�

D�

Dt
D �.	 � 1/r � .FR C Q/ ; (2.31)

Complications that arise when 	 is not constant are discussed in Chap. 3, and e	 ,
when radiation is significant, is discussed in Chap. 7.

We now turn to a discussion of the relative magnitudes of the various terms
in (2.27) and (2.28). It helps develop understanding and intuition to discuss
these equations while considering a dimensional analysis in which we identify a
characteristic velocity of the system, U; and a characteristic dimension, L; which
together give a timescale L=U: To make scaling arguments one replaces u by U, r
by 1=L; and .@=@t/ by U=L: There is a sound reason for this. In any profile shaped as
an exponential or linear function, the derivative is equivalent to division by whatever
scale length is present in the profile. (In any power-law profile other than linear, the
scale length is the distance variable itself, such as x or r; to within numerical factors.)
These scale lengths are not the wavelength and frequency of local fluctuations but
rather are the global scales that define the overall system evolution. Given this
identification, one can say that the characteristic global, convective rate of change
of momentum density and energy density are �U2=L and �U3=L; respectively. If
one divides any given equation by the relevant one of these, then one obtains a
dimensionless equation from which one can assess the relative contributions of the
various terms.

The use of a scalar pressure, p; is a simplification that is usually justified. The
exceptions are systems involving solid-state or strongly magnetized matter. In this
case rp must be replaced by the divergence of the pressure tensor. The material
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experiences forces, for example, when the force per unit area in one direction has
a gradient in an orthogonal direction. The term involving pressure in the energy
equation represents the work of compression or expansion, often referred to as pdV
work. The fact that this work enters the energy equation in this way implies that
the specific enthalpy, h D � C p=�, is often a useful variable in describing how
hydrodynamic systems behave. If one takes the energy flux, H; to be zero and
assumes the medium to be a polytropic gas, one can recover (2.3) from (2.28).
To evaluate the dimensionless scaling of the pressure term, one takes rp � p=L
and divides by �U2=L to find its normalized amplitude, which is .p=�/=U2. This
is proportional to the inverse of the internal Mach number, U=cs, squared. Thus,
pressure gradients are of decreasing importance as the internal Mach number
increases.

The flow of heat is described in (2.29) as the divergence of a heat flux, Q:
The heat flux is very important in the heating of plasma by laser light, and in
some of the phenomena observed in plasmas produced from gases at a low enough
(less than atmospheric) pressure. It is not important in the behavior of plasmas at
near solid density or (for reasons discussed in Chap. 12) in the behavior of most
astrophysical plasmas. In many cases, the heat flux can be related to the gradient in
fluid temperature, T; using an equation of state to relate T to p or �:

Q D ��thrT; (2.32)

in which the coefficient of heat conduction is �th. In a stationary fluid in which only
the temperature variation is important and � / T; this yields a diffusion equation,
@T=@t / �r2T , so the heat transport from such a description is essentially diffusive.
For scaling arguments, it is useful to identify and calculate the kinematic coefficient
of thermal diffusivity, �, which has purely the dimensions of a diffusion coefficient
(step size squared/collision time). The relation between � and �th, developed in
Landau and Lifshitz (1987), is

�th D ��cp D �nkB	=.	 � 1/; (2.33)

in which cp is the specific heat at constant pressure and n is the density of particles in
the fluid, each of which is part of a distribution with the common temperature T: The
second equality gives the result for a polytropic gas whose pressure is described by
Boyle’s law. The Boltzmann constant is kB, which can be combined with T to give
kBT in energy units. In practical units, one has

�.cm2 s�1/ D 2 � 1021 ŒT.eV/�5=2

ln�Z.Z C 1/ni.cm�3/

D 3:3 � 10�3 AŒT.eV/�5=2

ln�Z.Z C 1/�.g cm�3/
;

(2.34)
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in which A and Z are the average atomic mass and ionic charge of the plasma ions,
ln� is the Coulomb logarithm discussed in Sect. 2.4, and the particle and mass
densities of the ions are ni and �, respectively. These specific formulae are based on
the analysis of processes dominated by Coulomb collisions in the book chapter by
Braginskii (1965). Precise values in sufficiently dense plasmas might be different.

To evaluate the dimensionless scaling of the heat transport term, one finds r �
Q � ��.kBT/=.AmpL2/, divides by �U3=L; and notes that kBT=.Amp/ � U2. The
normalized amplitude of the heat transport term is thus the inverse of the Peclet
number, Pe D UL=�. When Pe is large, heat transport can be neglected.

These equations include several terms describing the effects of radiation. Their
derivation and more general forms are discussed in Mihalas and Weibel-Mihalas
(1984). Here we define these terms and consider when they matter. In general, FR

is the radiative energy flux. FR is in fact equal to S, the Poynting flux, given by
.E�B/c=.4/ (when we explicitly account for all charges and the group velocity of
the light is c), when S is evaluated for all the radiation present. However, in practical
applications one uses the traditional form of S only when there are few waves in the
problem, as for example in laser–plasma interactions. When there is broadband or
line radiation from emission and absorption by dense plasma, one works instead
with expressions for FR that formally represent the integral of the Poynting flux,
averaged over appropriate time and spatial scales. For example, the radiative flux
emitted by a blackbody at a temperature T is 
T4. Fluids cool by emitting radiation.
They emit blackbody radiation when they are sufficiently opaque. Otherwise, their
cooling is often dominated by emission from atomic lines. We discuss this further
in Chap. 6. The radiative energy flux is often significant in high-energy-density
experiments. Note that �r � FR is the net rate of absorption, per unit volume,
of radiative energy by the fluid. In Chap. 9 we will consider cases in which the
absorption of laser light or the absorption of X-rays are important.

The terms involving ER and pR are important much less often, and it is easy to
show why. When the radiation and the fluid are in equilibrium with a temperature
T; then one has

pR D ER=3 D 4
T4=.3c/: (2.35)

The ratio of radiation pressure to plasma pressure is of order

4mp
T4

3c�kBT
D 0:05T3=�; (2.36)

in which the proton mass is mp and on the right-hand side T is in keV and � is
in g/cm3. Plastics often have densities of �1 g/cm3, as does water, so one can
see from (2.36) that temperatures above 1 keV are required for radiation pressure
and energy to be important in the fluid dynamics. Radiation pressure is dominant
over material pressure in the shocked material in supernovae (at somewhat lower
density). The readers of this book may well be producing and studying radiation-
dominated plasmas using facilities of the twenty-first century.
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Let us more formally explore the dimensionless scaling of the radiative terms.
The normalized radiation pressure term, for radiation in equilibrium with the fluid,
is pR=�U2, which is approximately the same ratio as in (2.36) (with kBT=mp � U2).
The energy flux term in (2.29) is larger than the enthalpy .pR C �/ term by roughly
U=c; and has a normalized value of 
T4=.�U3/ � mp
T4=.�kBTU/ � 1=Bo, in
which Bo is known as the Boltzmann number (see Mihalas and Weibel-Mihalas
1984) and is small when the energy flux due to radiation affects the dynamics
significantly. Note that 1/Bo is c=U times larger than the ratio in (2.36), which
reflects the fact that radiative energy fluxes become significant at temperatures much
lower than those required for radiative pressures to be significant. We give specific
examples of this in Chaps. 6 through 8.

In some systems, the relative importance of radiation may need to be evaluated by
other measures. One can construct a radiation Peclet number when one can identify
a (kinematic) radiative thermal conductivity, �r � Ǹc, where the mean free path Ǹ
might be due to bremsstrahlung interactions, to Compton scattering, or to atomic
emission and absorption. Alternatively, one can compare the radiative cooling time,
defined as the ratio of energy content to blackbody energy flux, to the hydrodynamic
time, L=U: There is a further discussion of these points in Ryutov et al. (1999).

In general, fluids also possess internal friction. The collisions of the particles in
the fluid resist its motion, a process known as viscosity. These effects are generally
small for plasmas, but we will see when we discuss turbulence in Chap. 5 that
they can have important consequences for the structures that develop. In general,
collisional viscous effects create forces in a given direction due to gradients in
velocity in orthogonal directions. This may be easiest to see by imagining a simple
shear layer, in which the velocity is entirely in a direction we label as z; but there is
a gradient in velocity in the orthogonal direction, x: When collisions move particles
in the x direction, they cause a net transport of momentum. This creates a force. The
elements of the viscous stress tensor are


�ij D ��

�
@ui

@xj
C @uj

@xi
� 2

3
ıij
@uk

@xk

�
C �ıij

@uk

@xk
; (2.37)

in which ıij is the Kronecker delta, the kinematic viscosity is �, and the second
coefficient of viscosity (often ignorable) is �, also known as the bulk viscosity.
In the usual case that particulate viscosity dominates, the kinematic viscosity is
approximately the mean free path squared divided by the collision time; the quantity
(��) is the dynamic viscosity.

In vector notation, the viscous stress tensor is

�
�

D ��

�
ru C .ru/T � 2

3
.r � u/ I

�
C � .r � u/ I; (2.38)

in which I is the identity tensor and the superscript T designates the transpose. Most
theories of turbulence are developed for incompressible fluids, which have r�u D 0.
In other cases, such as the damping of acoustic waves, the compressible terms are
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essential. The gradient of the viscous stress is experienced by the fluid as a force
density.

The presence of the viscous stress also contributes to the energy content of the
fluid. Energy is transported as the stressed fluid moves. The contribution of viscosity
to the increase in total energy, r � .�

�
� u/, includes both contributions to the rate

of increase of mechanical energy, which is u � r � � � and to the rate of increase of
internal energy, � � � �ru. Interested readers can find derivations of these results in
graduate textbooks on fluid dynamics.

In practical units, the kinematic viscosity for unmagnetized plasmas (see Bragin-
skii 1965) is given by

�.cm2 s�1/ D 1:9 � 1019
ln�

p
AZni.cm�3/

�
ŒTi.eV/�5=2

Z3
C 0:013ŒTe.eV/�5=2p

A

�

D 3:1 � 10�5

ln�Z�.g cm�3/

"p
AŒTi.eV/�5=2

Z3
C 0:013ŒTe.eV/�5=2

#
:

(2.39)

Here the definitions are those used for (2.34). The viscosity is dominated by the ions
for Z below about 6. In plasmas of a high enough temperature, the photon viscosity
can be important (in this case one adds the kinematic viscosities). The kinematic
photon viscosity (Jeans 1926; Thomas 1930) is

�rad.cm2 s�1/ �
Nlc
T4

�c3
D 3 � 10�9 AŒT.eV/�4

ZŒ�.g cm�3/�2
: (2.40)

Here Ǹ is the photon mean-free path and other quantities have their standard
definitions.

To evaluate the dimensionless scaling of the viscous effects in the momentum
equation, one takes r � �

�
� ��U=L2 and divides by �U2=L to find the normalized

amplitude, which is 1=Re, where Re is the Reynolds number, Re D UL=�. (The
viscous effects in the energy equation have this same scaling, as the extra factor of
U from the viscous term in the energy equation divides out when one normalizes.)
The Reynolds number is perhaps the most well-known dimensionless parameter,
because it has proven very useful in characterizing qualitative regimes of turbulent
behavior. In practical units, one has

Re D 5:4 � 10�20neUL
AZ3 ln�p

AT5=2i C 0:013Z3T5=2e

; (2.41)

with temperatures in eV and other quantities in cgs units. When Re is large,
viscous effects can be ignored in (2.27)–(2.29). However, turbulence phenomena
may inherently involve viscous dissipation on some smaller scale, a topic discussed
further in Chap. 5.
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The momentum and energy equations also include the electromagnetic force
FEM and the plasma heating that results. The divergence of the radiative flux,
�r � FR, which was already discussed, is the heating related to the J � B force.
The electrostatic force, �qE; produces volumetric heating that can be expressed
as J � E. In the simple case that the current is resistive and given by �J D E,
where � is the resistivity, this power dissipation is also resistive and of magnitude
�J2. The heating need not be resistive in the general case, however. For problems
with an electromagnetic component, one finds J;E; and B; in addition to the fluid
quantities, by solving the Maxwell equations (see Sect. 2.3) in addition to the single-
fluid equations, often in the simplified form of the magnetohydrodynamic equations
discussed in Chap. 10. The dimensionless parameter that in most circumstances
relates to the scaling of these forces is the magnetic Reynolds number, also
discussed there.

2.3.2 Single Fluid, Three Temperature Models

This class of models introduces an additional element of complexity that often is
essential for modeling systems at high energy density. In principle one can identify
a distinct “temperature” for the electrons, the ions, and the radiation. “Temperature”
is in quotes here because this concept is routinely abused in practice in comparison
to its pure definition in thermodynamics or statistical mechanics. The meaning of
temperature in routine practice is “the value of the temperature of an equilibrium
thermodynamic system that would have the same mean energy as that of the actual
system being described.” The actual system, which might be an energy distribution
of electrons or photons, typically is not in equilibrium and very often has an
energy spectrum that departs significantly from the equilibrium energy spectrum.
Identifying three temperatures in a plasma is a particularly paradoxical action,
because the thermodynamic definition of temperature only strictly applies when
they are all equal. Nonetheless, the “three-temperature” description of a single-fluid
plasma is particularly useful, especially for computer simulations.

It is accurate to employ the single-fluid Euler equations with a single temperature
when two conditions apply: radiation must be either negligible or dominant, and
if radiation is negligible then the collisional coupling of the electron and ion
temperatures must be strong. Under most circumstances in high-energy-density
systems, the electrons are very strongly coupled to the ions by collisions, having
the same temperature and a local density that is ne D Zni, where ni is the ion
density and Z is the average charge. For any given density, as the temperature of
a system increases the coupling of the electrons and the ions decreases. One of the
first places one sees this is at a shock front, because shock waves directly heat the
ions. The ion energy is shared with the electrons by collisions, and the electrons are
in turn the primary source of radiation. Figure 2.2 shows how the ion temperature
can deviate from the electron temperature at a shock front, after which collisions
equalize the two over some distance.
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Fig. 2.2 At shock fronts, the
ion, electron, and radiation
temperatures may differ
significantly. The figure
shows results from a
multi-temperature,
single-fluid simulation which
a shock wave is driven at
�260 km/s through xenon
gas of density 0.006 g/cm3.
The ion temperature is shown
in gray, the electron
temperature is a solid black
curve, and the radiation
temperature is the dashed
curve. The shock front, where
the ion temperature increases,
would be much steeper in the
corresponding physical
system

In a three-temperature, single-fluid description, (2.1) and (2.2) are unchanged,
although the pressure must now be determined by adding the contributions
from the three species—electrons, ions, and radiation—independently. One then
replaces (2.3) with one equation for each species. For each species, the temporal
and convective rate of change of temperature (or perhaps energy density) are equal
to the terms involving the sources of energy from the spatial flow of heat within
the species, from exchanges of energy with other species, and from any external
sources.

2.4 Multi-Fluid Models

One encounters some phenomena that have timescales shorter than those required
for the validity of any single-fluid model. The next level of higher complexity
is found in multi-fluid models. In high-energy-density physics, these models are
needed to describe phenomena in which the independent, rapid motions of the
electrons are important. Principal among these is the interaction of laser light with
the plasma it penetrates. The resulting processes, discussed in Chap. 9, can reflect a
large majority of the laser light. Multi-fluid models enable one to derive many of the
basic phenomena occurring during laser-plasma interactions. Here we will explore
these equations. We will discuss multi-fluid models, the electron plasma oscillations
that occur in most plasmas, and the scaling of collisional coupling.
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As density decreases or temperature increases, the collisional coupling of the
electrons and ions becomes smaller. Eventually the electrons and ions begin to act
independently, and some phenomena appear in which there are important differ-
ences in their densities. Most of these phenomena can be successfully described
using continuity and momentum equations like the following for each of the species
in the plasma:

@nj

@t
C r � .njuj/ D 0 and (2.42)

mjnj
@uj

@t
C mjnjuj � ruj D njqj

�
E C uj

c
� B

	
� rpj C

X
l

Rjl; (2.43)

in which the subscript j (often e for electrons and i for ions) designates the species,
E and B are the electric and magnetic fields, respectively, and Rjl is the rate of
momentum density exchange between species j and l, discussed further shortly.
Equation (2.42) is obvious, but there are some new features in the right-hand side
of (2.43) by comparison to (2.27). The electromagnetic effects now appear in the
form of the complete Lorentz force density, nq.E C u � B=c/ in Gaussian cgs units.
As a result, and unlike the case of the MHD theory, the two-fluid theory describes
phenomena in which there is a dynamic or static electric field. Examples include
plasma oscillations, discussed below, and the Debye sheath that forms at bodies
immersed in plasmas.

The final term on the right-hand side describes the momentum exchange with
other species. The sum is over the other species in the plasma, designated by l: In an
ideal plasma, which may include low-density plasmas produced by lasers or other
devices, one can write this term as a drag term:

Rjl D mjnj.uj � ul/�jl; (2.44)

in which the rate of momentum exchange through interaction of species j and the
other species l is �jl. We discuss this rate further below. In more general cases,
important in denser plasmas, which may carry current or have temperature gradients
and may be magnetized, one has for the electrons specifically

Rel D nee˛ � J � neˇ � rTe; (2.45)

for current density J and electron temperature Te. The tensor coefficients ˛ and ˇ

are discussed further in Chap. 10.
Successful analysis using these equations depends upon having a qualitative

sense of the differences between electron and ions. (I have yet to see a student in a
qualifying exam who did not know the approximate ratio of electron to ion mass,
but I regret to report that I did encounter one student who seemed to have no sense
of the implications of this. He did not pass.) Two very important points are that the
electrons nearly always move much faster than the ions, but the momentum of an
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ion is huge compared to that of an electron. A related point is that the radius of the
ion orbits in a magnetic field is much larger than that of the electron orbits.

2.4.1 Electron–Plasma Waves

A simple implication of (2.42) and (2.43) is the presence of electron plasma waves
in plasmas with weak enough collisions. Suppose that the final term in (2.43) can be
ignored and that we are looking for very fast, fluctuating phenomena so that the ion
density can be assumed to be fixed and unvarying. Also suppose there is no ambient
E or B: Then by linearizing these two equations, taking the partial derivatives in
time of the first and the divergence of the second, then simplifying, we find

@2ne1

@t2
D neoe

me
r � E1 C 1

me
r2pe1: (2.46)

Here again, the subscript 1 designates the small-amplitude modulations while o
designates the averaged, zero-order quantities.

This particular equation helps one see the physics of the wave we are finding. It
is a purely longitudinal wave like an acoustic wave, in which the fluctuating electric
field and compression by the electron pressure both cause the electron density
to vary. The first term on the right-hand side can be evaluated from the Poisson
equation (Sect. 2.2), which gives in this case

r � E1 D 4.Zenio � eneo � ene1/; (2.47)

in which the first two terms in parentheses cancel because the plasma is quasi-
neutral. Then assuming the electrons behave as a polytropic gas with index 	e, we
obtain a wave equation

�
@2

@t2
C !2pe � 	epeo

neome
r2

�
ne1 D 0; (2.48)

in which we have introduced the electron plasma frequency,

!pe D
p
4e2neo=me D 5:64 � 104pneo rad/s; (2.49)

with neo in cm�3 and using Gaussian cgs units. Equation (2.48) describes waves
known as electron–plasma waves. (For historical reasons, they are also known as
“Langmuir waves” and as “Bohm-Gross waves.”) By comparison with the derivation
of acoustic waves in Sect. 2.1, one can see that the pressure term in (2.48) will
introduce terms involving the wavenumber into the dispersion relation. For high-
frequency, plane waves which involve adiabatic compression of the electrons only
along k, there is only one degree of freedom and 	e D 3. This result can also be
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confirmed using kinetic theory (Sect. 2.5). Then with peo D neokBTe, where Te is the
electron temperature, one finds from 2.4.17 a dispersion relation

!2 � !2pe � 3kBTe

me
k2 D 0: (2.50)

Equation (2.50) is generally known as the Bohm–Gross dispersion relation. In the
limit that Te or k are small, one obtains the so-called cold-plasma oscillations,
with ! D !pe. This emphasizes that plasma with weak collisions tend to sustain
oscillations at ! � !pe. The discussion here is introductory. A lot more can be said
about electron plasma waves and their interactions with other waves. We will take
up some of these effects in Chap. 9. The reader who needs to work with these waves
seriously should consult plasma-physics books on their damping and laser–plasma-
interactions books on their interactions.

2.4.2 Ion Acoustic Waves

A slightly more complex, but also quite important, application of (2.42) and (2.43)
is that of waves featuring ion-density modulations. These are sound waves in the
traditional sense. Because they must be distinguished from the electron plasma
waves, which are also longitudinal waves driven by pressure relaxations, these
waves in plasma are most often referred to as ion-acoustic waves. The ions move
much more slowly than the electrons, thanks to the enormous difference in mass. As
a result, the electrons remain in steady state relative to the ions, so that the linearized
version of (2.43) for the electrons implies

neoeE1 D �rpe1: (2.51)

The physical situation is that the electrons seek to escape the ion-density maxima,
establishing an electric field that holds them in place. A simple calculation can show
that the difference between the densities of ion and electron charge required to do
this is negligible.

Manipulating (2.42) and (2.43) just as one does to produce (2.46) and
using (2.51) to substitute for E1, one obtains

@2

@t2
ni1

nio
D 1

nioM
r2.pe1 C pi1/ D

�
@pi

@�i
C Zme

M

@pe

@�e

�
r2 ni1

nio
: (2.52)

Note that this equation is substantially similar to (2.9), with fluctuations in total
pressure driving fluctuations in ion density. The final term here shows the division
of the pressure derivative into electron and ion parts, indicated by subscripts, with
ionic charge Z, ion mass M, and electron mass me. The partial derivatives are rather
tricky but can be expressed in terms of a polytropic index 	 such that @p=@� D
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	p=� for either species. Definitive results for the evaluation of 	 can come from
the kinetic theory described in the next section. Under most conditions, the fluid-
dynamics behavior is that the plane-wave modulations of the ions involve motion in
one dimension, so 	i D 3 (see Chap. 3), while the electrons have plenty of time for
heat conduction to maintain a constant temperature, so that 	e D 1. This gives an
expression for the sound speed that we will use in Chap. 9,

cs D
r

ZkBTe C 3kBTi

M
: (2.53)

2.4.3 Collisions in Plasmas

We now return to the final term in (2.43) and discuss collisional momentum
exchange between species. Note that this term gives a rate of change of momentum
that is measured with respect to the momentum of the designated species. As a
result, the coefficient �jl is not symmetric in the exchange of j and l: This is trivial
to visualize, if one imagines for example that one throws bowling balls into a room
full of bouncing ping–pong balls. The effect of the ping–pong balls is to make tiny,
and perhaps negligible changes in the momentum of the bowling balls relative to
their initial momentum. In contrast, the bowling balls make enormous changes in
the momentum of those ping–pong balls they interact with. Mathematically, with b
for bowling balls and p for ping–pong balls, one can see that �bp � �pb. Similarly,
for electrons and ions in (2.43), �ie � �ei. In fact, the final term in (2.43) is nearly
always negligible in the ion equation, but often important in the electron equation.
Let us consider further �ei, which enters the electron equation.

First recall some of the fundamental relations involving collisional interactions.
If particles of type a and density na, having a single, fixed relative velocity, vab D
jva � vbj, are interacting with particle of type b and density nb, and the interaction
cross section at this velocity is 
ab, then the mean free path for this interaction is

�mfp D 1=.nb
ab/; (2.54)

the interaction time is 1/(nb
abvab/, and the interaction rate is

�ab D nb
abvab: (2.55)

In many cases, including the one of interest here, the interaction cross section
depends upon vab and vab is not fixed. In this case, describing the distribution in
velocity of the two species by distribution functions fa.va/ and fb.vb/, normalized
to unity so that e.g.

R
fz.va/dva D 1 with the integral over all velocities, one has in

general
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�ab D nb

Z Z
fb.vb/fa.va/ � 
ab .jva � vbj/ � jva � vbjdvadvb: (2.56)

Next consider some of the specific properties of Coulomb collisions in plasmas.
They involve the interaction of particles in the presence of an inverse-square-
law force. This is Rutherford scattering, with results that are typically derived in
either classical mechanics or plasma-physics texts. The force between two isolated
particles extends to infinity, but the presence of other particles creates a shielding
effect, so that the collision only has an effect until the particle separation reaches a
distance comparable to this shielding distance. The net result is that the cross section
for momentum transfer is


ab D 4 ln�

�
qaqb

m�v2ab

�2
; (2.57)

in which m* is the reduced mass mamb=.ma C mb/ and ln� is the Coulomb
logarithm, which accounts for the effects of shielding. We refer the reader to any
plasma-physics text for a partial discussion of ln�, and to the book by Shkarofsky
et al. (1966) for a complete one. Such discussions are lengthy, as a number of factors
must be considered. In addition, in high-energy-density systems the shielding
distance often becomes so small that ln� approaches its limiting small value of
order 1. In high-energy-density research, it is generally sufficient to take

ln� D Max
�
1; f24 � ln


p
ne=Te

�g� ; (2.58)

with ne in cm�3 and Te in eV.
The most important point about (2.57) is that the cross section is proportional to

1=v4ab, so that the contribution to the overall rate at each velocity is proportional to
1=v3ab. Thus, pairs of particles having low relative velocities dominate the effects of
Coulomb collisions, and high-velocity particles contribute little. One consequence
of this is that all Coulomb processes, from momentum exchange to ionization or
excitation by electron impact, become much weaker as the plasma temperature
increases.

The net result of the integral in (2.56), giving the change of electron momentum
by interaction with ions, when evaluated for Maxwellian distributions of particles, is

�ei D 1

3.2/3=2

Z!4pe

nev3e
ln� D 3 � 10�6 ln�

neZ

T3=2e

(1/s); (2.59)

in which ve D p
kBTe=me and on the right ne is in cm�3 and Te is in eV. This

traditional way of writing �ei may tend to obscure the fact that it is a rate for a
binary collision process between electrons and ions. The rate of momentum change
for the electrons involves the product of �ei and ne, but fundamentally this rate must
be proportional to neni times a rate coefficient. From this perspective it would be
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Fig. 2.3 Curves of constant collisionality, �ei=!pe, as labeled, for low-Z (left) and high-Z (right)
plasmas

physically more transparent to replace neZ by niZ2 in (2.59). This matters in plasmas
with multiple ion species, in which it is the average of Z2, not Z, that determines the
average collision rate. A typical way to account for this across plasma physics is to
define an effective charge as Zeff D hZ2i=hZi, where hi denotes the average over all
ion species, and to replace Z in (2.59) by Zeff .

Figure 2.3 shows contours of constant �ei=!pe as a function of ne and Te. Two
different evaluations of Z are used. Part (a) shows results for Z D 3:5, typical of
low-Z materials such as plastic. Part (b) shows results for Z D 0:63

p
Te, typical

of higher-Z materials as is discussed in Chap. 3. Wherever this quantity exceeds
0.1, any electron plasma wave will damp within ten cycles, i.e., on femtosecond
timescales. (The drag term at the end of (2.43) introduces a term proportional to
@n=@t into the wave equation, which in turn introduces an imaginary term into the
dispersion relation so that the implied frequency is no longer purely real, which
leads to damping.) One can see that under most high-energy-density conditions this
damping is very strong.

One is at times interested in the collisional mean free path. One may need for
example to assess whether heat transport might matter or to compare the size of a
computational zone to this distance. This can be estimated as

�mfp D ve=�ei D .1=�ei/
p

kBTe=me: (2.60)
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2.5 The Kinetic Description

Figure 2.4 shows the supernova remnant SNR 1006. At the edges of this image
one can see the shock wave produced as the disturbance caused by the remnant
propagates outward into the interstellar medium. As a first level of description, one
can treat this object and its shock wave as a hydrodynamic structure using the Euler
equations, as we discuss further in Chaps. 4 and 5. And there are weaker shocks and
other phenomena within the solar system that can be modeled with fair accuracy
using the MHD equations. But in fact these are collisionless shocks. Structures in
the magnetic and electric fields are essential to their existence. The electrons and
ions interact with them very differently. In addition, there is a third group of particles
that often are analyzed as a separate species—the energetic ions accelerated by such
shocks, some of which eventually become cosmic rays. One could obtain a better
description of this system by using a multi-fluid model, but such a model will still
not manage to accurately calculate the shock structure, which generates strongly
non-Maxwellian particle distributions. In this case, one needs to use some sort of
kinetic model. We very briefly introduce this approach here.

All of the above equations are strictly correct only if the velocity distributions of
all the particles are Maxwellian. This means that the number of particles of species
s within an interval dv around v is given by

fs.v/ D
�

ms

2kBTs

�3=2
exp

��msv
2

2kBTs

�
; (2.61)

in which the temperature and mass of species s are Ts and ms, respectively. Any
velocity distribution must be properly normalized. In this case the normalization is

Fig. 2.4 SNR 1006. X-ray
image from the ROSAT
satellite, the remnant of the
widely observed supernova
from AD 1006. The image
convolves emission in several
energy bands. The brighter
emission at the upper left and
lower right is attributed to
cosmic ray acceleration.
Image courtesy of University
of Leicester, X-ray
Astronomy Group http://
wave.xray.mpe.mpg.de/rosat/
calendar/1997/jul

http://wave.xray.mpe.mpg.de/rosat/calendar/1997/jul
http://wave.xray.mpe.mpg.de/rosat/calendar/1997/jul
http://wave.xray.mpe.mpg.de/rosat/calendar/1997/jul
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Z
fs.v/dv D 1: (2.62)

The reader should note that it is common for fs.v/ to be normalized to 1, as shown
here, or to the particle density, ns. In the literature the specific normalization is
often not defined; one can even find papers that switch normalizations in the course
of their work. If the particle distributions are not Maxwellian, but the interactions
of interest are determined by the average energy that they carry, then the fluid
and other equations above are accurate, though perhaps with some changes in the
value of some coefficients and certainly with a nonthermodynamic definition of
“temperature”, as discussed in Sect. 2.3.2.

In addition, there are circumstances in which it is an energetic “tail” on the
distribution function that produces the phenomena of interest. At low energies
the distribution usually has a Maxwellian shape. Whenever there are waves or
instabilities that affect the particles, one frequently sees a surplus of particles
at energies above the thermal energy. This is the tail. Laser–plasma instabilities,
discussed in Chap. 9, typically produce such exponential tails (though not for
reasons that are well understood). In space systems and astrophysics, one typically
encounters power-law tails. An important example of this is the distribution of
cosmic rays, whose flux falls as 1=v3, implying a distribution function scaling
as 1=v4. In other cases of interest, such as the transport of heat into a target
(Sect. 9.1.5), the structure of the tail is more complicated.

When distributions of energetic particles, or any other deviation from
Maxwellian distributions, are important to the dynamics of interest, then to
investigate their effects one must work with the Boltzmann equation:

@fs
@t

C v � rfs C F
ms

� rvfs D
�
ıfs
ıt

�
C

; (2.63)

in which F is the sum of all forces acting on each particle and rv is the gradient
operator in velocity space, sometimes written as rv D @=@v. The symbol F is
typically the Lorentz force, q.EC.v=c/�B/, but also would include any other forces
that are present. Equation (2.63) is fundamentally a continuity equation relating
the local rate of change of fs in time, the flow of fs within the six-dimensional
phase space of x and v; and the source of fs on the right-hand side. Particles
suddenly appear in an element of velocity space as a result of collisions, that the
right-hand side of (2.63) is the rate of change of fs due to collisions. This term is
discussed in detail in the book by Shkarofsky et al. (1966). When the right-hand
side is zero, (10.3) is known as the Vlasov equation. It effectively describes many
phenomena in collisionless plasmas.
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2.6 Approaches to Computer Simulation

Because of its emphasis on conceptual descriptions, this book includes relatively
little material on computer simulations. Yet it does include a number of examples
produced from computer simulations, and many readers will proceed to work
extensively with them. The purpose of the present section is to provide some initial
context regarding what computer simulations are and some alternative approaches to
them. We will also see that these are limiting cases and that many other possibilities
exist.

Those computer simulations of interest here seek to represent a physical system
using a much smaller number of computational elements. When one includes the
material particles and the photons (or electromagnetic properties, depending on
the context), the simulations of interest in high-energy-density physics typically
represent the behavior of systems having a number of elements within a few orders
of magnitude of Avogadro’s number. In contrast, at this writing (2016) typical nodes
have 20 cores, and up to 1 TB per node of memory. A computing cluster could
have any number of nodes; a couple hundred nodes is not uncommon. Even so, the
implication is that the description of the physical system must be an approximate
treatment of the behavior of aggregates of particles.

Fundamentally one desires that the simulation follow the evolution of the
physical system in time and in space. The fundamental description of the system
is always based on a set of differential equations like those we have discussed
above. But the simulation must necessarily take one step backward in the calculus,
and work with a discretized set of equations. This always involves dividing the
system into components. In many cases these components are physical cells, in
which case the distance between cells establishes the spatial increment used in
defining derivatives. For example, if this distance in one direction is ıx; then the
derivative of pressure across the boundary from cell i to cell j is evaluated as
@p=@x D .p.j/ � p.i//=ıx. We discuss some aspects of this below. Other aspects,
such as whether to evaluate quantities in the center of a cell or at cell boundaries
(and why), we leave to deeper discussions.

One also must establish the temporal increment used to determine how the value
of the variables changes in time. This is known as a timestep. It must be small
enough to give reasonably accurate dynamics yet large enough that the simulation
will finish in a reasonable time. One constraint on the timestep is known as the
Courant condition. The fastest wave of interest must cross no more than one cell in
one timestep, otherwise the simulation will artificially retard the propagation of this
wave. In cases of interest here, this wave is usually a sound wave. If it has speed cs,
then the Courant condition for the timestep is ıt < min.ıx=cs/.

A calculation (or portion of one) in which variables are advanced in time based
on increments found from the differential equation using a timestep is described
as an explicit scheme. Very fast waves, such as the light waves that make up the
radiation, are often treated by an implicit scheme. In this case one realizes that
the response of the radiation is very fast, reaching a steady state so quickly that
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the dynamic behavior does not affect the hydrodynamics. As a result, one can
find new values of the hydrodynamic variables explicitly and then can solve for
the new steady state of the radiation. This is only one example of the use of an
implicit scheme. There are many other more complicated examples, but these are
not common in high-energy-density physics.

The simulator also faces the problem of figuring out how to divide up the system
of interest and deciding what equations to use to describe its evolution. The most
natural choice might be to divide the space of interest into small regions. This is
known as the Eulerian approach. For example, if the system is contained within
a volume of a cubic mm, one might divide this volume into 109 cubic cells each
1�m on a side. One could describe the initial condition of the system by giving the
variables a value for each cell.

On the other hand, we might choose to divide the matter into cells, so that each
cell permanently followed the evolution of a given quantity of material. This is
known as the Lagrangian approach. This would mean that the cells could move as
the material moved. The equations solved in this case would not be precisely those
discussed above. Instead one would recast these equations using the Lagrangian
mass variable, often written as m; and defined by dm D �dx.

Simple Eulerian codes have the strength that they can handle arbitrary motions
of the material. Their main weakness is that they are inherently diffusive. Once
material enters a cell it is treated as though it is spread evenly across the cell.
Then in the next timestep some of this matter can move by another cell. The result
of enhanced mass diffusion is that materials interpenetrate one another far faster
than they would physically. The result of momentum diffusion is that the numerical
viscosity is large, typically corresponding to a Reynolds number of about 103. One
way to minimize these effects is to locate many cells at regions where materials meet
or where gradients are steep. This can be done by using a moving grid (the grid is
the set of lines demarking the cell boundaries). A more advanced approach is to use
an adaptive grid, which changes the distribution of the cells during the simulation.
Examples of this at this writing include the FLASH hydrodynamic code developed
at the University of Chicago and the BATS-R-US MHD code and CRASH radiation
hydrodynamic code developed at the University of Michigan. A different advanced
approach is to explicitly track any material interfaces in a problem and to treat them
distinctly so that the materials do not interpenetrate. This is done for example by the
FRONTIER code developed at SUNY Stony Brook.

Simple Lagrangian codes have the strength that they follow the motions of the
actual material, allowing an accurate description of complex systems involving
a number of components with different properties. Such systems are common in
high-energy-density experiments. Such codes allow no diffusion, which is usually
a strength but can at times be a weakness. They are outstanding tools for one-
dimensional modeling of experiments. They have a major weakness in two or three
dimensions, however, because they cannot follow swirling (vortical) motions. When
the material tries to form a vortex, it tries to send matter from one zone through
another zone. This could result in overlapping zones but usually causes one corner
of a cell to overtake another corner, so that the new cell is no longer rectangular



48 2 Descriptions of Fluids and Plasmas

but instead looks like a twisted rectangle (called a “bow tie” because it looks like
one). Examples of Lagrangian codes include HYADES, used to produce a number
of figures in this book, and HELIOS.

Simulators have been inventing improvements on these techniques for decades;
the description above is necessarily sparse. One can for example make a code that
incorporates both Lagrangian and Eulerian elements. Examples of such codes are
the RAGE code developed at Los Alamos National Laboratory and the CALE code
developed at the Lawrence Livermore National Laboratory.

In addition, beyond these core techniques the treatment of various specific
physical mechanisms can be a major challenge. For example, accurately treating
the absorption of laser light requires implementing additional physical models
along the lines of those described in Chap. 9. As another example, the treatment
of thermal radiation or line radiation is a major issue in all these codes. We
discuss some aspects of describing radiation in Chap. 6. The book by Castor (2004)
addresses at length the difficult problem of treating radiation and hydrodynamics
computationally.

A very different alternative, not useful for hydrodynamic systems but useful
for the relativistic behavior of small number of particles is the particle in cell or
PIC approach. In a PIC code one solves for the electric and magnetic fields using
a discretized system of differential equations in some way, but one approximates
the particles by using sample particles taken to represent the behavior of all the
particles within a sphere of one electrostatic shielding distance (the Debye length:
see Sect. 3.2) in radius. One explicitly follows the motion of all these sample
particles within the environment of the electric and magnetic fields. A variation
on PIC, usually described as a hybrid code, is a code that treats the electrons and
perhaps some of the ions as a fluid, treating the remaining ions as PIC particles.

Homework Problems

2.1 One approach to deriving the Euler equations is to identify the density, flux,
and sources of mass, momentum, and energy and then to use (2.5). Do this for a
polytropic gas and then simplify the results to obtain (2.1) through (2.3).

2.2 Linearize the Euler equations to derive (2.7) and (2.8). Find appropriate divisors
to make the physical variables in these equations nondimensional. Then derive the
equivalent of (2.9) and an equation for a normalized velocity variable. Comment on
the result. (Hint: this is a wave problem not a global-scaling problem, so what you
are looking for is not U, L, and etc. as used in that part of the chapter.)

2.3 Take the actual, mathematical Fourier transform of (2.9) to find (2.10).
Comment on the connection of the result to the substitution used in the text.

2.4 Substitute, for the density in (2.9), the actual, mathematical Fourier transform
of the spectral density Q�.k; !/. Show how the result is related to (2.10).
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2.5 The Euler equations apply to an ideal gas with � D p=Œ�.	 � 1/�, so they should
imply (2.14). Demonstrate this by deriving (2.14) from (2.1), (2.2), and (2.4).

2.6 Begin to explore the behavior of longitudinal waves in a charged fluid.
Specifically, derive (2.46) from the equations for number and momentum for an
electron fluid.

2.7 Collisions do affect electron plasma waves. To see how, derive a replacement
for (2.48), keeping an appropriate version of the drag term at the end of (2.43).
Comment on the results.
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Chapter 3
Properties of High-Energy-Density Plasmas

Abstract This chapter is concerned with the properties of high-energy-density
matter, and with how it differs from ideal plasmas and solids. It introduces the
concept of equations of state that relate various thermodynamic variables. After
reviewing some simple equations of state and some aspects of ideal plasmas,
the chapter proceeds to build up an understanding of high-energy-density matter.
It discusses the behavior of the electrons, the degree of ionization, continuum
lowering, and Coulomb interactions. This enables the generation of a very simple
model for the equations of state of these systems. Some additional features are
revealed by a more complex model based on statistical mechanics. The chapter
then discusses generalized polytropic indices, the degenerate and strongly coupled
regime, tabular equations of state, and equations of state in some physical contexts.

The discussion of energy in Sect. 2.1 was entirely based on the notion of a polytropic
gas. The speed of sound waves, which we found by examining fluctuations in
density and velocity, was found to depend upon the derivative of pressure with
density, and the solution was dependent upon having this derivative be constant.
This was our first encounter with what is known as the closure problem. The
physical densities of interest involve progressively higher powers of velocity: mass
density (�), momentum density (�u), energy density (/ �u2), energy flux density
(/ �u3), and so on if needed. But the equations for any given density always involve
the divergence of a flux, as we discussed with reference to (2.5), and this flux
corresponds to the density involving the next higher power of velocity. Thus, for
example, the equation for mass density (2.1) involves the mass density flux, which
is also the momentum density. The result is that there is, in general, no way to
obtain a closed set of equations simply by including new conservation equations for
additional quantities. This is the closure problem.

The only way to ultimately obtain a closed set of equations is to find a way
to relate all variables in some set of equations to other variables already defined.
We did this twice in Chap. 2. In finding the dispersion relation for acoustic waves,
we assumed the pressure (a momentum density flux) to be a knowable function of
density only. In relating the Euler equations to the more general equation for energy
density, we assumed �� D p=.	 � 1/ and also assumed the heat flux (and other
source terms) to be zero. As another example, sometimes the energy equation is
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expressed as an equation for temperature, pressure is written as a function of density
and temperature, and the heat flux is written as ��thrT , which also produces a
closed system of three equations. The relations necessary to obtain closed sets of
equations, in order to describe behavior of some specific fluid medium, are among
its equations of state.

Readers with a plasma-physics background may find this discussion a bit
convoluted, since in plasma physics one typically derives all the fluid equations
by taking moments of the distribution of the particles in velocity, v, as is done in
graduate courses in plasma physics. The continuity equation is the moment taken
with v0, the momentum equation is the moment with v, the energy equation is the
moment with v2, the heat transport equation is the moment with v3, and one can keep
going. The closure problem then arises because every moment equation contains
terms involving the next higher moment. But this point of view does not readily
allow for some of the more complicated aspects of high-energy-density fluids, such
as complex relations between �� and p, cases where the pressure is tensorial, and
viscosity.

To successfully solve the continuity, momentum, and energy equations, even
numerically, one must typically understand the relation among internal energy,
pressure, density, temperature, and ionization. This chapter discusses the equations
of state (EOS) that specify these relations. It begins by discussing simple equations
of state, which are often useful in limited regimes and for estimates generally. It then
considers the conditions for ideal-plasma theory to be valid, because the equations
of state are simpler where it is valid.

What follows is an examination of the various issues that lead high-energy-
density plasmas to be more complex than low-density plasmas composed of
hydrogen. First is a more extensive discussion of electrons, aimed at understanding
their transition from ideal-gas behavior to degenerate behavior. Section 3.4 then
takes up issues that also involve the ions. The first of these is the degree of
ionization, because high-energy-density plasmas are always somewhat ionized but
only occasionally fully ionized. The next is how the ions behave when the Debye
length is less than the size of an atom. The third is how strong Coulomb interactions
manifest themselves in thermodynamic behavior. By the end of this section we
will understand the fundamental elements of the equations of state of high-energy-
density plasma. This will enable us, in Sect. 3.5, to develop two models for the
EOS of high-energy-density matter, and to see how pressure, internal energy, and
ionization vary with density and temperature.

Following this, we consider more specifically the high-pressure, low- tempera-
ture conditions where the matter is both strongly coupled and Fermi-degenerate,
about which we learned in the decade preceding 2015 that our prior understanding
was substantially incorrect. We will at that point be in a good position to consider
one approach to generalizing the polytropic indices that will prove useful later in
the book. Section 3.6 does this. At this point, we will have completely addressed
the problem of what high-energy-density matter is, at the level of conceptual
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Fig. 3.1 Phase diagram of hydrogen. The dark curve segment shows a theoretical plasma phase
transition. Dotted curves show the theoretical path of various astrophysical objects. Adapted from
Saumon et al. (1995)

discussions and simple models. Section 3.9 then discusses briefly approaches to
equations of state in support of computer simulations while Sect. 3.10 discusses the
relation of EOS measurements in the laboratory to astrophysical questions. Specific
experimental methods for measuring some aspects of the EOS are discussed in
Sect. 4.2 after we explore shock waves.

Before turning to the details, consider this example of the relevance of EOS to
astrophysics. Figure 3.1 shows a theoretical phase diagram for hydrogen, and also
shows where various interesting objects lie in this diagram. The objects include
Jupiter, a typical brown dwarf, and a typical dwarf star. The phase diagram is
a model, and the location of the curves depends on the model. These might be
wrong, but the range of pressures is correct. The phase diagram of hydrogen
includes a region of molecular hydrogen, of atomic hydrogen, and of so-called
metallic hydrogen in which the electrons are free to move and to conduct electricity.
Metallic hydrogen carries the currents that sustain Jupiter’s large magnetic field.
These regions have boundaries, which might on the one hand be gradual transitions
and might on the other hand be abrupt phase transitions. In this particular model,
the molecular-to-metallic transition is a phase transition. Evidently a thorough
understanding of the EOS will be essential to thoroughly understand astrophysical
objects.
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3.1 Simple Equations of State

Figure 3.2 shows an image of a Type Ia supernova explosion. This explosion
is brighter than the entire galaxy that surrounds it, which is not uncommon.
Current understanding is that a Type Ia supernova occurs when a white dwarf star,
accumulating mass from its environment, reaches a total of just over 1.4 solar
masses. This is enough for gravitational forces to overcome the pressure of the
degenerate electrons (Sect. 3.4), which initiates the gravitational collapse of the star.
However, the star does not fully collapse. Instead, the energy released as collapse
begins heats the C and O that make up the white dwarf, which initiates the violent
fusion burning that blows the star apart. The properties of the star as its explosion
begins are very relevant to this chapter. Its outer layers are accurately described
using the polytropic equation of state for an ideal gas (Sect. 3.1.1). To describe its
core, one must use the Fermi-degenerate equation of state (Sect. 3.1.3). And the
region heated by the fusion burning requires an equation of state for a radiation-
dominated plasma (Sect. 3.1.2). These simple models introduce the relevant regimes
and concepts; detailed treatment of white dwarf stars and Type Ia supernovae
requires more-sophisticated models.

3.1.1 Polytropic Gases

The polytropic equation of state (EOS), often also described as an ideal-gas EOS, is
a useful approximation under many circumstances. At a high enough temperature,
any material will behave like an ideal gas. In practice, once the temperature is far
enough above the value required to fully ionize any material, its behavior is well
described by a polytropic EOS. As we shall see, even radiation-dominated plasmas
can be described that way. Moreover, for conceptual and analytic calculations
we often use a polytropic description even when it is not precisely accurate.
A polytropic gas having n degrees of freedom has certain simple and interconnected
properties. The pressure is

Fig. 3.2 A Type Ia
supernova produced the
bright spot of emission near
the edge of this galaxy.
Credit: Jha et al., Harvard
Center for Astrophysics
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p D �RT D NkBT D �.1C Z/kBT

Amp
; (3.1)

where for the moment N is the total number density of particles, and kB and T
are the Boltzmann constant and the temperature, respectively. The final expression
for pressure often applies to a high-energy-density plasma, having an average
level of ionization Z, an average atomic mass of the ions in the fluid A, and
where the proton mass is mp. This equation also implies that the gas constant is
R D �.1 C Z/kB=.Amp/. In the discussion that follows in the present subsection,
we assume Z and thus R to actually be constant. This is often a poor assumption
in high-energy-density physics, as will become clear in later sections. We will see
below that (3.1) also fails to apply when Coulomb interactions become too important
or if the radiation pressure becomes too high. Equation (3.1) can be recognized as
essentially Boyle’s law.

The internal energy, for a system of particles having n degrees of freedom, is

�� D n

2
�RT D n

2
NkBT D n

2

�.1C Z/kBT

Amp
; (3.2)

reflecting the basic result from statistical physics that the mean energy of a particle
in equilibrium is one-half kBT per degree of freedom. From this, the specific heat at
constant volume is

cV D
�
@�

@T

�
�

D n

2
R D n

2

.1C Z/kB

Amp
; (3.3)

if Z (R) is independent of T . Evaluating the specific heat at constant pressure, cp,
is a more complex result from thermodynamics, discussed later in this chapter in
Sect. 3.6. The result still depends only on (3.1) and (3.2), and is

cp D
�
@�

@T

�
p

D
�n

2
C 1

	
R; (3.4)

where similarly R must be independent of T . Thermodynamic arguments also imply
a result for the sound speed, specifically

c2s D
�
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D cp
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�
D 	p

�
; (3.5)

which defines

	 D cp

cV
D 1C 2

n
: (3.6)
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This is an important result. Note that for n D 3 one finds the familiar consequence
that 	 D 5=3. But as the degrees of freedom become larger, 	 decreases
toward one. The importance of (3.5) was seen in the discussion of sound waves
surrounding (2.6)–(2.9), and we note that here the partial derivative is taken at
constant entropy, designated here by the subscript s:

Equation (3.5) also implies that

p / �	 (3.7)

for isentropic (i.e., adiabatic) changes over a range of pressures for which 	 is
constant.

Equations (3.1), (3.2), and (3.6), imply that �� D p=.	 � 1/. In addition, we
can obtain the same, self-consistent result by evaluating the internal energy as the
integral of the pdV work required to assemble an element of fluid from infinity to
some volume V . Note that the conserved mass, M D �V so dV D �Md�=�2. The
work is

��V D �
Z V

1
pdV 0 D

Z �

0

Mp

�02 d�0; so (3.8)

� D
Z �

0

p

�02 d�0 D p

�.	 � 1/ : (3.9)

Calculations using polytropic models can become tricky in the important case of
an isothermal system. From the perspective of (3.1), an isothermal system would
have p / � and thus 	 D 1. Then (3.9) would imply that the internal energy
is infinite. In contrast, for a system whose particles have only kinetic degrees of
freedom (3.2) would imply that 	 D 5=3. The key here is that (3.9) describes the
adiabatic assembly of the system and such a process is not isothermal. To change
compression while maintaining constant temperature requires heat transport, and
indeed isothermal systems are those having very rapid heat transport. In a typical
case of an isothermal system, one would describe small variations in �, such as
those due to acoustic phenomena, using 	 D 1, but would still evaluate the portion
of the internal energy due to thermal motions as .3=2/�RT .

Thus, the basic properties of polytropic gases involve a self-consistent set of
relationships any one of which can be described as an equation of state. In the event
that R and thus 	 are not constant, however, one no longer has such a simple story.
This important and realistic case motivates the discussion in Sect. 3.6.

3.1.2 Radiation-Pressure-Dominated Plasma

The properties of blackbody radiation and of systems in which radiation is important
or dominant are discussed in Chaps. 6 through 8. The radiation pressure pR is 1/3
the radiation energy density and may be expressed as
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pR D 4

3




c
T4; (3.10)

where T is the temperature, c is the speed of light, and 
 is the Stefan–Boltzmann
constant familiar from blackbody emission. Because this pressure depends upon T
to the fourth power, while material pressures depend upon T to the first power, at a
high enough temperature the radiation pressure will be completely dominant. This
is the case, for example, within matter shocked during supernova explosions and
near neutron stars and black holes. The transition temperature can be determined by
asking when the radiation pressure equals the material pressure. Assuming (3.1) to
be accurate, one finds

T D 1

kB

�
3k4Bc�.1C Z/

4
mpA

�1=3
D 2:6

�
�.1C Z/

A

�1=3
keV; (3.11)

in which � is in g/cm3. Here, outside the parenthesis in the middle term, kB D 1:6�
10�9 ergs/keV to find the temperature in energy units (keV). Within the parentheses,
the units of energy and temperature in kB must be consistent with those in 
 and with
the other units used there. For laboratory systems or within stars where � is within a
few orders of magnitude of 1 g/cm3, keV temperatures are thus required for radiation
to dominate. At typical astrophysical densities much lower temperatures would be
required, except that such systems tend to be “optically thin” (see Chap. 6), implying
that the radiation pressure is far below the value given by (3.10).

To utilize simple equations in describing radiation-dominated plasmas, one
desires to determine @p=@� for this case—that is, to determine how the radiation
pressure varies with plasma density. This is often feasible, because in order for
the radiation temperature to remain large enough that the system stays radiation-
dominated, the mean free path for the radiation must be small on the scale of the
physical system of interest. This in turn implies that the material is strongly coupled
to the radiation and will have the same temperature. In addition, because the material
is strongly coupled to the radiation, changes in the density of the material involve
changes in the volume containing a fixed amount of radiation. This prepares us to
identify a polytropic index for the radiation-dominated plasma, as follows.

Standard arguments in statistical mechanics lead to an expression for the pressure
of the photon gas as

p D �
X

j

N
j
@�j

@V
; (3.12)

in which the sum is over all possible states j; the mean occupancy of each state
is 
j D 1=Œexp.�j=kBT/ � 1�, and the energy of each state is �j. Equation (3.12)
makes sense when one recalls that the pressure is the negative of the change in
internal energy as volume increases. The energy of a state varies with volume as the
wavelength of the light in that state is reduced or increased by the compression or
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expansion. One can see how by considering the simple example of a cubic box with
an edge of length L; in which a given state has an integer number of wavelengths
along each side of the box. The wavenumber of each state, kj, is then proportional
to 1=L, so one has �j / hckj / L�1 / V�1=3, where h is the Planck constant. Thus

� @�j

@V
/ V�4=3 / �4=3 (3.13)

and p / �4=3, showing that 	 D 4=3 for a radiation-dominated plasma. The Euler
equations can be applied to such a system using 	 D 4=3. One can obtain the
same result more simply by recognizing that the photons have 6 degrees of freedom,
thanks to their two possible polarizations. Further details can be found in the chapter
on radiation hydrodynamics.

3.1.3 Fermi-Degenerate EOS

In ordinary plasmas it is the thermal pressure, experienced by the particles through
Coulomb collisions, that resists compression of the plasma. This is a classical effect,
and the properties of the electrons are described by Boltzmann statistics. But when
plasma or other matter becomes dense enough, then quantum mechanical effects
involving the electrons create pressure and resist compression. The electrons are
subject to the Pauli exclusion principle, which prevents more than one of them
from occupying the same quantum state. As we will see, this implies that the most
energetic electron in cold, high-density matter can be quite energetic indeed. Matter
in which nearly all of the electrons are in their lowest-energy states is described
as Fermi-degenerate matter. The EOS of Fermi-degenerate matter is of substantial
importance in massive planets, white dwarf stars, and inertial fusion implosions
or other high-energy-density experiments that compress solid matter. The fact that
electrons are fermions has an impact over a broader range of conditions, as we will
see in Sect. 3.5. Fundamental derivations of the electron behavior can be found in
any book on statistical physics, including for example Reif (1965) and the relevant
volume by Landau and Lifshitz (1987).

Figure 3.3 shows the energy distributions of free electrons in dense matter,
for several temperatures. In very cold, dense matter the energy distribution is a
step function—all the electrons are in the lowest accessible state. As temperature
increases, some of these states are depleted and a tail of electrons develops at higher
energy. The energy of the state whose occupancy is 50% is known as the Fermi
energy. The Fermi energy at absolute zero, �F, is

�F D h2

2me

�
3

8
ne

�2=3
D 7:9 n2=323 eV; (3.14)
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Fig. 3.3 Electron energy
distributions in dense matter.
The distribution function,
normalized to be 1 at zero
energy, is shown against
energy, normalized to the
Fermi energy, for
kBT D 0:01, 1, and 10 �F .
The gray curve shows a
Maxwellian distribution for
kBT D 10�F
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in which me is the electron mass, ne is the number density of electrons, and n23 is
the electron density in units of 1023 cm�3. This value (1023 cm�3) is of order both
the density of electrons in low-Z plasmas with a mass density near 1 g/cm3 and the
density of conduction electrons in a typical metal. In any material there may also
be bound electrons, attached to specific atoms. These electrons do not contribute to
the electron density ne in (3.14). If we displayed the bound electrons on the scale
of Fig. 3.3, they would appear as spikes at negative electron energy. We discuss the
degree of ionization (and hence the relative numbers of free and bound electrons)
in Sect. 3.4. Equation (3.14) has a number of consequences for physical systems
of interest here. It implies that the electrons are not Fermi degenerate in plasmas
with densities well below solid density, heated to temperatures of tens to hundreds
of eV. In contrast, compressed plasmas at densities of more than 100 times solid
density, produced in inertial fusion implosions, have a Fermi energy of hundreds of
eV. Such plasmas are often cool enough that the EOS of the electrons is the Fermi-
degenerate EOS. The degeneracy temperature, Td, above which the electrons can be
approximated as a classical gas, is found by setting kBTd D �F.

Despite its obvious differences from an ordinary gas, the equation of state of
Fermi-degenerate matter is quite similar to that of an ideal polytropic gas with
	 D 5=3. Equation (3.8) applies in both cases, so p D .2=3/��. In addition, while
the electron pressure in an ideal gas is p D nekBT , the electron pressure in Fermi-
degenerate matter is pF D .2=5/ne�F. Evaluating this one finds

pF D 2

5
ne�F D h2

20me

�
3



�2=3
n5=3e ; (3.15)

or in practical units

pF D 0:50n5=323 D 9:9

�
�

A=Z

�5=3
Mbar; (3.16)

in which A=Z � 2 and the units of density are cgs. The transition from (3.16)
to (3.1) occurs approximately when T D Td, although one can see in Fig. 3.3 that the
electron distribution still departs significantly from a Maxwellian even at T D 10Td.
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3.2 Regimes of Validity of Traditional Plasma Theory

High-energy-density systems are nearly always plasmas, in the sense that they are
ionized and that electromagnetic interactions at a distance can play a role in their
dynamics, at least in principle. Unfortunately, the theory of plasmas, as covered in
traditional texts such as Krall and Trivelpiece (1986), has a range of validity that
only partly overlaps the regimes of high-energy-density physics. Even so, plasma
concepts have tremendous utility when they are valid. This motivates a discussion
of these issues.

Traditional plasma theory faces the challenge of describing a system composed
of mobile charged particles and capable of dramatic electrodynamic effects. The
particles quickly scurry over to surround any exposed charge, yet also can carry
currents that produce magnetic fields which can store immense energy. The
eruptions on the surface of the sun are an example of the potential consequences.
The shielding of exposed charges is one of the fundamental aspects of plasmas. Yet
even as the charges try to cluster about one another, their thermal motions limit the
clustering. The competition between these gives rise to a characteristic shielding
distance, known as the Debye length. The Debye length is defined in Gaussian cgs
units by

��2
D D 4e2

 
ne

kBTe
C
X
˛

n˛Z2˛
kBT˛

!
; (3.17)

in which the sum is over all ion species, the subscript e designates electrons while ˛
designates an ion species, n is a number density, T is a temperature, Z is a number
of unit charges, kB is the Boltzmann constant, and e is the electronic charge (4:8 �
10�10 statcoul here). On the one hand, when one considers fast enough timescales,
the ions cannot move and the electron Debye length,

�De D
s

kBTe

4nee2
; (3.18)

(in the same units) becomes relevant. This is the only Debye length defined in the
NRL Plasma Formulary, among other references. In addition, traditional plasma
texts often assume all plasmas to be pure hydrogen, replacing the 4 with an 8
in (3.18). On the other hand, there are cases in dense plasmas when ion–ion
shielding determines the behavior, as for example when the electrons cluster poorly
because they are Fermi degenerate (Sect. 3.1.3). Then the ion Debye length,

��2
Di D 4e2

X
˛

n˛Z2˛
kBT˛

; (3.19)

(in the same units) comes into play.
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High-energy-density plasmas, like most plasmas, are quasi-neutral, so that

ne D
X
˛

n˛Z˛: (3.20)

In addition, in such plasmas collision rates are large (Sect. 2.4) so the temperatures
of the particle species are usually equal and designated by T: When this is the case,
one can use the standard definition of the effective charge, Zeff, as

Zeff D
P

˛ n˛Z2˛P
˛ n˛Z˛

D
P

˛ n˛Z2˛
ne

; to write (3.21)

�D D
s

kBT

4ne.1C Zeff /e2
; (3.22)

again in Gaussian cgs units. This is a form we will use in later discussions. For
calculations involving binary collisions, Zeff is the appropriate average charge, while
for calculations involving particle counting, Z D ne=ni is the appropriate average
charge.

The Debye length arises quite naturally in the most-sophisticated developments
of plasma theory. It also can be found from a simple calculation that can be used
to highlight the limitations of traditional plasma theory for us. We consider a
two-species plasma, in which the ions have charge Z; and we also suppose that
the particles are distributed by classical statistics with a common temperature T .
This implies that the density of particles with charge q, at a location with a
potential � relative to the potential at some reference location is proportional to
expŒ�q�=.kBT/�. Then the charge density �c in the vicinity of an ion at x D 0 is

�c D Zeı.0/ � nee exp

�
e�

kBT

�
C nieZ exp

��eZ�

kBT

�
: (3.23)

If we assume that jq�j � kBT and that the plasma is quasi-neutral, then this
becomes

�c D Zeı.0/ � e2�

kBT



ne C niZ

2
� D Zeı.0/ � �

4�2D
: (3.24)

At this point we can write the Poisson equation in spherical coordinates, assuming
that the charges are distributed with spherical symmetry, as

1

r2
d

dr

�
r2

d�

dr

�
D �4Zeı.0/C �

�2D
; (3.25)
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which (in cgs units) has the solution

� D Ze

r
e�r=�D : (3.26)

Equation (3.26) displays the standard result that the potential of any given charge
falls away exponentially faster in a plasma than it would in vacuum. But what is
relevant to our interests is two aspects of this derivation. First, (3.23) only makes
sense in the end if there are numerous particles within a sphere whose radius is the
Debye length. Second, the key assumption in this derivation is that jq�j � kBT ,
which must be violated if the particles are cold enough. These turn out to be related,
and we will explore them in turn.

The number of particles in a Debye sphere, in a quasi-neutral plasma, is
ne.1C1=Z/.4=3/�3D. The inverse of this, sometimes defined without the numerical
coefficients, is a fundamental expansion parameter for traditional plasma theory
(see Krall and Trivelpiece 1986). A plasma is known as an ideal plasma when the
number of particles in a Debye sphere can be taken to approach infinity. In this
case collective effects, involving all the particles, remain, while effects relating to
particle correlations vanish. Figure 3.4 shows the number of particles in a Debye
sphere in the high-energy-density regime. There are not many. The number varies
from tens of particles in the upper-left corner of the regime shown to less than 0.01
particles in the lower-right corner. In the lower-right corner the electrons are Fermi
degenerate (Sect. 3.1.3), which reduces even further their ability to shield the ions.
The ion density in a typical solid is also shown. It is evident from this figure that
high-energy-density plasmas are rarely ideal plasmas.

Now consider the assumption that jq�j � kBT: We can take a typical value of �
to be the electrostatic interaction of two particles at their average spacing. We find
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the average spacing by giving each particle a spherical volume of radius rav, so that
the average spacing is 2rav. Thus we take 4r3av=3 D 1=Œne.1C1=Z/�: Then we find

� D k1Ze

2rav
D k1Ze

2

�
3

4ne.1C 1=Z/

�1=3
; (3.27)

so that the assumption becomes

jq�j
kBT

D k1Ze2

2ravkBT
D k14ne.1C Z/e2

2kBT

Z=.4/

ravne.1C Z/
D �D

6rav
g D g2=3

6
� 1;

(3.28)

where g is the inverse of the number of particles in a Debye sphere, 1=g D
ne.1C 1=Z/.4=3/�3D. Thus, the two requirements of the Debye-shielding analysis
are intimately connected. It is no surprise that this assumption (3.28) is violated
over about half the parameter space shown in Fig. 3.4. The ratio jq�j=kBT is often
known as the strong coupling parameter, � , first introduced in Chap. 1. Salzman
(1998) discusses this parameter, which he calls the plasma coupling constant, at
more length. Like the Debye length, � comes in different flavors depending upon
whether one evaluates ion–ion coupling, ion–electron coupling, or electron–electron
coupling. To be precise, one must evaluate Z and rav for a specific, chosen set of
particles. The most common type of � found in the literature is that for ion–ion
coupling. Across much of the parameter space of Fig. 3.4, the ions are strongly
coupled but the ions and electrons are not. We specifically discuss the regime where
the ions are strongly coupled and the electrons are Fermi degenerate in Sect. 3.7.
The pressure and energy of the plasma will depart from their ideal-gas values across
a large fraction of this parameter space. In order to enable us to understand the
actual behavior of matter at high energy density, Sect. 3.3 considers the behavior
of electrons across this regime and Sect. 3.4 considers ionization and of energies
associated with Coulomb forces. This will enable us, in Sect. 3.5 and beyond, to see
the combined effect of all these elements.

3.3 Electrons at High Energy Density

We begin by returning to the behavior of the electrons. We know that at high-
enough temperature they behave as an ideal gas, and that they are Fermi-degenerate
at low-enough temperature and high-enough density, with the boundary between
these regimes running directly across the middle of the parameters of interest for
high-energy-density physics. What we have not yet determined is how abrupt the
transition is. In the limit that it is very abrupt, one could model the electron effects
discontinuously, just switching models at the boundary. In contrast, if the transition
is very gradual, then one might have to implement a more-complicated treatment
of the electrons to even come close to the correct behavior. So our task here is to
determine how abrupt the transition from ideal-gas to Fermi-degenerate behavior
actually is.
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The detailed properties of the partially degenerate matter at a temperature near
the degeneracy temperature involve some straightforward numerical integrals. The
ion density range of interest to high-energy-density physics spans 1019 to 1024 cm�3,
but reaches �1026 cm�3 in compressed inertial fusion capsules. All of the electrons
participate in Fermi-degenerate behavior, so this corresponds to a range of electron
densities from 1019 to 1026 cm�3, where the upper limit might correspond either
to high-Z matter at an ion density of 1024 cm�3 or to low-Z matter compressed for
inertial fusion. The electron temperatures of interest span 1–1000 eV. Let us examine
the behavior of the electrons over this range of conditions.

The electron density is given by the integral over all momenta, �e, of the
probability that an electron will have a specific momentum. With the electron energy
given by Ee D �2e=.2me/, this is

ne D 8

h3

Z 1

0

�2ed�e

expŒ .��CEe/

kBTe
�C 1

; (3.29)

in which � is the chemical potential, which has energy units. Within this integral,
the factor equal to �2ed�e gives the scaling of the density of states while the
remaining factor gives the probability that a certain state is occupied by an electron.
Equation (3.29) can be put in the useful form

� D Te

Td
D Te

��
8

3ne

�2=3
2mekB

h2

�
D
�
3

2
F1=2

�
�

kBTe

���2=3
; (3.30)

which defines the ratio of electron temperature to degeneracy temperature as �. We
also define in general Fn .�/ D R1

0
xn Œexp.x � �/C 1��1 dx. This will have further

application below. Our parameter range of interest corresponds to� D 10�3 to 104.
The chemical potential is the internal energy required to add a particle to the

system at constant entropy and constant volume. For a Fermi-degenerate system the
chemical potential is positive; a new particle goes in at the Fermi energy even at
zero entropy, so one must invest energy to put a new particle into the system. For a
Boltzmann system � is negative: a new particle can be added at zero energy but to
keep entropy constant the internal energy of the system must decrease. The limiting
behavior of �=.kBTe/ is of some interest. In the degenerate regime, � D �F so

�

kBTe
D �F

kBTe
D 1

�
: (3.31)

In the Boltzmann limit, designating the Boltzmann chemical potential as �c, one
has

e�c=.kBTe/ D neh3

2 .2mekBTe/
3=2
; (3.32)
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Fig. 3.5 The chemical
potential is shown vs
� D Te=Td . In the classical
(Boltzmann) regime, � is
negative

1

10

100

-1

-10

0.1
-0.1

0.01 0.1 1 10 100

0.01 0.1 1 10 100

Temperature Θ (= Te/Td)

C
h

em
ic

al
 p

o
te

n
ti

al
 (

μ /
k B

T
e)

 

Te/Td = Θ
crit

Classical
regime

Degenerate
regime

so

e�c=.kBTe/ D 4

3
p
�3=2

; (3.33)

so �c is zero when � D �crit D 0:827. Atzeni and Meyer-Ter-Vehn (2004) give a
fit due to Ichimaru that spans both limits. This is

�

kBTe
D �3

2
ln.�/C ln

�
4

3
p


�
C 0:25954��1:858 C 0:072��1:858=2

1C 0:25054��0:858 : (3.34)

One can vary �=.kBTe/ and calculate the integral (3.30). Figure 3.5 compares the
result of this calculation with the values implied by (3.31) and (3.33). The solid
curve shows the actual value, with the gray, dashed curve showing the Boltzmann
limit and the black, dashed curve showing the Fermi limit. The result is rather
dramatic. The electron chemical potential has the Boltzmann value for � > �crit,
where it abruptly transitions to the degenerate value. This observation is the most
important result of this section. If the temperature is further than a factor of two
from the Td, then the behavior of the electrons is solidly in the corresponding limit.
Only very near the transition need one consider using a more complex model.

One can evaluate the electron pressure by averaging the energy of each state over
the probability that the state is occupied. The general integral for the internal energy
density, ne�e, where �e is the specific internal energy per electron, and the pressure,
pe, is

ne�e D 3

2
pe D 8

h3

Z 1

0

Ee�
2
ed�e

expŒ .��CEe/

kBTe
�C 1

; (3.35)
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Fig. 3.6 Normalized electron
pressure versus chemical
potential. This asymptotes to
.2=5/�=.kBTe/ at large
�=.kBTe/ and approaches 1 as
�=.kBTe/ approaches 0 (and
is 1 in the Boltzmann regime/
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which can be written as

ne�e D 3

2
pe D 3

2
nekBTe�

3=2F3=2

�
�

kBTe

�
D nekBTe

F3=2.
�

kBTe
/

F1=2.
�

kBTe
/
: (3.36)

Figure 3.6 shows how the normalized pressure, p=.nekBTe/; increases with
�=.kBTe/, for � < �crit. The electron contribution to the pressure and internal
energy is classical for� > �crit. Despite the difference in the pressure, the electrons
behave as a gas with 	 D 5=3 throughout. Under strongly Fermi-degenerate
conditions, the electron pressure and energy completely dominate those of the ions.
However, because of the energy associated with ionization, the electrons do not
necessarily dominate the internal energy of the plasma throughout our regime of
interest. We explore this further in Sect. 3.4.

For various applications, including inertial fusion, it is worthwhile to understand
the heat capacity and entropy of electrons. For this purpose it helps to understand
Fn.�/ more thoroughly. One can show that F0

n .�/ D n�0Fn�1 .�/. In addition, if Te

is near zero, then Fn.�/ D �nC1=.n C 1/. It is also useful to know that if � is zero,
then F3=2 D 1:153 while F1=2 D 0:678. In the Boltzmann limit (3.32) implies that

Fn

�
�

kBTe

�
D neh3

2.2mekBTe/3=2
� .1C n/ D 4

3
p
�3=2

� .1C n/; (3.37)

so in the Boltzmann limit F3=2 D ��3=2 while F1=2 D .2=3/��3=2.
Turning to the heat capacity, one finds

CV D @

@Te
.ne�e/

ˇ̌
ˇ̌
ne

D 3

2
nekB

�
5

2
F3=2�

3=2 C Te
@

@Te

�
�

kBTe

��
; (3.38)

where CV has units of energy per unit volume per unit temperature and the argument
of both F3=2 and F1=2 is �=.kBTe/. In the Boltzmann limit this becomes CV D
.3=2/nekB. In the degenerate limit and for small temperatures, one can expand the
integrals to find CV D .3=2/nekBŒ

2kBTe=.3�F/�. This is the electronic contribution,
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which is dominant for strongly degenerate matter. As any book on statistical physics
will discuss the ionic contribution at small temperature.

The entropy per unit volume of the electrons, S/V, may be found from

S

V
D
�

� 1

V

@.pV/

@Te

�
�;V

D 2

3

@

@Te
.ne�e/

ˇ̌̌
ˇ
�;V

; (3.39)

in which �pV is one of the thermodynamic potentials discussed by Landau and
Lifshitz (1987) in their volume on statistical physics. Note that holding � and V
constant is not identical to holding ne constant, as was done to find CV . This implies

S

V
D 5

2
nekB

�
2

3

F3=2.
�

kBTe
/

F1=2.
�

kBTe
/

� 2

5

�

kBTe

�
; (3.40)

which for the Boltzmann limit is

S

V
D nekB

�
5

2
C ln

�
2.2mekBTe/

3=2

neh3

��

D nekB

�
5

2
C ln

�
3
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�3=2

4

��; (3.41)

or in the degenerate limit where Te � �F is

S

V
D 3

2
nekB

�
2

3
�

�
: (3.42)

The entropy approaches zero as the temperature approaches absolute zero, as it
should.

In the context of inertial fusion, one cares about the relation of pressure
and entropy, because the shock waves produced during compression increase the
entropy (see Chap. 4). Since the pressure is proportional to F3=2, while density is
proportional to F1=2, (3.40) can be rearranged to obtain

p D 2

5

S

V
Te C 2

5
ne�: (3.43)

As Te and S approach zero, this reduces to (3.15). One sees that the pressure is
not sensitive to the value of the entropy until the entropy reaches a threshold value
given by setting the two terms of this equation equal. This is evident in Fig. 3.6,
where we see that the pressure begins to depart from 2ne�=5 when � � 5kBTe or
� � 0:2 so Te � 0:2Td.

The quantity p=pF is known in inertial fusion as the degeneracy parameter. It has
important practical consequences as the fusion gain decreases for increasing p=pF .
In general p=pF D 1 for degenerate matter and increases with �, equaling (5/2) �
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in the Boltzmann regime. The practical importance of this quantity makes it useful
to have approximate estimates of p=pF . Atzeni and Meyer-Ter-Vehn (2004) give the
following fit for p=pF:

p

pF
D 5

2
� C 0:27232��1:044 C 0:145�0:022

1C 0:27232��1:044 : (3.44)

The present section has provided a variety of useful models and limiting cases for
the behavior of the electrons. If we pull back to our overall mission, what matters is
this: The behavior of the electrons changes quite abruptly from ideal-gas behavior
to Fermi-degenerate behavior as T crosses Td. Only if the temperature is within
a factor of about 2 from this boundary need one consider their behavior in more
detail. Taking the point of view that our goal here is to see the overall behavior, in
our further discussions we will treat the transition in electron behavior to be abrupt.

3.4 Ionizing Plasmas

Mid-Z and high-Z ions in high-energy-density plasmas are rarely fully stripped,
meaning that all their electrons have been removed. Only as temperatures approach
and exceed 1 keV, or as compressions exceed ten times solid density will one
encounter completely stripped ions of any except very-low-Z species. When it
becomes routine to work far above solid density at temperatures of many keV,
the materials may become fully stripped, although the increased role of radiation
will provide ample new complications. We discuss some of these in Chap. 7. For
the moment, it is clear that we must understand the behavior of partially ionized
plasmas, which we will describe as ionizing plasmas, if we are to succeed in
understanding high-energy-density phenomena.

One needs to estimate the degree of ionization for a variety of reasons. The
most important is that their thermodynamic properties also depend upon ionization,
as we discuss in the next two sections. The internal energy of fully stripped ions
also includes a major contribution from ionization. While the behavior of actual
materials is complicated and difficult to calculate accurately, there are some simple
models that can capture aspects of their behavior. These we discuss here.

The electron density is Zni, but the value of the average charge Z depends upon
the temperature. To know Z precisely, one must evaluate the ionization balance to
determine the relative populations, Ni, of the various ionization states. Then one has
Z as a sum over ionization states,

Z D 1

N

X
i

ZiNi; (3.45)

in which the state populations can be either a number or a density, and N is either
the total number of ions or the ion density ni, respectively.
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We will designate the various ionization states of a given species by their net
charge Zi. The electrons in any given ion may reside in the ground state or in an
excited state. These of course are designated precisely by the necessary quantum
numbers, such as the principal quantum number, n; the quantum number for orbital
angular momentum, `; and the spin quantum number, s: In the present discussion,
we will occasionally have reason to specify the principal quantum number. We will
often, however, ignore excited states and implicitly treat all ions as ground state ions.
In most cases this is reasonable. The minimum excited state energy, with n D 2, has
an energy above the ground state that is 3/4 of the ionization energy, Ei. On the one
hand, if the ion is in an environment where Ei is well above Te, as is common, then
the excited state population is smaller than the ground state population by a factor
smaller than expŒ�3Ei=.4kBTe/�, which is fairly small. On the other hand, if Ei is
small relative to Te, then it is more likely that the electrons striking the ion will
deliver its outer electron into one of the indefinite number of free states as opposed
to one of the few and definite excited states.

The exact ionization energy required to remove the outermost electron from a
given ionization state does depend on the number and arrangement of the remaining
electrons, but we will ignore this here and adopt a hydrogenic atom analysis. In
such a treatment, all atoms and all ions are treated as hydrogenic systems, having
one electron and a nucleus with the appropriate net charge. This approach is more
accurate as the net charge on the atom increases (so that the inner electrons are more
tightly bound). This approach allows comparatively tractable computational models
to work with a wide range of atoms and ionization states, giving qualitatively correct
answers. In our work here we will primarily use the ionization energy associated
with a hydrogenic atom model, which is energy Ei D Z2EH , where EH D 13:6 eV
and Z is the net charge on the atom after ionization (and thus is consistent with our
use of “Z” elsewhere).

The simple view of atomic structure we will use here is distinct from the com-
putational “average atom model” (discussed in Salzman 1998). The computational
model provides a physically consistent approach to the definition of an “average
atom”, including both bound states and free electrons, that characterizes each
element.

The density of ions will play an important role in our discussions of ionization, as
this scales the electron density. A factor-of-two estimate of the typical ion density,
for a solid, can be made by taking � D Zn=4 g/cm�3 and A D 2Zn. Then

ni D �

Amp
� Zn

8Znmp
D 7:5 � 1022 g/cm3: (3.46)

This density is indicated in several of the plots in the following.
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3.4.1 Ionization Balance from the Saha Equation
for Boltzmann Electrons

Determining the exact degree of ionization is a difficult problem involving sophisti-
cated calculations, but we can arrive at a reasonable approximation on very simple
grounds. We can expect that the ionization energy of the ions in a plasma will have
some typical relation to the electron temperature. If we approximate the ion as a
hydrogenic ion of charge Z (after ionization), then the ionization energy Ei D Z2EH ,
where EH=kB D 13:6 eV. Thus, we expect Z2EH=.kBTe/ � C2, where C is a
constant, so Z D C

p
kBTe=EH , which is Z D 0:27C

p
TeV . The problem is to find C:

On the one hand, if we recall that Coulomb processes often are effective at energies
of about 3kBTe; as is the case for heat transport (see Chap. 9), then we would say
C � p

3, which is not far from the better estimates discussed next.
More sophisticated estimates of the ionization involve balancing ionization and

recombination or assuming that the distribution of ions is in equilibrium. These
turn out to be equivalent at high enough densities, but not at low densities. Griem
(1997) and Salzman (1998) discuss in detail the dynamics that are involved, in
their books. Here, and at more length in Chap. 6, we discuss the basic phenomena
that are important for high-energy-density systems. In low-density plasmas, the
archetype of which is the solar corona, collisional ionization is balanced by radiative
recombination, establishing a steady state known as coronal equilibrium. An addi-
tional process, dielectronic recombination, is of increasing importance as the density
increases, particularly in the range of densities found in magnetic fusion devices.
But at most densities found in high-energy-density systems, the relevant balance
is between collisional ionization and collisional (three-body) recombination. In
equilibrium, collisional ionization and collisional recombination are equal by the
principle of detailed balance.

At high enough density and temperature the distribution of ions, and the dis-
tribution of electrons within energy levels, approaches the equilibrium distribution
given by the Saha equation, derived in statistical mechanics. For an estimate of the
ionization balance we will ignore the distribution of electrons among the excited
states, and will focus only upon the distribution of ions among the ionization levels.
We work here with the Saha equation to estimate Z: The Saha equation gives the
ratio of the population of ions in state j;Nj, to those in state k;Nk, as

Nj

Nk
ne D gj

4gka3o

�
kBTe

EH

�3=2
e

�Ejk
kBTe ; (3.47)

in which in cgs units ao D „2=.mee2/ D 5:29 � 10�9 cm is the Bohr radius,
Ejk is the energy required to go from state k to state j. The symbols gj and gk

are the degeneracies of the ions. These are the number of distinct states of the
ion having the same energy for states j and k; respectively. For a hydrogenic ion
with an electron having principal quantum number n, this is 2n2. Thus, for our
assumption of hydrogenic ions in the ground state, discussed above, gj D gk D 2.
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(To help interpret various references, it may also help to know that EH D e2=.2ao/

so EHa2o D „2=.2me/, ignoring a very small center-of-mass correction.) For simple
calculations, the only practical choice is to assume that the ions are hydrogenic, so
that the ionization energy from state k to state k C 1 D j, in an isolated ion, is
E.kC1/k D Z2kC1EH . We will discuss below the consequences of the fact that the ions
are not isolated. At a high enough temperature, this has a small effect on the average
ionization.

We can determine a characteristic charge, not far from the actual average charge,
from this equation as follows. There will be some value, Zbal, not necessarily an
integer, for which the ratio Nj=Nk D 1 for two imaginary ionization states having
charge Zbal C 1=2 and Zbal � 1=2. Then Zbal should be close to, but may not equal,
the average charge Z: Recalling that ne D Zni, we can solve (3.47) for Zbal to find

Zbal D
s

kBTe

EH

vuutln

"
1

ne

gj

4gka3o

�
kBTe

EH

�3=2#
� 1

2
; (3.48)

which is

Zbal D 0:63

s
TeV

�
1C 0:19 ln

�
.TeV=100/3=2

n21

��
� 1

2
; (3.49)

with TeV in eV and n21 being the electron density in units of 1021 cm�3, and (3.49)
assuming gj D gk. One might approximate this as Zbal D 0:63

p
TeV , for Zbal � Zn,

where Zn is the nuclear charge.
The first estimate is to assume Z D Zbal, in which case one can either approximate

n21 or solve (3.49), which becomes an implicit equation for Z; through the electron
density (with ne D Zbalni). In terms of the initial formulation of this problem above,
the coefficient in (3.49) corresponds to C � 2:3, which is not far from our initial
guess of

p
3. Figure 3.7 shows how Zbal varies as ion density and temperature vary,

solving implicitly for Zbal. If the result were strictly 0:63
p

TeV , the contours would
be vertical. The curve crossing the plot shows where the solution for Zbal does equal
0:63

p
TeV . One can see that using 0:63

p
TeV is accurate to about 50% over most of

the parameter space shown, with a greater error at ion densities above 1023 cm�3.
One would expect the ions to exist primarily in the one or two states for which
ionization and recombination nearly balance, so the value of Z from (3.49) ought to
be close to the actual average ion charge in the plasma.

One can demonstrate that Z � Zbal, when the ionization energies are as assumed
above, as follows. One can use the definition of Zbal to rewrite (3.46), for arbitrary j
and k; as

Nj

Nk
D exp

�
� .Ejk � Z2balEH/

kBTe

�
: (3.50)
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Note that this corresponds to a distribution of ions peaked around Zk � Zbal, since
Nj < Nk for Ejk=EH > Z2bal, and Nj > Nk for Ejk=EH < Z2bal. Figure 3.8 shows
the ratio Nj=N1 for Te D 1 keV and Zbal D 20. Note that to obtain this one must
apply (3.50) repeatedly, obtaining

Nj=N1 D
j�1Y
kD1

NkC1=Nk: (3.51)

This gives a sum in the exponent that can be evaluated, as follows:

Nj=N1 D
jY

mD2
exp

�
�m2 � Z2bal

kBTe=EH

�
D exp

"
� .j � 1/ 
6C 5j C 2j2 � 6Z2bal

�
6kBTe=EH

#
:

(3.52)

Figure 3.8 shows a plot of this distribution, which turns out to be very strongly
peaked, with nearly all of the ions having a charge within a few unit charges of Zbal.
As it should, the peak of the distribution corresponds almost exactly to Zbal as given
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by (3.49). One could formally evaluate the average charge using (3.52). For the ratio
of ionization state populations, and a nuclear charge Zn, one has

Z D
ZnX

jD1
j
Nj

N1

� ZnX
jD1

Nj

N1
: (3.53)

One can show that Z determined by this method is quite close to Zbal.
It is worthwhile to emphasize that the fundamental basis for our estimate of Z

here is the Saha equation. However, the Saha equation is not an inviolate law of the
universe, even for equilibrium systems. It is a consequence of statistical mechanics
when the only important energies are the ionization and excitation energies and
when the electrons and ions both follow Boltzmann statistics. As plasmas become
denser or colder, energies associated with the interaction of the particles become
important. Some aspects of this are discussed in the next section and further below.
To some extent, these could be accounted for within the framework of the Saha
equation. However, once quantum effects become essential to the behavior of the
particles, whether through Fermi degeneracy or through ion–ion correlations, their
partition functions change significantly and the Saha equation is no longer the
relevant statement of equilibrium. This will be true well before (3.48) and (3.49)
find Zbal to decrease to zero and then become imaginary at high enough density or
low enough temperature. The curve in the upper left corner of Fig. 3.7 shows where
the electrons become Fermi degenerate based on the discussion of Sect. 3.1.3 (and
assuming Z D 0:63

p
TeV , although the curve placement on such a log–log plot is not

very sensitive to the specific assumption about Z). It remains worth noting, though,
that Z decreases as density increases, even solely as a consequence of Boltzmann
statistics. This in turn reflects the presence of ne in (3.47), which arises from the
degeneracy of the free electrons themselves.

Following through on the question of when the electrons dominate the internal
energy of high-energy-density plasmas, we can compare the total energy of ioniza-
tion, which is part of the internal energy of the plasma, with the internal energy of
the electrons. The ionization energy is the sum of Z2i EH over the ionization states
up to Z: Here we will use the integer part of Zbal as Z for this energy. The electron
energy per ion is .3=2/ZkBTe; where we will use Z D Zbal. Figure 3.9 shows the
comparison of these two energies. The ionization energy forms a stairstep in such

Fig. 3.9 The increase of
internal energy and ionization
energy (the stairstep) and
electron kinetic energy (the
line) in eV with increasing Te
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a model, though in reality the fact that several ionization states are present would
smooth this out. The important conclusion is that, so long as the ion can keep on
ionizing and the electrons are not Fermi degenerate, the ionization energy is the
larger contribution to the internal energy. Only once the ions become fully stripped
will the electron energy come to dominate. This is a major difference in comparison
to low-density laboratory or space plasmas, in which the internal energy can usually
be ignored.

3.4.2 The Ion Sphere Regime and Coulomb Effects

Equation (3.49) becomes inaccurate in compressed, denser matter with a high
nuclear charge and low temperature. One reason is that the electrons become Fermi
degenerate. Another reason is that the ions in high-energy-density plasmas do not
exist in isolation. Even though plasmas are charge-neutral on a volume-averaged
basis, in detail the particles arrange themselves so that a particle with any given
charge is closer on average to particles of the opposite charge. As a result, one
would have to invest energy to pull the plasma apart, so that the particles were far
enough away from one another that their interactions were negligible. That is to say,
the potential energy of the plasma is negative relative to vacuum. The introduction
of new particles or charges to the plasma, as occurs during ionization, lowers the
potential even further. This effect was long known as continuum lowering, but more
recently is typically labeled ionization potential depression. It has consequences for
the ions or atoms in the plasma—the vacuum energy levels having energies between
the plasma potential and vacuum no longer exist. Figure 3.10 shows an energy level
diagram to illustrate this point. With regard to ionization, the consequence is that
the energy required to ionize is reduced relative to its value in vacuum.

The amount by which the ionization potential is lowered can be evaluated by
determining the change in electrostatic potential energy produced by the ionization
of an atom or ion. There are two basic approaches to this calculation, corresponding
to two regimes of validity. For low-density plasmas, in which the Debye length
exceeds the spacing of the ions, one can calculate the changes to the shielding
potentials and the corresponding electrostatic energy introduced by ionization.
Equivalent treatments of this regime can be found in Zel’dovich and Razier (1966),
Griem (1997), and Krall and Trivelpiece (1986). We will discuss only the case most
relevant to high-energy-density plasmas, in which the spacing of the ions is more
than a Debye length. This has the consequence that the shielding occurs in the
vicinity of each ion individually. This will still be true if the electrons are Fermi
degenerate, but the electron density will be more uniform in space than it would
be otherwise. The fact that the shielding is local around each ion gives rise to the
ion-sphere model and variations on it. Figure 3.11 shows that the boundary between
the Debye shielding regime and the ion-sphere regime lies at lower densities than
those of primary interest in high-energy-density physics.
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Fig. 3.10 A lowered
continuum can eliminate
some excited states and
reduce the ionization energy
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Fig. 3.11 Boundary between
ion-sphere and long-range
Debye-shielding regimes of
ionization potential
depression. The ion density is
shown for reference, inferred
from Zi D 0:63

p
TeV and ne

In the ion-sphere model, each ion is assumed to influence only a region within a
radius Ro given by

4

3
R3oni D 1; (3.54)

in which ni is the particle density of the ions. Beyond this distance, the positive
and negative charge densities, as seen by the ion, are equal, so these make no
contribution to the electrostatic potential energy. Recalling that the typical ion
density is 7:5 � 1022 cm�3, one can see that Ro � 10�8 cm � 1Å for solids, as one
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would expect since atoms are about 1 Å in size. Within Ro, the charge due to the free
electrons must balance that of the ion, Zi, and for consistency (with the viewpoint
of other ions) the average free electron density must equal that throughout the entire
plasma, so

Zi D 4

3
R3one: (3.55)

The ion-sphere viewpoint provides the context for modern Thomas-Fermi mod-
els, for estimates of continuum lowering, and for an approximate EOS for high-
energy-density plasmas, which are our next three topics.

3.4.3 The Thomas–Fermi Model and QEOS

The Thomas–Fermi model provides a way to account for the impact of ion-
sphere effects on electron behavior. Based on a few very simple relations, the
Thomas–Fermi model accurately includes the effects of ionization, excitation,
Fermi-degeneracy, Coulomb interactions, self-consistent electron density structure,
and to some extent ion–ion coupling. In various versions it may also include
some quantum-mechanical effects such as those of shell structure. There is a
nice summary of the Thomas–Fermi model in Salzman (1998) and more detail in
Eliezer et al. (1986). The model itself requires nontrivial numerical solution, but
we reproduce below some fits due to Salzman that provide a useful way to connect
temperature and ionization.

The Thomas–Fermi model is a self-consistent combination of the ion–sphere
model and the treatment of the electrons as fermions. The key to its power is
that it demands that the electrostatic interaction of the electrons as fermions and
the nucleus be self-consistent within this context. It naturally accommodates, in
a classical context, the increase in electrostatic energy associated with increasing
density or temperature. This allows one to ignore ionization and excitation as
separate processes. They are accounted for, on average, by the expansion of the
heated electrons or the lowering of the continuum as conditions change. The model
can be formulated, in a simple form, as follows. It assumes spherical symmetry.

The electric potential, ˚.r/, is given by the Poisson equation,

r2˚.r/ D 4ene.r/ � 4Zneı.r/; (3.56)

with the boundary condition that @˚=@r D 0 at the boundary of the ion sphere, r D
Ro, which follows from the net charge neutrality of each ion sphere. The electron
density is given by the generalization of (3.29) to include a varying potential energy:



3.4 Ionizing Plasmas 77

ne.r/ D 8

h3

Z 1

0

�2ed�e

expŒ.�� � e˚.r/C Ee/=.kBTe/�C 1

D 4.2mekBTe/
3=2

h3

Z 1

0

p
xdx

expŒx � .�C e˚.r//=.kBTe/�C 1
: (3.57)

Thus, the nature of electrons as fermions is accounted for. The net neutrality of
each ion sphere sets a constraint on the density,

Zn D 4

Z Ro

0

ne.r/r
2dr; (3.58)

which determines the chemical potential. These three equations are all that must be
solved to describe the system. Once computational mathematics programs evolve
beyond root finding to profile finding, this model may become simple to implement.

Now, supposing we have solved the above equations, we consider how the
results may be used. The potential is only defined in the above to within an
arbitrary constant, although the choice of this constant will affect the value of �.
It is conventional to choose ˚ D 0 at the boundary of the sphere. As a result,
the potential throughout the sphere becomes increasingly positive as the density
increases. This is how this model captures the effects of ion-electron interactions.
The charge state is calculated as

ZD
4

3
R3one.Ro/; (3.59)

which amounts to assuming that the free electrons flow freely between ions and thus
establish the density at the ion-sphere boundary.

Some other thermodynamic quantities are as follows. The electron pressure is

pe.r/ D 8.2me/
3=2.kBTe/

5=2

3h3

Z 1

0

x3=2dx

expŒx � .�C e˚.r//=.kBTe/�C 1
; (3.60)

and the electron kinetic energy in each ion sphere is given by

Ke D 4.2me/
3=2.kBTe/

5=2

h3

�
Z Ro

0

Z 1

0

x3=2dx

expŒx � .�C e˚.r//=.kBTe/�C 1
dr: (3.61)

This is not, however, the entire energy, because the Coulomb energy of attraction
remains to be accounted for. This can be calculated directly, with the interaction
energy of the electrons and the nucleus, per atom, being Uen while the energy per
atom of the interactions among the electrons is Uee. One has
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Uen D �4Z2ne2
Z Ro

0

n.r/rdr (3.62)

and

Uee D e2

2

Z Ro

0

Z Ro

0

n.r/n.r0/
jr � r0j d3rd3r0: (3.63)

With these definitions, the total specific internal energy is

� D .Ke C Uen C Uee/=.Amp/: (3.64)

The sum Uen C Uee is the electrostatic energy per atom.
In the limit that n.r/ is constant (and thus equal to Znni, where ni is the ion

density), then one finds Uen D �.3=2/Z2ne2=Ro and Uee D .3=5/Z2ne2=Ro. As
More et al. (1988) discuss, the assumption of constant density for all electrons is
most applicable for either fully stripped ions at high temperature or strongly Fermi-
degenerate electrons at high density. Under other conditions, the actual total energy
for all electrons will reflect the actual profile of electron density. However, these
results are also relevant to the free electrons, assumed in the model to have constant
density. Their total electrostatic energy per atom, under this assumption, is given by
Unet D Uen C Uee, evaluated for the constant (free) electron density with Zn equal
to the net charge Z. Here again, the actual energy will be different to the extent that
the free-electron density is not in fact uniform.

To avoid confusion in connecting this section with others, we should note that
the zero of the energy scale here for the electrostatic energies is not consistent
with the conventions used in other discussions in this book. In most of those other
discussions, the implicit point of view is that a state of zero energy and pressure is a
neutral gas nominally at zero temperature (but without quantum effects). At higher
temperatures, positive energy is invested to ionize the gas. At high densities, the
Coulomb interactions of the ionized gas provide some binding energy and reduce the
energy input that would otherwise be required. In contrast, the state of zero energy
in conventional Thomas–Fermi models has all the particles dispersed to infinity. In
the ion-sphere applications of Thomas–Fermi models, it is further assumed that the
ions are shielded from one another and that the potential of the ion-sphere boundary
is equivalent to the potential at infinity. To convert the Thomas–Fermi result to the
standard scale, one would have to add the ionization energy necessary to ionize the
atom in vacuum, up to its ionization state Z, to the internal energy per atom. (See
Sect. 3.5 below.) This matters to account for the internal energy properly.

Salzman (1998) provides a more extensive discussion of Thomas-Fermi models,
and of many issues involving atomic physics in plasmas. He includes a fit to the
ionization produced by such models, attributed to a laboratory report by R.M. More.
My students have found this quite useful, and so it is included here for convenience.
The fits are provided for T in eV and � in g/cm3. Using the notation above when
feasible, one has an average charge

Z D f .x/Zn; (3.65)
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in which

f .x/ D x=.1C x C p
1C 2x/; (3.66)

in which for T D 0 one has x D ˛Rˇ , where ˛ D 14:3139; ˇ D 0:6624, and
R D �=.ZnA/.

For T > 0, has x D ˛Qˇ but the evaluation of Q is rather involved. Take T0 D
T=Z4=3n : Then

A D a1T
a2
0 C a3T

a4
0 ; (3.67)

where a1 D 3:323�10�3; a2 D 0:971832; a3 D 9:26148�10�5; and a4 D 3:10165.
Then with TF D T0=.1C T0/ one has

B D � expŒb1 C b2TF C b3T
7
F�; (3.68)

where b1 D �1:7630; b2 D 1:43175; and b3 D 0:315463. One also defines

C D c1TF C c2; (3.69)

where c1 D �0:366667; and c2 D 0:983333. Further defining Q1 D ARB, one has
at last Q as

Q D .RC C QC
1 /
1=C: (3.70)

One can set up these relations in a computational mathematics program so that they
quickly can be evaluated to find Z.T/ and thus T.Z/ for conditions of interest, for
example in seeing what can be inferred from experimental data.

Finally, there are a class of computer models known as QEOS models, where
QEOS stands for quotidian equation of state, where quotidian means “everyday” or
“routinely usable”. The Thomas–Fermi model is often incorporated into these (see
for example the description in More et al. (1988)). Such models are likely to include
additional terms or equations intended to account for the solid, liquid, and gaseous
states and for the transitions between them. They can be a useful way to bridge the
wide range of parameters that simulations must deal with.

3.4.4 Ionization Potential Depression

Here we consider the amount of continuum lowering in the ion-sphere regime. There
have been several approaches. A simple estimate would be that an electron is free if
it has enough energy to reach the boundary of the ion sphere, and that the difference
between the potential energy there and at infinity (for an isolated ion of initial charge
Zi) is
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�E D .Zi C 1/e2=Ro D .Zi C 1/.2EHao/=Ro: (3.71)

The generalization of (3.71), to include the behavior at lower densities where the
Debye length, �D, exceeds Ro, is

�E � .Zi C 1/EH min

�
2ao

�D
;
2ao

Ro

�
: (3.72)

There are a number of models that have attempted to do better for the ion sphere
regime, and at this writing (2014) it has only recently become possible to do well-
resolved measurements of continuum lowering in this regime. Some measurements
seem to support one or the other of the available models. But all the models are
simplifications of various types. One can expect a more definitive understanding to
arise over the next few years.

A brief survey of the historic models follows here. (A reader not interested in
these details could skip to the discussion of the net ionization with reference to the
next figure.) To compare these models we generalize (3.71) as follows:

�E D CZ�e2=Ro D CZ�.2EHao/=Ro: (3.73)

Griem (1997) makes an approximate calculation of the shift in the energy levels
of the ion by determining from the Poisson equation the electrostatic potential
surrounding the ion, assuming a constant electron density, and by using the first-
order perturbation theory of hydrogenic ions from basic quantum mechanics. One
finds the principal quantum number of the highest remaining bound state to be

nc D
p
.Zi C 1/Ro=ao: (3.74)

Zel’dovich and Razier (1966) find the same result from the semiclassical argument
that the highest quantum number will be the one for which the semimajor axis of
the orbit equals Ro. The corresponding reduction in ionization energy is

�E � .Zi C 1/EHao=Ro D .Zi C 1/e2=.2Ro/: (3.75)

Thus, such models find C D 1=2 and Z� D Zi C1 in (3.73). One can expect that this
might under-estimate the lowering, because most of the electrons having principal
quantum number nc will have larger orbital angular momentum and have orbits that
attempt to extend beyond Ro. But on the other hand, the actual interaction with the
other bound electrons might reduce the lowering.

An important historic approach is that of Ecker and Kroll (1963). Their calcula-
tion is a statistical mechanical one not structurally unlike the calculation we discuss
in Sect. 3.5. One difference is that they treat the electrons (and ions) as a classical
gas, so their results ought not to apply when the electrons are degenerate (as they
are for much of the ion-sphere regime of interest). Another difference is that they
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seek to calculate the effects of Coulomb forces by a calculation of the microfields in
the plasma, using traditional techniques of plasma physics. A third difference is that
their calculation is not based on the ion-sphere model. Even so, they are forced to
approximate the calculation and in so doing they choose, as a characteristic distance,
the average interparticle distance among all particles,

Ra D
�

3

4ni.1C Zi/

�1=3
D 1

.1C Zi/1=3
Ro: (3.76)

The also find that it is the charge of the ion resulting from the ionization process
.1C Zi/ that matters, and ultimately they find

�E D CEK.1C Zi/e
2=Ra D CEK.1C Zi/

4=3e2=Ro; (3.77)

where their Z� D .1C Zi/
4=3. Their CEK is of order 1 but is a function that depends

on Zi and Zn in some way that is not very clear.
Other approaches are based on the semi-classical Thomas-Fermi model dis-

cussed in the previous section. The historic paper of this type is by Stewart and Pyatt
(1966). Their calculation differs in some ways from the now-standard approach to
Thomas-Fermi, ion-sphere calculations described in the previous section, but what
is important is that they apparently do not consider the effect of electron-electron
interactions. They find, in the ion-sphere limit,

�E D .3=2/.Zi C 1/e2=Ro; (3.78)

and thus conclude that Z� D .Zi C 1/ and C D 3=2, so the lowering is more
than three times larger than in our simple result above. They confirm that, within
their assumptions, the results are correct by numerical integration. Note that the
�E found in (3.78) equals exactly �Uen=Z�, the average electrostatic energy per
electron for Z� electrons of constant density interacting with a central ion of
the same charge in an ion sphere (from the previous section). This raises issues
discussed more clearly with regard to the next model.

More et al. (1988) report results of a more modern numerical Thomas-Fermi
calculation, consistent with the description in the previous section. For a nuclear
point charge of value Zne, the net electrostatic energy per atom is

Unet D �.9=10/Z2ne2=Ro; (3.79)

where coefficient of (9/10) is the combination of coefficients of 3=2 for the electron-
ion interactions and �3=5 for the electron-electron interactions. The negative of this
is the amount of energy that would be required to remove the electrons to infinity
from an initial state in which they have a uniform density within the ion sphere. Thus
Unet is the difference between the energy required to fully strip the atom in vacuum
vs in the ion-sphere environment, and so represents the total continuum lowering
for all the electrons. But as the electrons ionize successively this cannot be equal
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for each electron. If one imagines that the bound electrons are localized in orbits at
small radii (which is necessary to get the ionization energy right in a semiclassical
model), then it is a sensible approximation to treat the net charge of the ion, Q, as
though it were a point charge, and to assume the density of the free electrons to be
constant. In this case the continuum lowering for the next electron will correspond
to the difference in Unet as Zn increases by one. Mathematically, for ionization out
of state Zi, this implies

�E D 9

10

Œ.Zi C 1/2 � Z2i �e
2

Ro
D 1:8

.Zi C 0:5/e2

Ro
; (3.80)

which at large Zi is even larger than the Stewart-Pyatt value. Thus in this case we
find C D 1:8 and Z� D .Zi C 0:5/.

All these estimates for continuum lowering imply that there can be conditions
where �E is larger than the vacuum ionization energy, producing some ionization
even at zero temperature. This effect is known by the somewhat misleading name of
pressure ionization. (The name is misleading since only density enters. However,
in dense, Fermi-degenerate matter the pressure can be substantial even at zero
temperature.) To assess this, one can write the ratio of �E to the ionization energy
in vacuum (� .Zi C 1/2EH/. Specifically, using (3.80) for �E one finds

�E

.Zi C 1/2EH
D 3:6

.Zi C 0:5/ao

.Zi C 1/2Ro
D 3:04

.Zi C 0:5/

.Zi C 1/2
n1=324 ; (3.81)

in which the approximation uses the ion density in units of 1024 cm�3. In our
hydrogenic model a state will be ionized when the left-hand term here equals 1
and we will designate this ionization ZTF for later reference. This gives

ZTF D 1:52

�
n1=324 C

q
n2=324 � 0:66n1=324

�
� 1; (3.82)

In this model the ionization goes to zero at an ion density of 2:8 � 1023 cm�3.
Figure 3.12 shows the ionization as calculated from this model.

One can see in this figure that the amount of ionization remains fairly small for
compression to only a few times solid density. In the regime where the ions behave
like hydrogen, as a crude model one could take Z to be the maximum of the values
implied by (3.81) and Zbal from the Saha model (3.49). Near the transition between
the two models, this will underestimate Z; because plasma effects will reduce the
ionization energy of the next couple of ionization states significantly. In addition,
once the electrons become degenerate the thermal ionization is further reduced. We
discuss the behavior found from a better, statistical-mechanical model below, in
Sect. 3.5.2. By the time Te increases much above 10 eV, most materials of interest in
present-day experiments will be in the Saha regime.

However, Fig. 3.12 can be quite misleading, because most ordinary materials, at
temperatures of order an eV, do not behave like a simple hydrogenic model would
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Fig. 3.12 The ionization from (3.82)

predict. One might say, for example, that conductors have an effective ionization
state corresponding to the number of free electrons per atom that exist in the
conduction band. In the case of solid-density aluminum (Zn D 13), for example,
this is about 3 electrons per atom. One can reasonably describe this as “pressure
ionization”, recalling again that a better term would be “density ionization”. To
some degree, the appearance of ionization where the hydrogenic model would not
find it could be due to subtle quantum effects. But more important is the classical
impact of the existence of multiple electrons around the nucleus. In a classical
context, one would say that the inner electrons act to shield the outermost electrons
from the nuclear charge. This effect is accounted for in the Thomas–Fermi model,
which does find approximately the correct number of free electrons for aluminum.
(The difference from Fig. 3.12 presumably reflects the evaluation of self-consistent
electron density profiles in the full model.) While all materials behave in similar
ways in a global sense, the exact density or temperature where certain transitions
occur varies greatly. Quantum effects in the ions may be very important, especially
in the regime known as warm dense matter, corresponding to densities of order
solid density and temperatures below a few eV. We discuss this regime of Fermi
degenerate, strongly coupled matter in Sect. 3.7.

3.4.5 Coulomb Contributions to the Equation of State

The Coulomb interactions discussed in the previous section also contribute to the
EOS. The corresponding contribution to the internal energy, for ions of charge Z, is

��Coul D niUnet D �.9=10/nihZ2ie2=Ro; (3.83)
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where hZ2i should be an average of j2 over the distribution of states of charge j,
but will be quite close to Z2 for a narrowly peaked state distribution of average
ionization Z. The pressure of Na such atoms in a volume V , such that ni D Na=V , is

pCoul D � @

@V
.NaUnet/ D �.3=10/niZ

2e2=Ro; (3.84)

3.4.6 The Ions

For most conditions of interest, the ions can be treated as an ideal, classical gas.
When this is the case, we can take the ion contribution to the pressure, pi, and
specific kinetic energy, �ik, to be

pi D �kBTi

Amp
(3.85)

and

�ik D 3

2

kBTi

Amp
; (3.86)

knowing that the Coulomb binding energy associated with close packing of ions
will be included in the accounting for the electrons. Here the ion temperature is Ti.
In addition, in the context of our convention that the initial material state is a low
(or zero) but positive energy state, the ions also contribute energies of ionization
and excitation. We ignore excitation here, for reasons discussed near the start of
Sect. 3.4, and once again use a hydrogenic model, describing the internal energy of
the ions as

�ii D Ri

Amp
D EH

Amp

ZX
kD0

k2 D EH

6Amp
Z.1C Z/.1C 2Z/; (3.87)

where the maximum allowed value of Z is Zn and we define Ri as the internal energy
per ion and we have evaluated it for our hydrogenic model of the ions. One could
do better by including the continuum lowering in the sum making up Ri, and even
better by using actual ionization energies for the species in question.
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3.5 Approximate Equations of State for
High-Energy-Density Plasmas

In this section we work with the above results to find an approximate EOS for high-
energy-density matter at two levels of sophistication. We begin with results for the
regime of classical electrons, which spans most of our region of interest, applying
as well the simple expression for Saha ionization Z � 0:63

p
TeV . We then develop

a more sophisticated model, working with the Helmholtz Free Energy. The reader
can find an excellent discussion of the departure from an ideal plasma in Krall and
Trivelpiece (1986), while Griem (1997) provides a connection with the more-recent
literature.

There are two limiting cases where the simple models used here break down. One
of them, discussed in Chap. 11, is connected with inertial fusion. At the temperatures
of cryogenic fusion fuel, one must consider the nature of the fuel as quantum
particles. In particular, one needs to examine the behavior of deuterons as bosons
and of tritons as fermions. We consider this issue in Chap. 11. The other case is
that of Fermi-degenerate, strongly coupled matter. New effects appear when matter
is pushed into this regime, which was not known at the time of writing of the first
edition of this book. We discuss this regime in Sect. 3.7.

3.5.1 The Simplest EOS Model

Here we combine the results of the previous two sections to assemble an EOS for
the regime across which the Saha model is valid, but throughout which the matter
may be ionizing and Coulomb effects may not be negligible. This spans most of our
parameter space of interest. One could replace the thermal components of pressure
and internal energy with results for Fermi-degenerate matter, when Te < �F, to
have a crude model that also spanned the Fermi-degenerate regime. For simplicity,
we have chosen here not to do this. A more complex model, able to deal with the
degenerate regime more accurately, is presented in the following subsection.

We can represent the electrons as a classical gas so that the electron thermal
pressure is niZkBT and the electron internal thermal energy is 3niZkBT=2. We can
anticipate that these values will become inaccurate when the electrons become
Fermi degenerate, and we know that pressure ionization may increase Z at tempera-
tures below some value when the ion density exceeds 1024 cm�3. However, the full
impact of ionization is more complex, as we discuss in Sect. 3.5.2. In most cases,
the electrons dominate the pressure and the kinetic energy. Based on the discussion
above, we can represent the pressure as

ptot D pth C pCoul D ni.1C Z/kBT � 3

10

niZ2e2

Ro
(3.88)
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and the internal energy as

��tot D ��k C ��Coul C ��ik D
3

2
ni.1C Z/kBT � 9

10

niZ2e2

Ro
C ni

EH

6
Z.1C Z/.1C 2Z/: (3.89)

Here we have expressed the results in terms of the ion density ni D �=.Amp/. In this
simplest model, we give formulae for these results for two cases: an ionizing regime
in which Z D 0:63

p
TeV and a regime with fully stripped ions, for which Z D Zn.

With ni in cm�3, we have:
For the ionizing regime

p D 1:6 � 10�12niTeV

�
1C 0:63

p
TeV � 2:76 � 10�8n1=3i

	
(3.90)

and

�� D 1:6 � 10�12ni

�
1:44

p
TeV C 4:22TeV

C2:09T3=2eV � 8:29 � 10�8n1=3i TeV

�
; (3.91)

and for the fully stripped regime

p D 1:6 � 10�12ni

�
TeV.1C Zn/ � 6:96 � 10�8n1=3i Z2n

	
(3.92)

and

�� D 1:6 � 10�12ni

�
1:5TeV.1C Zn/

C2:28Zn C .6:85 � 2:09 � 10�7n1=3i /Z2n C 4:57Z3n

�
: (3.93)

We can evaluate the specific heat at constant volume, cV , for these cases as well. For
the ionizing plasma case of (3.91), we find

cV D 1:6 � 10�12

Amp

�
4:2C 0:715p

TeV
C 3:1

p
TeV � 8:3 � 10�8n1=3i

�
; (3.94)

while for the fully stripped case of (3.93), we have

cV D 2:4 � 10�12.1C Zn/

Amp
: (3.95)
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Fig. 3.13 (a) The pressure for an ionizing high-Z element is shown, normalized to the ideal-gas
pressure. The contours increase from the lower right, and are at 0, 0.1, 0.3, 0.5, and 0.99. (b) The
internal energy density for an ionizing high-Z element is shown, normalized to the ideal-gas value.
The contours increase from right to left, and are at 3, 5, and 6

We will first explore the implications of the first two equations for an element
of high enough Z to keep ionizing. Then we will consider carbon as an example
of an element that can be fully stripped. Considering a high-Z element, it is
informative to compare the pressure and energy from (3.90) and (3.91) with their
ideal-gas equivalents, which are p D ni.1C Z/kBTe and �� D .3=2/ni.1C Z/kBTe,
respectively. Figure 3.13a, b shows the ratio of the more-complete estimates
in (3.90) and (3.91) to these ideal-gas values. One can see that the model for
the pressure fails badly in the Fermi-degenerate region, which is no surprise. In
actuality, pressure and internal energy both increase in that region as one moves
down and to the right. Otherwise, the pressure across the space of Fig. 3.13a is
typically between 50% and 100% of the ideal-gas value. Thus, the ideal-gas value
is not too bad but it may overestimate the pressure. In contrast, Fig. 3.13b shows
that the internal energy is typically twice or more the ideal gas value, as indeed one
would expect from Fig. 3.9.

With an increased internal energy and a decreased pressure, the value of 	
evaluated from �� D p=.	 � 1/ must decrease. Figure 3.14 shows the values
of 	 obtained from (3.90) and (3.91). Here again, the quantitative value (�1:25)
should not be taken too seriously but the qualitative point, that 	 should be reduced
substantially compared to the ideal-gas value of 5/3, should be real. Standard EOS
evaluations for xenon (A D 130;Zn D 54), for example, give 	 � 1.2 to 1.3. We
will see in Chap. 4 that this implies increased compression by shocks.

Now consider carbon, an element with six electrons that can become fully
stripped at modest temperatures. Using our estimate that Z D 0:63

p
Te, Carbon

will ionize fully at Te D 91 eV. At higher temperatures, the internal energy still
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Fig. 3.14 The value of 	
inferred from the data shown
in Fig. 3.13 for an ionizing
high-Z element is shown. The
contours are labeled. The
value never reaches 1.3
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Fig. 3.15 (a) The pressure for carbon is shown, normalized to the ideal-gas pressure. The contours
increase from the lower right, as labeled. (b) The internal energy density for carbon is shown,
normalized to the ideal-gas value. The contours are labeled

includes the energy of ionization, but this contribution does not increase any further.
To estimate the properties of carbon, we use (3.90) and (3.91) until Te D91 eV,
then (3.92) and (3.93) at higher temperatures. This produces Figs. 3.15 and 3.16.
The pressure shows a structure similar to that of the ionizing case. In contrast, the
internal energy shows more structure, as Fig. 3.15b shows. At temperatures where
carbon is not fully stripped, the ionization energy is a dominant factor and the
internal energy substantially exceeds the ideal-gas value. As ion density increases,
though, this effect becomes smaller. Then, once the temperature has increased
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Fig. 3.16 The value of 	
inferred from the data shown
in Fig. 3.15 for carbon is
shown. The contours are
labeled
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enough to fully strip the material, the internal energy decreases toward the ideal-
gas value.

This behavior leaves its footprint on the inferred 	 , shown in Fig. 3.16. At
temperatures below 91 eV, one sees behavior very like that of Fig. 3.14. The inferred
value of 	 is generally near 1.25. Then, once the element becomes fully stripped,
	 begins to increase, although in this model it does not reach the ideal-gas limit of
5/3 even at a temperature of 1 keV. In optically thick media, at true LTE this will
begin to become artificial, because the coupling to the radiation will begin to reduce
	 toward 4/3 by the time Te reaches 1 keV.

3.5.2 An EOS Model Based on the Helmholtz Free Energy

The assumptions of the prior section are that each ion species and the electrons
behave as a classical gas and that there is some energy of Coulomb interaction
that lowers the internal energy. This applies across much of the high-energy-density
regime. A more broadly applicable set of altered assumptions are that the electrons
behave as fermions within each ion sphere and that the Coulomb effects also
act to lower the ionization energies. We can analyze such a system using very
standard statistical mechanics. We begin with a very brief summary of the statistical
mechanical context. Our point of view will be that there are Na atoms within a
volume V . The statistical analysis is based on the assumption that we know the
probability that the entire system will be found in some state having total energy
ET . For particles obeying Boltzmann statistics, this is proportional to e�ET=.kBT/,
with the constant of proportionality established so that the sum (or integral) over all
possible states, S , yields the correct total number of particles. The discussion in this
section in part follows that of More et al. (1988) and also (unpublished) work by
Igor Sokolov.
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The Helmholtz free energy is then given by

F D �kBT lnS: (3.96)

The Helmholtz Free Energy is useful in determining quantities of interest. The units
of free energy are energy units, though it may be expressed per particle, per unit
mass, per unit volume, or as a total for a system of particles. We did the latter above.
From this free energy one can find the pressure, the internal energy density (��), heat
capacity at constant volume CV , the entropy density .�s/, and the electron chemical
potential, �e on the assumption that Te D Ti D T , as follows:

p D �
�
@F

@V

�
Na;T

; (3.97)

.��/ D F � TS D �T2

V

�
@

@T

�
F

T

��
Na;V

; (3.98)

CV D
�
@.��/

@T

�
Na;V

; (3.99)

.�s/ D � 1
V

�
@F

@T

�
Na;V

; (3.100)

and

�e D
�
@F

@Ne

�
Na;V

: (3.101)

Equation (3.98) first relates the internal-energy density to F and to entropy density
S, then gives a simpler combined expression. (One property of F is that S D @F=@T
at constant Na and V .)

For a system having independent species labeled A;B; : : :, each of which has a
total number of particles NA;NB; : : :, one has

S D PNA
A

NAŠ

PNB
B

NBŠ
: : : ; (3.102)

in which the partition function of species k is given by Pk. The partition functions
are in turn sums over the probability that given states are occupied, but here we will
use results for the values of such sums and will not derive them. Using Stirling’s
formula, NŠ D .N=e/N , where here e is the base of the natural logarithm, one finds

F D �kBT

�
NA ln

�
ePA
NA

�
C NB ln

�
ePB
NB

�
C : : :

�
; (3.103)
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where one assumes all species are equilibrated to the same temperature T .
The specific case of a single atomic species that is ionizing, which is our

focus here, deserves some further discussion. One could write down a partition
function for all possible states of the atom including all degrees of ionization. The
corresponding value of N in these equations would be the total number of atoms,
Na. Thus NaŠ would appear in the denominator. However, such a sum would include
many very unlikely states, such as states near complete ionization having total
energies very far above kBT . Since we will in fact be interested only in equilibrium
and perhaps near-equilibrium states, we divide the states of the atom into distinct
ionization states, each of which has a population Nj and (in principle) a range of
energy levels accessible to it. And we will find the equilibrium populations by
seeking a minimum of F. We then, for the ions, have a sum like that of (3.103),
in which there is a term for each ionization state with its corresponding population.

How to handle the electrons is a somewhat more subtle question. The standard
derivation of the Saha equations assumes that the electrons freely sample the entire
volume, and implicitly takes the electron density to be constant throughout. In an
ion-sphere environment, however, this is not really a sensible assumption. In the
Thomas–Fermi model, for example, the chemical potential is determined within an
individual ion sphere. Even in the classical limit, the electron partition function in
an ion-sphere environment varies with the ionization state. We will approach this
as follows. We will assume that the distribution of the electrons corresponds quite
closely to having local quasi-neutrality, so that Nej D jNj electrons associated with
atoms having ionization j and the corresponding electron partition function. This
leads us to write

F D
ZnX

jD0

�
�kBTNj ln

�
ePj

Nj

�
C jNjFe.j/

�
; (3.104)

where Fe.j/ is the free energy of the electrons in an atom of ionization state j, which
we will later evaluate for the two limiting cases.

It is standard practice to recognize that the partition function of each species
can often be factored into terms representing distinct physical mechanisms, such
as the energies associated with translation and rotation. In the present context, the
question of how to treat the contribution to the free energy of the electrostatic
energies that produce continuum lowering is also significant. In a low-density
plasma, this represents averages over many atoms, and thus reflects the average
state of ionization of the system. In the ion-sphere limit, however, each ionic species
has its own electrostatic energy and its own electron chemical potential (here �e),
reflecting the specific properties of that ion species. In effect, the statistical analysis
here must be viewed as an average over a large number of distinct atoms or over an
ensemble of possible states of a given atom. The implication is that we must write
the partition function of the species having ionization j as

Pj D PtransPionizePCoul; (3.105)
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where

Ptrans D gj

�
2MkBT

h2

�3=2
V (3.106)

Pionize D e�Ej=.kBT/ (3.107)

PCoul D e�Unet.j/=.kBT/ D exp

�
9

10

j2e2

RokBT

�
; (3.108)

in which the ion mass is M, the Planck constant is h, the Boltzmann constant is kB,
and the ion-sphere radius is Ro. Note that the electronic charge is (italic) e, while
e as in (3.104) is the base of the natural logarithm. We expand ln.e/ to 1 in the
following to minimize confusion. Here as in Sect. 3.4.1 we consider only ground-
state electrons so that gj D 2. The total ionization energy of state j is the sum over
the ionization energies, in vacuum, of all lower ionization states,

Ej D
jX

kD1
Ek.k�1/; (3.109)

with Ek.k�1/ being the energy to ionize from state .k � 1/ to k, as it was above. Here
also E0 D 0.

Motivated by the results shown in Sect. 3.1.3, we will consider the electron free
energy Fej in only its two limits, adding to the subscript when needed to discriminate
between them. For the degenerate limit we have

Fed.j/ D 3

5
�F.j/ D 3

5

h2

2me

�
3jNa

8V

�2=3
; (3.110)

which depends on the electron density of an ion sphere having j free electrons. For
the classical limit we have

Fec.j/ D �kBT ln

�
2V.2mekBT/3=2

jNah3

�
; (3.111)

in which the electron mass is me. Note that neither of these electron free energies
depends on Nj. The partition function of the bound electrons is accounted for by
gj in Ptrans, and there is no further electron contribution for the neutral state so
Fed.0/ D Fec.0/ D 0. The Fermi energy �F is defined above in Sect. 3.1.3. For the
degenerate case, (3.110) gives the correct value for the chemical potential, as is seen
below. But it is significant that the Fermi energy in an ion sphere depends on j, and
must be evaluated using an electron density of ne D jNa=V , as shown explicitly
in (3.110).

Regarding the classical case, note that the electron partition function is defined
by integrating over all the states corresponding to a single ion sphere, of volume
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V=Na, and then recognizing that the total volume corresponding to the Nj such ion
spheres is VNj=Na. Then when the partition function corresponding to this volume
is divided by Nej D jNj one obtains the final result in (3.111). In instead one were to
demand that the electron density in this term be constant independent of ionization
state, which is done implicitly in the standard derivation of the Saha equation, then
the analysis below would obtain Eq. (3.47) to describe the ionization states.

With all the above, we have for the Helmholtz free energy

F D
ZnX

jD0
Nj

�
� kBT � kBTln

"
gj

V

Nj

�
2MkBT

h2

�3=2#
(3.112)

CEj C Unet.j/C jFe.j/

�
:

It is worth noting that one would obtain the same result by defining E.kC1/k to
include the contributions from continuum lowering from (3.80). Equation (3.112)
differs from the results shown in More et al. (1988) in two ways, both reflecting the
considerations about how to include the electron effects. They have the Coulomb
energy depending on hji2, with h i denoting an average over ionization states, while
here we have energy proportional to hj2i through the average of Unet. This is, in most
cases, a small difference. Similarly, they define Fej in terms of an average charge,
while the average shown here is a more complex one.

3.5.2.1 Ionization from the Helmholtz Free Energy

The equilibrium ionization corresponds to a minimum in the free energy. We thus
find the variation in F with respect to a change in the populations of two adjacent
ionization states, Nj and NjC1 and set this equal to zero. Because we associated the
electrons with each ionization state above, there is no separate contribution from
them. An ionization event reduces Nj and increases NjC1 by one. We have

ıF D ıNj
@F

@Nj
C ıNjC1

@F

@NjC1
D 0: (3.113)

Since ıNj D �ıNjC1 this implies

EjC1 � Ej

kBT
C Unet.j C 1/ � Unet.j/

kBT
C .j C 1/Fe.jC1/ � jFe.j/

kBT
D (3.114)

ln

"
gjC1

V

NjC1

�
2MkBT

h2

�3=2#
� ln

"
gj

V

Nj

�
2MkBT

h2

�3=2#
;
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from which

NjC1
Nj

D gjC1
gj

exp

�
�EjC1 � Ej

kBT

�
� (3.115)

exp

�
�Unet.j C 1/ � Unet.j/

kBT
� .j C 1/Fe.jC1/ � jFe.j/

kBT

�
:

We apply this relation recursively to obtain Nj=N0, which will prove most useful
below. Since Eo D Unet.0/ D 0 this gives

Nj

N0
D gj

g0
exp

�
� Ej

kBT
� Unet.j/

kBT
� jFe.j/

kBT

�
: (3.116)

We can proceed to evaluate the average ionization. Just as we discussed in
Sect. 3.4.1, we can now find

Z D hji D
0
@ ZnX

jD0
j
Nj

N0

1
A�

0
@ ZnX

jD0

Nj

N0

1
A ; (3.117)

where N0=N0 is of course 1. We can note that the denominator here is equal to
the ratio Na=N0, which will also prove useful below. A complication for high
densities is that continuum lowering may remove one or more of the lower ionization
states. For such cases one must modify this calculation accordingly, setting Nj to
zero for the quenched ionization states and using a reference state other than state
zero in (3.116). For this purpose it is helpful to realize that one can multiply the
numerator and denominator of (3.117) by any quantity whatsoever without changing
its validity.

To this point these equations are completely general, within the validity of their
assumptions. Thus, for example, one could use known values of the ionization
energies and a general treatment of Fe to determine the thermodynamic quantities
needed for a simulation and to accurately capture the behavior across the transition
from classical to degenerate behavior. This is the approach taken by some EOS mod-
els for computations (for the regime of ionized matter), such as the PROPACEOS
model (developed by PRISM Scientific). Or one could develop more general models
in the same spirit, to include for example electronic excitation.

If instead we assume hydrogenic ions and so take E.jC1/j D .j C 1/2EH , then
we obtain the distributions shown in Figs. 3.17 and 3.18. Here in evaluating (3.124)
we have applied the form of Fe appropriate to whether or not any given ionization
state is degenerate. The trends seen in the Saha regime we explored in Sect. 3.4.1
remain and are labeled in Fig. 3.17: over much of the space the ionization increases
gradually with temperature by thermal ionization. In the degenerate regime, ioniza-
tion is suppressed until the density becomes so large that pressure ionization sets in.
At high enough temperatures, the carbon becomes fully ionized. In Fig. 3.18, one
can see similar trends, although the large thermal ionization at low density and high
temperature makes them less evident.



3.5 Approximate Equations of State for High-Energy-Density Plasmas 95

Fig. 3.17 Ionization level
shown against electron
temperature and ion density
for carbon with Zn D 6

Fig. 3.18 Ionization level
shown against electron
temperature and ion density
for ionizing high-Z matter
having Zn D 80

Degeneracy acts to strongly reduce ionization, as we can see by considering the
purely degenerate case, when all ionization states of the atom are degenerate. (In the
non-degenerate case, despite the modest effects of continuum lowering, we obtain
results very similar to those of Sect. 3.1.3). In the degenerate limit (3.115) can be
written

.j C 1/Fe.jC1/ � jFe.j/

kBT
D �F.j/

kBT

3

5

.j C 1/5=3 � j5=3

j2=3
; (3.118)

which has the correct limit for large j, when the change in electron free energy
should equal the chemical potential, �e D �F. This gives, with gjC1 D gj,

NjC1
Nj

D exp

�
�E.jC1/j

kBT
C 9

10

.2j C 1/e2

RokBT
� �F.j/

kBT

3

5

.j C 1/5=3 � j5=3

j2=3

�
:

(3.119)
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We can view these population balance equations as having three factors—an
ionization factor, a Coulomb factor, and an electron factor. In order to produce
a population distribution that is peaked above whatever minimum is allowed
by continuum lowering, the other factors must exceed the factor involving the
ionization energy, so that the net argument of the exponent is positive for some
ionization states. As a practical matter, the Coulomb factor cannot do this for states
beyond those already quenched by continuum lowering. In the classical limit the
electron factor can be negative enough for the average Z to be peaked well above
zero, just as we saw in Sect. 3.4.1. In contrast, in (3.119) the electron factor has the
wrong sign to produce a distribution peaked above the minimum.

3.5.2.2 Thermodynamic Properties from the Helmholtz Free Energy

We can now write expressions for the thermodynamic parameters of interest,
working with (3.97) through (3.101). We have the pressure,

p D nikBT � 3e2nihZ2i
10Ro

� ni

ZnX
jD0

�
jNj

Na
V
@Fe.j/

@V

�
; (3.120)

the internal energy

.��/ D 3

2
nikBT � 9e2nihZ2i

10Ro
C niEHh Ei

EH
i (3.121)

Cni

ZnX
jD0

�
jNj

Na

�
Fe.j/ � T

@Fe.j/

@T

��
;

the heat capacity at constant volume

CV D 3

2
nikB � 9e2ni

10Ro

�
@hZ2i
@T

�
�

C niEH

�
@

@T
h Ei

EH
i
�
�

(3.122)

Cni

ZnX
jD0

"
jNj

Na

�
T
@2Fe.j/

@T2

�
�

#
;

and so on, where for any function D

hDi D 1

Na

ZnX
jD0



NjD

�
: (3.123)
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Here to be consistent with usage elsewhere in the text we write Na=V D ni, noting
that here this is the total density of particles having a nucleus, including neutral
atoms.

We have chosen in the above to write the sums in terms of Fe.j/, and not yet
to evaluate Fe, for the following reason. As the ionization increases, the electron
density in the ion sphere increases. As a result, an ion sphere can transition from the
classical limit to the degenerate limit in consequence of becoming more ionized.
An accurate EOS model would evaluate Fe.j/ using the methods discussed in
Sect. 3.1.3. To obtain the approximate numerical results given below, we apply
a sharp transition from Fec to Fed as the Fermi temperature rises above T with
increasing density. For the limiting cases is worth noting that

@Fed.j/

@T
D 0 (3.124)

and that
�

Fec.j/ � T
@Fec.j/

@T

�
D 3

2
kBT; (3.125)

which gives the intuitive result for the internal energy of the electrons. One also
finds

T
@2Fec.j/

@T2
D 3

2
kB: (3.126)

One can evaluate the above quantities numerically. For (hydrogenic) carbon,
Figs. 3.19 and 3.20 show plots for the present model like those shown in Figs. 3.15
and 3.16 for the simpler model above. The ideal-gas pressure and internal energy
are based on the calculated ionization. The density scale is shifted here, to show
more of the behavior at higher densities where degeneracy may matter. In the Saha
regime, at relatively low density and high temperature, the two sets of figures are
similar, showing a moderate pressure decrease that is due to Coulomb effects, and an
internal energy that decreases from near twice the ideal gas value (because of energy
in ionization) as temperature increases. There also remains a substantial region of
reduced 	 , although the values are larger than they were in the simpler model. The
figures show more structure, some of which reflects the explicit calculation of the
ionization. One sees this effect most strongly as temperature increases at the lowest
density. The curve in all these figures showing the boundary for electron degeneracy
is drawn on the assumption that Z D 0:63

p
TeV , which ignores the decrease in

ionization as the electrons become degenerate, so the actual transition to degenerate
behavior occurs at a few times higher density, as the contours in the figures suggest.

The degenerate regime shows additional effects reflecting the additional physics
included in the present model. Both pressure and internal energy increase strongly
above ideal-gas values at low temperature and high density. This reflects the Fermi
pressure and Fermi energy of the electrons freed by continuum lowering. At higher
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Fig. 3.19 (a) The pressure for carbon is shown, normalized to the ideal-gas pressure. The contours
increase from the lower right, as labeled. (b) The internal energy density for carbon is shown,
normalized to the ideal-gas value. The contours are labeled. The abrupt changes at some boundaries
reflect either the threshold for pressure ionization or the finite grid of the calculation. The dashed,
gray, diagonal lines show the location where kBTe D �F , evaluated using Z D 0:63

p
TeV . The solid

diagonal lines, at about three times higher density, show the approximate location where Fermi
degeneracy becomes important in this calculation, where the internal energy begins to increase
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Fig. 3.20 The value of 	 inferred from the data shown in Fig. 3.15 for carbon is shown. The
contours are labeled. The dashed, gray, diagonal line shows the location where kBTe D �F ,
evaluated using Z D 0:63

p
TeV . The solid diagonal line, at about three times higher density,

shows the approximate location where Fermi degeneracy becomes important in this calculation,
where the internal energy begins to increase
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temperatures, there is a modest reduction of pressure and internal energy by a
combination of degeneracy and Coulomb effects. The Coulomb aspect was already
present in the Saha model.

3.6 Generalized Polytropic Indices

Both ionizing and radiating plasmas, unfortunately, have pressures and internal
energies that change in complex ways until after the plasma is fully ionized or
completely radiation dominated. As a result, the assumption of constant polytropic
index is a poor one for such systems. In this case, the question is whether there is
any fairly simple way to treat the behavior of the system that might still allow simple
models to be developed. Fortunately, one is able to do so, and several approaches
are worked out in the literature. The best choice depends on the application. Here
we identify three generalized polytropic indices for specific contexts of interest.

The derivation of shock behavior in Chap. 4 depended on the explicit expression
�� D p=.	 � 1/. Accordingly, we define 	 as the shock index via this relation. This
is what we used in Sects. 3.5.1 and 3.5.2 to plot 	 based on our EOS models. This
index gives correct results for the change in properties across a shock front. For
sound-wave applications, the derivation in Chap. 2 makes it clear that the relevant
index (under isentropic conditions) is

	s D
�
@lnp

@ln�

�
s

: (3.127)

However, our EOS does let us take this derivative directly so there will be some work
to do to figure out how to evaluate this. For heat-transport applications, we need to
find a thermodynamically correct generalization of (2.31)), which will define a heat-
transport index, 	h. For an energy density flux �r � H, we will find an equation of
the form of (2.31),

Dp

Dt
� c2s

D�

Dt
D �.	h � 1/r � H: (3.128)

We seek to know how this equation relates to our typical, known EOS equations. To
apply the thermodynamic analysis, note that r �H D �dq=dt, where an increment of
specific heat input is dq. If 	s as defined by (3.127) is constant, then 	 D 	s D 	h.

Finding useful expressions for these quantities, and in particular a useful equation
for heat transport, takes one into the realm of thermodynamic functions. It is easy to
get lost in the forest where one seemingly can take the partial derivative of anything
with respect to everything. Our job here is not to visit all the trees in this forest,
but rather to develop specific equations that we will use later. Remarkably, aside
from some patience, all the fundamental information we need to do this is a pair of
equations from the first and second laws of thermodynamics,
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d� � p

�2
d� D dq D Tds; (3.129)

where d�, dq, and ds are the specific internal energy, heat input, and entropy,
respectively, and two mathematical relations, specifically

�
@a

@b

�
c

D 1

��
@b

@a

�
c

; (3.130)

and
�
@a

@b

�
c

�
@b

@c

�
a

�
@c

@a

�
b

D �1: (3.131)

As is usual in thermodynamic calculations, at any given moment we express
the thermodynamic functions in terms of two independent variables chosen from
the three quantities �; p; and T: We proceed at first by expressing � as �.p; �/; so
from (3.129) we find

Tds D dq D
�
@�

@p

�
�

dp C
"�

@�

@�

�
p

� p

�2

#
d�: (3.132)

We also have, as ds is an exact differential,

dq D Tds D T

�
@s

@p

�
�

dp C T

�
@s

@�

�
p

d�: (3.133)

The specific heats involve the use of T and � or T and p as the thermodynamic
variables. Equation (3.132) implies that the specific heat at constant volume is

cV D
�

dq

dT

�
�

D
�
@�

@T

�
�

; (3.134)

while the specific heat at constant pressure is found by writing � as �.T; �/ in (3.129)
and then differentiating, to obtain

cp D
�

dq

dT

�
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D
�
@�

@T

�
�

C
��
@�

@�

�
T

� p

�2

��
@�

@T

�
p

: (3.135)

Note that we can evaluate the coefficients in (3.132), (3.134), and (3.135)
from any EOS like those above that relates p; �; �; and T . Multiplying (3.135) by
.@T=@�/p, and using the definition of cV , one finds
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while from the chain rule
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: (3.137)

This then gives for the heat input per (3.132)

dq D cV

�
@T

@p

�
�

dp C cp

�
@T

@�

�
p

d� D Tds: (3.138)

To simplify this further note that
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; (3.139)

obtained by substituting from (3.136) and (3.137) into (3.132) and taking .@p=@�/s.
The isentropic sound speed and thus 	s can be found from (3.139) and (3.135), by
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: (3.140)

This expression for the sound speed is readily evaluated from expressions for p
and �.

We pursue the heat-transport coefficient as follows. We substitute for cp

in (3.138), which becomes

dq D cV
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or

dq D cV
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�
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�
dp �

�
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�
s

d�

�
; (3.142)

using (3.131). This is the form we were seeking. The quantity in square brackets has
the form of (2.31), as desired. It also shows that the sound speed in (3.128) is the
isentropic sound speed. One can convert to an expression for the total heat input by
multiplying (3.142) by �. Thus one finds

.	h � 1/�1 D �cV

�
@T

@p

�
�

: (3.143)
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Fig. 3.21 Values of the shock 	 (solid black), sound-speed 	s (dashed), and heat flux 	h (gray),
for carbon at 1 g cm�3

So long as .@p=@�/T D p=� and .@�=@�/T D 0, one has 	s D 	h. This is the case for
simple ideal gasses but not in the regimes where more complex effects are important
or in the radiating plasmas considered in Chap. 7.

We can then apply our simplest model—(3.140) and (3.143)—to find 	s and 	h.
This produces rather messy expressions, but they are readily evaluated by computer.
Figure 3.21 show the results for carbon at 1 g cm�3 , which has an ionizing regime
followed by a fully ionizing regime. The shock index, 	 , increases slowly in the
ionizing regime and then more quickly once the carbon is fully ionized. It will
eventually approach 5/3. The heat-flow index, 	h, is close to 	 in the ionizing regime
but jumps abruptly to 5/3 when the carbon becomes fully ionized. This is sensible—
beyond that point energy is not being absorbed by further ionization. These trends
in 	 and 	h remain present at lower density. The sound-speed index, 	s, starts much
higher than 	 and decreases to approach it with increasing temperature. Then upon
full ionization the index jumps abruptly to near 5/3 (and thus the sound speed jumps
too). At lower density, 	s remains close to 	 in the ionizing regime but still jumps
upon full ionization. At higher density the behavior becomes more complex, but
the model becomes poor at low temperature when the electrons in fact become
degenerate. The major conclusion here is that the sound speed and heat-flow rate can
vary substantially across high-energy-density systems, especially as they transition
to a fully ionized state.

3.7 The Degenerate, Strongly Coupled Regime

At the time of the writing of the first edition of this book, the community believed
that material physics would become simple as density increased. The electrons
would be strongly degenerate and tend toward constant density, and the ions would
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Fig. 3.22 Charge clustering
is a key feature of
Fermi-degenerate, strongly
coupled matter
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be happily isolated in their ion spheres, not unlike the monads of Leibniz. The
model described above, based on the Helmholtz Free Energy, would work well.
But we have learned since that this model also fails at high enough density. We
came to know this because experiments began to observe behavior showing that
late-twentieth-century models were qualitatively incorrect. They observed changes
in material structure that were entirely unexpected, and that the transition to a
liquid state occurred at very different temperatures than had been predicted. We
came to understand what is happening qualitatively by means of advanced computer
simulations that only become possible during this same period.

Figure 3.22 illustrates the fundamental reason why unanticipated behavior arose.
When one fills some volume with spheres, there remain gaps between them. The
models above assumed that the electron-density at and beyond the ion-sphere
boundaries was constant, but in fact what happens is that the electrons cluster in
the gaps. Once the ions are incompletely shielded, they are affected by other ions as
well as by the clusters of electronic charge. This enables the formation of chemical
bonds, not unlike ionic bonds. The difference relative to ordinary chemistry is that
these bonds have transition energies in the keV range as opposed to the eV range.
These interactions are now sometimes described as “kilovolt chemistry.”

One might describe Fermi-degenerate, strongly coupled matter at high energy
density as a “quasi-solid”, because it can have various crystal structures and
can transition between them, despite the presence of additional freed electrons.
Table 3.1 shows some of the standard structural designations. Modeling these
structures is challenging, as one must account for the quantum mechanical effects
including the interactions of several (or more) ions. The theoretical calculations
employ two methods. One of these is Density Functional Theory, a quantum-
mechanical approach that represents the electron density using functions. The other
is Molecular Dynamics, which models the interactions of multiple molecules (or
ions) from first principles, using potentials to describe the forces between them. In
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Table 3.1 Table of geometric material structures

Acronym Description Acronym Description

sc Simple cubic bcc Body-centered cubic

sh Simple hexagonal fcc Face-centered cubic

hcp Hexagonal close packed BC8 Tetragonally bonded structure
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Fig. 3.23 Phase diagram of Fermi-degenerate, strongly coupled carbon, from calculations using
Density Functional Theory

the regime of interest, the potentials must be quantum-mechanical and may come
from calculations using Density Functional Theory. Only in the twenty-first century
have computers become capable enough to enable these calculations for high-
energy-density conditions. The interested reader will have to seek further discussion
of these methods elsewhere, as this is a topic rather afar from the primary focus of
the present book. Simple models that capture the essential physics have not yet
emerged, and by analogy with chemistry may not.

Figure 3.23 is based on the results of calculations by Martinez-Canales et al.
(2012), using Density Functional Theory, for carbon. One sees that the structure,
at low temperature, is predicted to change three times between 10 and 200 Mbar
pressure. Experiments with carbon, at this writing, have reached pressures of
50 Mbar (Smith et al. 2014). There remains much to be learned about the behavior
of quasi-solids at high energy density.
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3.8 The EOS Landscape

At this point it may be useful to summarize what we have learned about the equation
of state in high-energy-density systems. Figure 3.24 provides this summary. The
specific lines in the figure are drawn for an ionizing plasma, assuming A D 2Zn, but
the relative orientation of the various elements in this log–log space is not sensitive
to these assumptions. At the upper left is the ideal-plasma regime. Examples are
hot enough coronal plasmas, as for example in the laser-heated zone in front of
a dense target, or the plasma generated in Z pinches during their implosion (see
Chap. 9). At the right pressure ionization becomes important, as occurs when solids
are sufficiently compressed. Throughout the lower right region the electrons are
Fermi degenerate, which determines the pressure needed to compress solid-density
matter including the fuel for inertial fusion.

In between these limits is the realm of many experiments in the early twenty-
first century. Here the matter is partly ionized but probably is not fully stripped, the
ions live in the privacy of their own ion spheres but represent much of the internal
energy in the system, and the electrons are a Fermi gas whose pressure is reduced
by Coulomb interactions. The internal energy is roughly twice that of an ideal gas,
because of the energy invested in ionization. As a result, 	 is in the vicinity of 4/3.
Across much of this regime, a model based on the Saha equation should work well.
But the Saha model fails at high density and temperature because of the combined
effects of degeneracy and continuum lowering, as we have seen.

This completes our discussion of specific models of equations of state. In the
following chapters, we will typically take 	 D 4/3 or 5/3 for our examples. We will
not need to distinguish among the different polytropic indices until we work with
radiation hydrodynamics in Chap. 7. But it should be clear from the above that 	
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Fig. 3.24 The landscape of EOS for high-energy-density plasmas
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can be substantially less than 5/3, that these dense plasmas are not ideal-gases, and
that it is not so easy to know just what the equation of state is. The next section
discusses tabular equations of state.

3.9 Tabular Equations of State

The chapter thus far has made it evident that equations of state in the dense-
plasma regime are complicated. The appeal of using a polytropic index, at the
expense of detailed accuracy, is quite clear. Indeed, this will be our approach
throughout much of the text. But if one is to try to simulate these systems with
computers, then one would hope to be more accurate. It is evidently a great
challenge to accurately simulate the behavior of materials at high energy density.
One has Coulomb energy corrections, degenerate electrons, pressure ionization, and
ionization potential depression, among other effects. To be fully accurate one would
need to include several effects that we mentioned but did not incorporate, such as the
impact of bound electrons. One would also need to handle the transitions between
regimes more accurately. But the actual problem is worse than this, because high-
energy-density matter nearly always evolves out of and is adjacent to matter that
is not at high energy density, but rather is in a solid or liquid state. So realistic
computations must also be able to account for these states of matter and for their
transition to hotter and perhaps denser conditions. A particularly difficult example
at this writing is that of the behavior of the wires in Z-pinch plasmas (see Chap. 9).
These begin as solids, ablate and (perhaps) explode, creating the material that the Z
pinch accelerates inward. Modeling these dynamics is a severe challenge.

One approach to addressing these issues for simulations is to use a tabular
EOS. The idea behind a tabular EOS is that one can work with experimental data,
molecular dynamics simulations, and the best possible models. From them one can
construct a table giving two of the thermodynamic variables .�; p; �, and T/ as a
function of the other two. As is true of all the models we have discussed, this is
necessarily done in equilibrium. Then a computer code can interpolate from the
tables to find the properties it needs with adequate accuracy.

One challenging aspect of constructing such a table is the need for thermo-
dynamic consistency. The table will show how some thermodynamic quantities
vary when others are held constant. These variations must be thermodynamically
consistent. As one does work on the material or adds heat to it, the changes of state
that result must be consistent with the first law of thermodynamics. If this were not
the case, then the computer code using the table would mysteriously create or absorb
energy in an unphysical way. Achieving thermodynamic consistency in practice,
while merging models that cover adjacent regimes, can be very difficult. One can
check for thermodynamic consistency by applying the first law of thermodynamics
to the table. One way to do this is to evaluate the local deviation from the first law of
thermodynamics. Landau and Lifshitz (1987) show in Vol. 5 that one can write the
first law of thermodynamics as d.��/=dV C p � T.dp=dT/ D 0. One can evaluate
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Fig. 3.25 For polyethylene (C1H1) on the left and xenon (A D 131;Z D 54) on the right, these
figures show the inferred 	 from the SESAME table. The lower curve is at 0.1 g/cm3 density, while
the upper curve is at solid density. Credit: Carolyn Kuranz

this quantity throughout a candidate EOS table and display the results as curves or
a contour plot.

The most widely used EOS tables are the SESAME tables, available from the
Los Alamos National Laboratories. These tabulate specific pressure (pressure per
unit density) and specific energy as functions of density and temperature, over
several orders of magnitude in density and in temperature. Figure 3.25 shows two
examples based on these tables. In each case, we have used the equation of state
to plot 	 . The range of temperatures in the table is shown. The densities shown are
solid density (dashed) and 0.1 g/cm3, which are relevant to laboratory work in high-
energy-density physics. One sees first that the behavior at low temperatures is quite
different. This reflects the presumed development of a gaseous state (and perhaps
even clusters) at low densities, with many degrees of freedom, which forces 	 close
to 1. In contrast, the solid becomes more ordered as temperature decreases. From
traditional thermodynamics, one would expect 	 to approach 3 at low temperatures
if the solid forms a lattice with tightly bound planes. In the tables, 	 sometimes
exceeds 3 at low temperatures.

At the highest temperatures, the materials seem to approach 	 D 5=3, which
would correspond to a fully stripped, ideal gas. We comment more on this below.
At intermediate temperatures, between a few eV and 100 eV for polyethylene and a
few eV and 1000 eV for xenon, 	 is reduced. This is as expected from the previous
discussion in this chapter. Indeed, the result for xenon is not far above the value
we inferred for an ionizing, high-Z material. The value of 	 for polyethylene, on
the other hand, is not so far below 5/3. One might be skeptical as to whether this
decrease is in fact large enough.

These figures also provide one example of the limitations of these tables. If the
high-temperature states (above 1 keV) were truly in equilibrium, as is assumed, then
the presence of the radiation field would be driving 	 to 4/3. So these tables ignore
the radiation field. The problem is that they have to make some specific assumptions,
though in this case they do not assume true equilibrium. Real systems do vary
greatly with regard to the coupling of the radiation field and the matter. There is
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no way that one table can account for this. Any given computer code may or may
not handle it well.

There are other problems with the use of EOS tables in particular, and equilib-
rium models in general, in simulations of real systems. Real systems are almost
never in equilibrium. They are often in steady state, or nearly in steady state, but
not in equilibrium. A good example is a plasma that expands from a hot surface but
is not actively heated. The expanding plasma cools, and after a time its properties
slowly evolve. Even so, on the scale of tens of ns that often applies, the ions and
electrons may not recombine and the plasma certainly will not reach its equilibrium
state. The EOS table, on the other hand, presumes the plasma is instantaneously in
equilibrium. Thus, if it reaches a condensation temperature, the table will make it
condense, no matter how unrealistic this may be. This, and theoretical equilibrium
phase changes in general, can be a source of abrupt density changes in simulations
that are completely unreal. There are times when an ideal-gas model with fixed 	
provides a much more realistic approach to simulating a time-varying system. The
main point is that one must pay attention, think about what one sees, and not assume
that the code reveals truth.

In addition, you may have noticed that some of the equations above would
produce regimes where the pressure from a given model became negative. This
happens with the models used for the EOS tables as well. In some cases, this is
sensible. For example, the only realistic way to incorporate tension in a material, in
the context of a hydrodynamic model, is by adding negative terms to the pressure.
If the material is tightly enough bound and cold enough, it may be sensible in
this sense to treat the pressure as negative. However, the existence of negative
pressure regions in EOS tables can create serious problems when simulating real,
nonequilibrium systems. In the example of the previous paragraph, for example, the
plasma expanding from a surface may have a temperature and density that would
correspond to a condensed state with tension in equilibrium, yet in actual fact may
be more accurately treated as an ideal-gas. In some contexts, it is sensible to modify
the EOS tables to destroy the tension regimes and maintain positive pressure. When
the EOS table works well, it will do a better job of reproducing the dynamics than
any simpler model can. But it cannot be counted on to always work well. It is very
often sensible to compare simulations using EOS tables for various similar materials
and also using a fixed 	 to help determine which aspects of the observed dynamics
are due to the specifics of the EOS table.

Finally, tables do not typically exist for novel materials, such as low-density
foams. These materials are not microscopically uniform. They are unlikely to
behave like a uniform, low-density material. There is some discussion of foam
behavior in Zel’dovich and Razier (1966), but it applies only to foams that are
compressed very gently by comparison to the behavior of typical high-energy-
density systems. Indeed, in high-energy-density experiments to date with foams,
the uniform-density models fail to accurately predict phenomena such as shock-
wave propagation. Whether in the end new tables or some other approach proves
the best for working with them remains to be seen.



3.10 Equations of State in the Laboratory and in Astrophysics 109

3.10 Equations of State in the Laboratory and
in Astrophysics

A moment’s thought will show that equation of state (EOS) properties are quite
important in astrophysics. In gravitationally bound objects, such as planets, white-
dwarf stars, or neutron stars, the interior pressure is determined primarily by
gravity. However, to know the density, and hence the volume of the material in
any given pressure range one must know the equation of state. Direct astronomical
measurements can determine the mass, and sometimes the size, of such objects, and
may be able to learn about the surface composition from spectroscopy. But there is
usually neither direct nor indirect information relating to the interior. (An exception
is the Sun, for which seismology is possible and productive, producing data that
greatly constrain the EOS.)

Assuming that one knows the EOS, one can construct a model of a planet in
which the known mass of the planet is distributed in radius as gravitational pressure
and the EOS dictate, based on assumptions about what the composition of the planet
is. Uncertainties in the EOS make this more difficult. In the case of Jupiter, for
example, it is an interesting question whether an entire planet of its size and mass
might be composed of hydrogen or whether there must be an ice and rock core.
This certainly has implications for theories of planet formation. With sufficient
knowledge of the hydrogen EOS, one will be able to answer this question. At the
turn of the twenty-first century, such knowledge was insufficient.

In addition, the EOS affects one’s ability to understand magnetic fields, as
we discussed briefly with reference to Fig. 1.4. Planetary magnetic fields are
produced by interior currents, known as dynamos. The theory of planetary dynamos
unfortunately requires complex three-dimensional calculations. Nonetheless, the
possibilities for magnetic field generation are constrained by the locations where
the planetary interior is conducting, and this is constrained by the EOS. Here again
Jupiter provides an interesting way to frame the puzzle. Jupiter has an extremely
strong magnetic field, producing very-large-scale effects within the solar system. At
the surface of Jupiter, hydrogen is an insulator. The nature of the hydrogen EOS will
determine how close to the surface of Jupiter currents can flow and what volume of
the planet can participate in the dynamo. This will constrain the possibilities for the
production of Jupiter’s magnetic field.

3.10.1 The Astrophysical Context for EOS

To illustrate the importance of EOS, consider Jupiter in more detail. Figure 1.4
showed a schematic of its interior based on one specific model (for more discussion,
see Saumon and Guillot 2004). Jupiter has an outer envelope of dielectric molecular
H2, believed to transition to metallic atomic hydrogen at a radius of 0.75RJ and
pressure of p � 2Mbar, and ending in an ice–rock core, in this model, when the
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Fig. 3.26
Temperature–pressure
profiles in Jupiter and brown
dwarf GI 229B, for various
ages, from models in
Hubbard et al. (1997)
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pressure reaches �40 Mbar. There is uncertainty about whether such an ice–rock
core actually is present, and if so how massive it is. In part this reflects uncertainty
in the EOS of H. The mass of Jupiter is MJ � 10�3MS, (where MS is the mass of the
sun) and its intrinsic radius is RJ D 7:2 � 104 km. Some model calculations for the
interior of Jupiter are shown as temperature–pressure (T–p) profiles as a function of
age in Fig. 3.26. Profiles for the brown dwarf Gl229B are also shown in this figure.
Under these conditions, molecular hydrogen (H2) dissociates to atomic hydrogen
and ionizes deeper in the mantle, changing from a dielectric to a conductor. The
pressure and temperature in the mantle of Jupiter near the surface are in the range of
1–3 Mbar at temperatures of a fraction of an eV. Deeper in the interior, the pressure
and temperature increase, rising to �80Mbar at a couple of eV at the center. (The
corresponding numbers for the brown dwarf Gl 229 are similar in the mantle, but it
has four orders of magnitude higher pressures in the core, pcore � 105 Mbar.)

One of the key questions about the interior of Jupiter is whether there is a sharp
boundary between the molecular hydrogen mantle and the monatomic hydrogen
core, caused by a first-order plasma phase transition. This has significance for the
exact internal structure, as the discontinuities caused by such a phase transition tend
to inhibit convective heat transport, modifying the thermal profile of the planetary
interior. This also affects the degree and rate of gravitational energy-release due
to sedimentation of He and heavier elements. Jupiter and Saturn’s atmospheres
are observed to contain less helium than is believed to have been present at their
formation. This is thought to be due to a H–He phase separation. The presence of a
helium-poor outer region, and helium-rich inner region is important, both because it
has implications for the amount of heavier elements contained deeper in the interior
of the planet, and also because of the gravitational energy released as heat during
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Fig. 3.27 Various theoretical
models of the shock Hugoniot
of Al, as described in the text.
Note the considerable
uncertainty, which only
experiments can resolve.
Adapted from Avrorin et al.
(1987)

Aluminum EOS 

3 4 5
101

102

103

Compression, ρ/ρo

P
re

ss
u

re
 (

M
b

ar
) 

SCES

SCF
HFS

ACTEX

INFERNO

SCES' 

TFQC

helium sedimentation. Helium sedimentation is required to explain Saturn’s intrinsic
heat flux, and may also be significant in Jupiter. The important point in the present
context is that all of the detailed issues of hydrogen behavior are quite uncertain at
present. The nature of the transition from molecular to monatomic hydrogen, the
existence of a metallic phase, the possibility of a H–He phase separation, and other
factors are not known.

The EOS of elements heavier than H and He, relevant to Earth-like planets, is
even more complex at ultrahigh pressures. To illustrate this, we show in Fig. 3.27
a plot of a number of different theoretical models for the behavior of Al at very-
high pressures and compressions, p > 10Mbar, �=�o > 3. These models calculate
the shock Hugoniot, which is the locus of the points in pressure and density that
can be reached from a single initial condition by means of shock waves of varying
strength. The various models (see Avrorin et al. 1987; Hicks et al. 2009) exhibit
significant differences. The simplest and most widely used of the models is the
statistical Thomas–Fermi model with quantum corrections (TFQC), shown by the
solid curve. This model does not include atomic shell structure, but rather treats
the electron states as a continuum. The self-consistent field (SCF), Hartree–Fock–
Slater (HFS), and INFERNO models treat the electron shells quantum mechanically,
but differ in their handling of close-packed levels corresponding to energy bands.
The semiclassical equation of state (SCES) model treats both the discrete electron
shells and the energy bands semiclassically. The ACTEX model is an ionization
equilibrium plasma model which uses effective electron–ion potentials fitted to
experimental spectroscopic data. These models typically include the nuclear com-
ponent using the ideal-gas approximation. An exception is a Monte Carlo treatment
of the thermal motion of the nuclei implemented in one of the versions of the
semiclassical equation of state model (SCES).
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The oscillations in the theoretical pressure versus compression curves shown
in Fig. 3.27 result from the pressure ionization of the K- and L-shell electrons of
Al. At pressures of 100–500 Mbar, ionization of the L-shell electrons occurs as the
high compression forces neighboring atoms sufficiently close together to disrupt
the n D 2 electron orbital. When the shock places the material in a state where
these electrons are becoming free, more of the energy flowing through the shock
must go into internal energy. This leads to a larger density increase, exactly as
we discuss in Sect. 4.1. Hence, at the onset of pressure ionization of a new shell
in a model, the postshock density increases more rapidly with postshock pressure,
behavior known as a “softer” EOS. This pressure-ionization effect on the EOS is
qualitatively similar to that due to molecular dissociation of N2 and D2, which has
been experimentally observed at lower pressures (see Nellis 2006). Once ionization
from the shell is complete, the effect is a “hardening” of the EOS, as the fraction of
the energy flowing through the shock that is converted to internal energy decreases.
This is why, above �1 Gbar, some of the p � � curves turn back toward lower
compression. A similar softening–hardening oscillation is predicted at pressures of
3–5 Gbar due to ionization of the K-shell electrons, though the magnitude of the
effect is smaller due to the lower number of K electrons. How real such oscillations
in the Hugoniot are is unclear at this writing. If the actual process of liberating new
electrons develops more gradually than it does in the model, this may smooth out
the response and avoid the oscillation.

3.10.2 Connecting EOS from the Laboratory to Astrophysics

The EOS describes the equilibrium properties of any large aggregation of atoms
of a given type. Even microscopic quantities of matter typically include enormous
numbers of atoms. As a result, measurements using aggregations of matter that are
very small on a human scale can provide results which apply directly to aggregations
of matter on a planetary or stellar scale. In this sense, it is straightforward to make
a laboratory measurement that applies directly to astrophysics.

Unfortunately, however, laboratory measurements can only achieve a limited
range of pressures and densities by comparison with those existing in astrophysical
systems. It would be desirable to be able to scale the equation of state in pressure
and density, so that laboratory measurements could be applied to a wider range of
astrophysical conditions. This is possible but unnecessary in the case of simple
equations of state, such as an ideal-gas or a radiation-dominated system. In more-
complex cases, however, the dynamics of the material is specific to the material
conditions. The chemical structure of a material is not easily scaled to other
conditions, and processes such as dissociation and ionization occur only at specific
energies. Thus, laboratory measurements can only address astrophysical issues in
EOS at pressures they can actually achieve.

Given the technologies of the early twenty-first century, it seems likely that the
pressures employed for EOS studies during this period, using planar targets, will be
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in the range of 1 to less than 100 Mbar. It may prove feasible, using implosions, to
access pressures of a Gbar or even more. These are suitable for addressing issues
in planetary equations of state. One can expect this to be the primary focus of such
studies.

Homework Problems

3.1 Inertial fusion designs typically involve the compression of DT fuel to about
1000 times the liquid density of 0.25 g cm�3. Assuming that this compression is
isentropic and that the fuel remains at absolute zero, determine the energy per gram
required to compress this fuel. Compare this to the energy per gram required to
isentropically compress the fuel to this same density, assuming the fuel is an ideal
gas whose final temperature is to be the ignition temperature of 5 keV.

3.2 Generalize the derivation of the Debye length in Sect. 3.2 to a plasma with an
arbitrary number of ion species, each of which may have a distinct temperature.

3.3 Examine the behavior of the integrals for Fermions. Argue conceptually that
the contribution of the denominator in (3.29) at large �=.kBTe/ is a step function.
Evaluate this integral numerically to determine how rapidly it becomes a step
function as �=.kBTe/ increases.

3.4 Examine the limiting behavior of the internal energy of Fermi degenerate
electrons. Show, in the limit as Te ! 0, that ne�e D .3=5/ne�F.

3.5 What is the relation of heat capacity and entropy? Derive 3.38 and 3.40 and
discuss their differences.

3.6 Make plots comparing Zbal from (3.49) with the estimate 20
p

Te as a function
of Te, for ion densities of 1019, 1021, and 1023 cm�3. Discuss the results.

3.7 Carry out the evaluation of the average charge, Z, in (3.53) and compare the
result to Zbal, for Te D 1 keV, Zn D 30, and ni D 1021 cm�3.

3.8 Plot the ratio of �E to the ionization energy versus ion density for the various
models described in Sect. 3.4.4. Discuss the results.

3.9 The value of Ri used in Sect. 3.4.6 ignores the internal energy in excited states
(as well as the energy lost by radiation during ionization, which would properly have
to be treated by more general equations). Again assuming hydrogenic ions, estimate
what fraction of the internal energy is present in excited states, and how this varies
with Z.

3.10 Complete the derivation of the polytropic index for heat conduction.
Derive (3.143) from relations (3.130)–(3.134).
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Chapter 4
Shocks and Rarefactions

Abstract This chapter discusses the fundamental elements of one-dimensional,
compressible fluid dynamics. These are essential to the behavior of high-energy-
density matter. It begins by developing the theory of shock waves in fluid media,
developing results for shock waves of arbitrary strength, entropy generation by
shock waves, oblique shock waves, shock waves at interfaces, and the use of flyer
plates to drive shock waves for measurements of equations of state. The chapter
then introduces self-similar dynamics, which turns out to describe the expansions
of matter known as rarefactions, and also to describe the blast waves produced by
a brief deposition of energy. It then discusses the interaction of shock waves and
rarefactions with each other and with interfaces where the density changes.

The word “shock” is used very widely in common experience. One is shocked by
an unexpected event; a wounded victim goes into shock; and one shocks a material
by suddenly cooling it. A “shock wave” is a sudden transition in the properties of
a fluid medium, involving a difference in flow velocity across a narrow (ideally,
abrupt) transition. In high-energy-density physics, nearly any experiment involves
at least one shock wave. Such shock waves may be produced by applying pressure
to a surface or by creating a collision between two materials. In astrophysics,
nearly every sudden event produces a shock wave. Yet in common experience one
encounters very few shock waves. We hear thunder after lightning, which is a long-
term consequence of the shock wave produced by the lightning channel, but as we
shall see below one would hope never to directly experience this shock wave. Most
of us hear sonic booms infrequently, but they are the only shock wave of human
origin we typically encounter.

We have more direct experience with rarefactions or “rarefaction waves,” in
which a fluid begins to move, expanding and becoming less dense, with the edge
of the moving region propagating into an initial body of fluid. Household drafts
may be due to rarefactions, which can occur in a house, for example, when a gust
of wind drops the pressure at an open door, by the Bernoulli effect. Rarefactions
also have real practical uses, notably in refrigeration where they are used to produce
expansion cooling. It is also true that nearly every high-energy-density experiment
involves at least one rarefaction wave.
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Moreover, most high-energy-density experiments involve at least one interface,
where the density (and perhaps the equation of state) changes. Whenever a shock
wave or a rarefaction wave reaches an interface, there are transmitted and reflected
waves in response. In each of these two directions, these waves might be either shock
waves or rarefaction waves, so that there are four possible responses. Which of these
four occurs depends on the details. One can find systematic discussions of this in
books on shock physics. As we proceed to consider various cases, we will encounter
specific examples. It should be clear that shock waves, rarefaction waves, and their
interactions merit a serious examination, which we undertake in this chapter.

4.1 Shock Waves

Figure 4.1 shows an image of the supernova remnant known as Tycho. The remnant
shown in the image has sharp edges, where spectral measurements show that
the temperature reaches 20 million degrees. This is one of many examples of
an astrophysical shock. The magnetic field in such a shock is not dynamically
important, except that it localizes the particles as discussed in Chap. 10. For this
reason, a laboratory experiment can hope to produce dynamics similar to those of
this shock. (There are caveats—it is possible that the dynamics of the shock in the
remnant causes the magnetic field to grow, and it is also possible that cosmic ray
acceleration at the shock has an effect on the shock itself. Both are active areas
of research at this writing.) In contrast, the weaker shock waves produced by the
sun are very much affected by the magnetic field. We discuss some elements of
magnetized shocks in Chap. 10, leaving many of the details for books on space
plasma physics.

Even the simpler, unmagnetized shock waves are at first glance mysterious. Why
would a fluid decide to abruptly change its properties? When we make music louder,
the energy flux of the sound waves carrying energy to our ears increases. Why does

Fig. 4.1 An image of the
Tycho supernova remnant.
Credit: National Aeronautics
and Space Administration,
Chadra X-ray Center,
Smithsonian Center for
Astrophysics
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the energy flux of sound waves not just increase as necessary to transport as much
energy as is needed? The fundamental answer is that sound waves move at the sound
speed, and that the largest pressure modulation they can transport is of order the
initial pressure of the fluid. This pressure is of order �c2s ; so the largest energy flux
the sound waves could imaginably carry is of order �c3s : But one can readily force
a fluid to carry more energy than this, either by rapidly moving its boundary or by
releasing energy within it. For example, the pressure in a singly ionized plasma at
a temperature of 1 eV and a density of 1 g/cm3 is of order a million atmospheres
(1 Mbar). In high-energy-density experiments, much larger pressures are easy to
obtain. The plasma cannot respond to such pressures by radiating sound waves.
Instead, a shock wave forms. We discuss its basic properties in this section.

4.1.1 Jump Conditions

The shock wave does three things. First, it carries energy forward at the shock
velocity, which is supersonic. Second, it heats and accelerates the medium as it
passes, so that the fluid behind the shock carries kinetic energy and internal energy
(their energy densities are equal in strong shocks, in the frame of reference in which
the upstream fluid is at rest, known as the laboratory frame). Third, the shock wave
heats the fluid behind the shock so that the motion of the shock wave relative to
the heated fluid is subsonic. As a result, changes in the source of the energy are
communicated to the shock front at the (new, higher) sound speed. For the original
fluid, though, the arrival of the disturbance comes as a shock. Figure 4.2 shows a
schematic diagram of a shock wave, in the frame of reference in which the shock
is at rest, known as the shock frame. We will work consistently from a viewpoint in
which the shock moves from left to right so that in the shock frame the fluid flows
from right to left.

Establishing a discontinuity does not in any way relieve the system from the
conservation of mass, momentum, and energy, however. To explore this, we begin
with the Euler equations in conservative form (with a scalar pressure and explicit
internal energy terms):

Fig. 4.2 Diagram of an
isolated, steady shock, in a
reference frame that moves
with the shock. Here u1 and
u2 are < 0 and we define the
shock velocity as us D �u1
in this reference frame
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Now consider a planar disturbance and integrate any one of these equations
across a small region that may include an abrupt change in parameters. In the
notation of Sect. 2.1 for a general equation in conservative form, we will have
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0/dx0 D �Q.x2/ � �Q.x1/: (4.4)

The integral on the left approaches zero as x2 � x1 becomes infinitesimal, but the
fluxes �Q need not. Instead, in the limit that x2 � x1 ! 0, one has �Q.x2/ D �Q.x1/.
This analysis evidently applies to a fixed location within one’s coordinate system,
and this is part of the importance of the shock frame, in which the shock location
remains fixed at some x (typically x D 0). Applying (4.4) to (4.1)–(4.3), one finds
the jump conditions for a shock wave, which are

�1u1 D �2u2; (4.5)
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in the event that the motion is one-dimensional. More generally, for shock jump
conditions we need to integrate in the direction of propagation of the shock wave.
The two vector quantities, u and rp, may or may not have components transverse
to this direction. If all we care about is a single shock wave interacting with a
planar interface in a planar system, then we go into the shock frame by choosing
a reference frame that is moving in the transverse direction, so as to eliminate the
transverse components of u: This, however, is not always feasible in practice. We
discuss shocks with finite transverse fluid velocity, known as oblique shocks, in
Sect. 4.1.5.
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In a fluid described by the Euler equations, the shock jump must be infinitesimal
in width. When one introduces additional phenomena that are always present at
some level in actual fluids, such as viscosity, then the shock transition becomes
gradual. However, so long as viscosity or other effects are only important near
the shock front, then in steady state the jump conditions apply equally well to
locations that are far enough from the shock front. Shocks that involve radiation
are discussed in Chap. 7. Equations (4.5)–(4.7) can be manipulated to find relations
that are convenient in a given context. We consider some of these relations in the
next section.

Before proceeding, though, note that there is a seemingly paradoxical aspect to
our description of shocks so far. On the one hand, we described a shock wave as
something that heats and compresses the medium that flows into it. On the other
hand, (4.5)–(4.7) are symmetric in the exchange of the indices. From their point of
view the matter flowing into a discontinuity could be heated and compressed, or
alternatively could be cooled and made less dense (rarefied). An abrupt transition
in which matter was cooled and rarefied would be described as a rarefaction shock.
From the point of view of the conservation equations, a rarefaction shock could
exist. However, it is forbidden by the Second Law of Thermodynamics, as we will
see in Sect. 4.1.4.

4.1.2 The Shock Hugoniot and Equations of State

A shock wave can place a material in a new state, whose properties depend, for
example, on the amount of internal energy the material requires at a given pressure
and density. By varying the initial density, pressure, and velocity of the material,
one can access a continuous sequence of final states. One of the primary methods
used to determine the equation of state involves measurements using shock waves.
These measurements determine points along the Rankine–Hugoniot relation, which
is traditionally identified as the function p.p1, 1/ �1, 1/ �2). The inverse of the
density is the specific volume, often written as V D 1=�. The use of the postshock
(downstream) density is an arbitrary choice. One can use any of the postshock
parameters, and indeed one sees Rankine–Hugoniot curves plotted in various ways.
(Figures 3.27 and 3.25 show examples.) Let us consider how measurements can
determine the Rankine–Hugoniot relation. This relation is also often called the
shock Hugoniot, even though Rankine’s work (in 1870) came 17 years before
Hugoniot’s (in 1887).

One often can manage to measure the shock velocity and the postshock fluid
velocity. The shock velocity can be determined, for example, by measuring when
the shock emerges from varying thicknesses of shocked material. This can often
be done using emission from the surface, which is strongly heated by the shock
wave. Measurements of the postshock fluid velocity use targets in which the shock
wave crosses an interface whose motion can be measured, for example, using
the Doppler shift of light reflected from it or measuring its shadow with X-ray
radiography.
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Fig. 4.3 A useful practical
application of (4.9). Here the
independent variable is the
postshock fluid velocity in the
lab frame, up, in km/s, the
ordinate is the pressure
difference across the shock in
Mbars, and the curve is for
�1u1 D 30 g cm�3 km s�1

Such measurements are typically done in the inertial frame of the laboratory
where the upstream fluid is at rest. In this case, the postshock fluid velocity, up, that
one measures is the difference between the incoming and outgoing velocities in the
shock frame, shown in Fig. 4.2. Thus up D u1 � u2 or u2 D u1 � up. Then from (4.5)
and (4.6) we can find

�2

�1
D 1C up

u1 � up
and (4.8)

p2 � p1 D �1u1 .u1 � u2/ D �1u1up: (4.9)

It is a very neat trick to determine the thermodynamic state of the fluid from
two measurements (of u1 and up), but this is the power of shock Hugoniot
measurements. However, determining up is often not easy. We discussed some
of the experimental approaches to shock Hugoniot measurements in Sect. 4.2.2.
Figure 4.3 illustrates (4.9), showing how measurements of u1 and up determine
p2 � p1. Researchers doing shock Hugoniot measurements with flyer plates often
work with this equation using graphs like that of Fig. 4.3, which allow one to think
directly in terms of the measured quantities.

4.1.3 Useful Shock Relations

The jump conditions are sometimes useful as they stand, but there are also useful
alternative solutions of these equations. There is an upstream fluid, within which
the distance from any fluid element to the shock decreases with time, and which we
will designate by the subscript 1. There is also a downstream fluid, within which the
distance from any fluid element to the shock increases with time, and which we will
designate by the subscript 2. The most useful equations relate specific properties
of the upstream fluid to those of the downstream fluid and the upstream Mach
number, Mu. This Mach number is defined as the ratio of the rate at which the
upstream material and the shock approach one another to the sound speed in the
upstream material. The rate at which the upstream material and the shock approach
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one another is often called the shock velocity, which is also the velocity of an
isolated shock when the upstream fluid is at rest in the inertial frame of reference
of the laboratory. We will designate this as us, which will equal ju1j in the simple
case we now discuss. However, when one analyzes complex systems with several
shocks, one must think carefully to properly identify the upstream Mach number for
each one.

To obtain useful solutions of (4.5)–(4.7), we work in the shock frame. In the
(one-dimensional) shock frame, one has three equations and four variables in the
upstream state, so one needs an equation of state to relate � to p: It is most useful to
assume the fluid to be a polytropic gas so that �� D p=.	 � 1/. Thus, in terms of
the various polytropic indices discussed in Chap. 3, we are working with the shock
gamma. This one term in the energy equation is the source of all the factors involving
	 that appear in the following. However, for high-energy-density physics we should
note that the polytropic index sometimes differs greatly across a shock. We may,
for example, start with a cold, highly-ordered crystal for which 	 approaches 3 and
shock it into an ionizing, plasma state for which 	 � 4=3. Equations (4.5)–(4.7) still
apply in such a case, with 	 evaluated appropriately on each side of the interface. In
what follows, we provide both the traditional results obtained when 	 is taken to be
unchanging (and is not subscripted) and also results in which 	 is subscripted and
applies separately to the fluid on the two sides of the interface.

Thus, the velocity u1 is the shock velocity, and the upstream Mach number is
Mu D �u1=cs1 D us=cs1, which for a polytropic gas is us

p
�1=.	1p1/. Solving these

equations for the ratio of the pressures, one can show that

p2
p1

D �2.	 C 1/ � �1.	 � 1/
�1.	 C 1/ � �2.	 � 1/

or (4.10)

p2
p1

D
�
�2.	1 C 1/ � �1.	1 � 1/
�1.	2 C 1/ � �2.	2 � 1/

�
.	2 � 1/
.	1 � 1/ :

Figure 4.4a shows this pressure ratio as a function of the density ratio �2=�1.
Alternatively, if one does the algebra by hand, for constant 	 , it is easier to relate
the pressures to the specific volumes (the inverse of density) as

p2
p1

D V1.	 C 1/ � V2.	 � 1/
V2.	 C 1/ � V1.	 � 1/ : (4.11)

Note that the postshock pressure implied by these two equations diverges when the
denominator becomes zero at a specific density ratio. One can rearrange (4.10) to
find the density ratio in terms of the pressures, which is

�2

�1
D p2.	 C 1/C p1.	 � 1/

p1.	 C 1/C p2.	 � 1/
or (4.12)
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�2

�1
D
�

p2.	2 C 1/C p1.	2 � 1/
p1.	1 C 1/C p2.	1 � 1/

�
.	1 � 1/
.	2 � 1/ :

This makes it very clear that as p2 becomes 	 p1, the density approaches a fixed
density ratio given by

�2

�1
D .	2 C 1/

.	2 � 1/ : (4.13)

This density ratio is the physical limit that can be produced by a single shock
in a polytropic gas, and only the postshock value of 	 enters. Shocks encountered
in high-energy-density physics often have density ratios near this limit, and thus
are strong shocks as defined shortly. Low atomic number materials, subject to
strong enough shocks, may behave this way with 	 � 5=3. Thus, the density
ratio �2=�1 may be 4 to 1. One may encounter differences if the internal energy
of the shocked material is a significant fraction of the thermal energy density, as
for example in materials that are ionizing as discussed in Chap. 3. In this case, the
jump conditions [specifically (4.6) and (4.7)] imply that u2 must be smaller than
it would be otherwise—the increased internal energy comes from the kinetic and
thermal energies. As a result, (4.5) implies that �2 must be larger than it would
be otherwise. (In some cases, radiation lost during ionization can have a similar
effect.) There is still a limiting density ratio, but it is affected by the properties of the
material. Xenon in particular is a gas that both absorbs a lot of ionization energy and
radiates strongly under typical experimental conditions. Accordingly, a strong shock
in xenon produces a larger density jump than is produced in a lower-Z gas such as
nitrogen. The way that this enters the mathematics is that the value of 	 is smaller in
such a material, just as we saw in Chap. 3. In terms of an effective polytropic index,
xenon typically would have 	 � 1:2 to 1.3 at densities above atmospheric density.
At lower densities, weakly ionized xenon can store a great deal of energy in excited
states. If one accounts for this by adjusting 	 , then 	 can be driven down below
approximately 1.1.

Returning to (4.12), the traditional approach is to find useful expressions
involving Mu, for example, by substituting for p2 from (4.9). We then can obtain
for the density ratio

�2

�1
D M2

u.	 C 1/

M2
u.	 � 1/C 2

: (4.14)

This ratio exhibits the behavior we expect, tending to the value given by (4.13) as
Mu becomes large. In general, the limit in which Mu is large and only terms in the
largest power of Mu need to be kept is referred to as the strong shock limit. In a
similar way, we find the pressure ratio

p2
p1

D 2	M2
u � .	 � 1/
.	 C 1/

; (4.15)
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which increases indefinitely as Mu increases.
Unfortunately, in real high-energy-density systems Mu is often very poorly

known. This is because the upstream temperature might be room temperature, at
which the system is typically prepared, a significantly smaller temperature through
cooling in vacuum, or a significantly higher temperature because of small levels of
heating by radiation or electrons in advance of the shock. The uncertainty in Mu can
easily be a factor of several. However, the stronger the shock the less this matters.
One can show this by working with (4.5), (4.6), and (4.10), dividing the pressures
by �1u2s . Then one can define

S D
s
1C

�
	2p1
�1u2s

�2
C 2p1.	1 � 	22 /
�1u2s .	1 � 1/ : (4.16)

Note that S approaches 1 as shock velocity increases. (For 	1 D 	2; S D 1 �
	2p1=.�1u2s /.) This allows one to write the density ratio as

�2

�1
D
2
4 .	2 C S/C 	2p1

�1u2s

.	2 � 1/C 2
	1p1
�1u2s

.	2�1/

.	1�1/

3
5 : (4.17)

The corresponding density ratio is shown for various values of 	1 and 	2
in Fig. 4.4a. While the eventual density ratio reached in a strong shock is not
affected by 	1, the ratio of �1u2s=p1 required to approach this value is affected. The
downstream pressure can similarly be written as

p2 D 2

.	 C 1/
�1u

2
s

�
1 � .	 � 1/p1

2�1u2s

�

or

p2 D �1u2s
.	2 C S/C 	2p1

�1u2s

�
1C S

�
1C p1

�1u2s

�
C p1
�1u2s

�
2.	1 � 	2/
.	1 � 1/ C 	2p1

�1u2s

��
:

(4.18)

The first form is useful for quick estimates assuming a single value for 	 . Even
more useful is the realization that 2/(	+1) is of order 1 so for strong shocks p2 �
�1u2s , which is easy to remember and to evaluate. Figure 4.4b shows the dependence
of p2=.�1u2s / on �1u2s=p1.

One can proceed to obtain a similar expression for the temperature, taking p2 D
.Z2 C 1/kBT2�2=.Amp/, where the electrons are assumed to fully equilibrate with
the ions, to be non-degenerate, and where we can ignore Coulomb modifications to
the pressure. One finds
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Fig. 4.4 (a) The ratio of postshock to preshock density depends as shown on the ratio of �1u21 to
preshock pressure, from (4.17). Here 	2 D 4=3. The values of 	1 are 3 (black curve), 4/3, (gray
curve), and 1.1 (dashed curve). (b) The ratio of postshock pressure to �1u21 depends as shown on the
ratio of �1u21 to preshock pressure, from (4.18). This ratio asymptotes to 2/( 	+1). Here 	2 D 5=3.
The values of 	1 are 3 (black curve), 4/3, (gray curve), and 1.1 (dashed curve)

kBT2 D Amp

.1C Z2/
u2s

2.	2 � 1/�
.	2 C S/C 	2p1

�1u2s

	2
�
1C 2	1p1

.	1 � 1/�1u2s

�

�
"
.1C S/

2
C p1
�1u2s

�
S

2
C .	1 � 	2/
.	1 � 1/

�
C 	2

2

�
p1
�1u2s

�2#
: (4.19)

Here Z2 is the average ionization of the postshock state. In the strong shock limit we
find

kBT2 D Amp

.1C Z2/
u2s
2.	2 � 1/
.	2 C 1/2

: (4.20)

In typical cases, the ion-ion collision length, which sets the distance over which
the shock transition occurs, is much shorter than the ion-electron equilibration
distance. In addition, the distance required for equilibration of the electron and ion
temperatures increases for materials that ionize further as the electrons are heated.
The immediate postshock temperature of the ions can be found by setting Z2 D 0

and 	2 D 5=3 in this equation. A given measurement or simulation may or may
not have sufficiently fine resolution to detect these ions before they equilibrate with
the electrons. In astrophysical or other shocks with weak collisionality, because of
low density or high temperature, the equilibration distance can become very large
and the difference of electron and ion temperatures may be readily observed. For
shocks in atomic neutral gasses that are not heated enough to ionize, Z2 does equal
zero, which is why one may encounter kBT2 D .3=16/Ampu2s in various places as
a standard expression. However, in a highly ionized plasma with strong collisional
coupling of electrons and ions, it is evident that this standard expression can greatly
overestimate the temperature.
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Strong shocks have some additional properties that are worthwhile to know. As
always, the velocity ratio is the inverse of the density ratio, in this limit being

u2
u1

D .	 � 1/
.	 C 1/

: (4.21)

From this one can find the postshock particle velocity, up, in the lab frame (in
which the upstream fluid is at rest; see the discussion near (4.8)). This is

up D us C u2 D 2

.	 C 1/
us; (4.22)

which is (3/4)us for 	 D 5=3 and (6/7) us for 	 D 4=3. So the postshock fluid
velocity is approximately 80% of the shock velocity in typical materials. It is easy
to show that the postshock fluid velocity becomes closer to the shock velocity as the
density jump increases. If we examine the postshock pressure p2 in the strong-shock
limit, we can substitute for �1 and us to find

p2 D .	 � 1/�2u
2
p

2
; (4.23)

so for strong shocks in the laboratory frame of reference the kinetic and internal
energy densities are equal in a polytropic gas [because �� D p=.	 � 1/]. (But note
from Eqs. (4.3) and (4.7) that the non-kinetic part of the total energy flux, which
is proportional to �� C p, is 	 times the kinetic part.) Using (4.23), we can look
again at some of the velocities in the strong shock limit. The sound speed in the
shocked fluid is

p
	p2=�2 D p

	.	 � 1/=2 � up, which for 	 D 5=3 is
p
5=9up.

Thus, in the laboratory frame (and for 	 < 2) the flow is supersonic, as the sound
speed is less than up. However, the source of pressure that sustains the shock must
move at up, and the distance between it and the shock increases at speed u2, which
can easily be shown to be .	 � 1/=2 � up. This is (1/3)up for 	 D 5=3. Thus the
separation of the pressure source from the shock is subsonic. This last statement
is completely equivalent to saying that, in the shock frame, the downstream fluid
moves subsonically.

We can also look at some typical parameters. A high-energy-density experiment
may produce a shock wave in a plastic material having �1 D 1 g/cm3;A D
6:5; and Z D 3:5 using a pressure of 50 Mbar (i.e., 5�1013 dynes/cm2). The plastic
behaves like a polytropic gas with 	 � 4=3, so the shocked density is �2 � 7 g/cm3.
The shock velocity, from (4.18), is approximately 80 km/s (8 � 106 cm/s), so the
shock will traverse a 100�m thick layer in about 1.2 ns. The postshock temperature,
from (4.20), is approximately 25 eV. For comparison, consider the shock in the
interstellar medium produced by a supernova remnant such as Tycho. The velocity is

1000 km/s (faster in younger remnants) and �1 � 1 amu/cm3 � 10�24 g/cm3. Thus
p2 � 10�8 dynes/cm2. This seems small, but the postshock temperature is 
1 keV,
so the resulting plasma is quite hot. However, even for the velocities approximately
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ten times higher that are present in very young supernova remnants, the temperature
is not near relativistic values. Thus, except for the cosmic rays produced at the shock,
nonrelativistic theories and experiments can address the behavior of such systems.

4.1.4 Entropy Changes Across Shocks

While mass, momentum, and energy are conserved across shock transitions, entropy
is not. This should not come as a surprise to anyone who has studied statistical or
thermal physics, as one is increasing the temperature of the fluid in a nonadiabatic
transition. Here we determine and discuss the change in entropy across the shock
transition.

Using (2.11) for the specific entropy and (4.12), one can find the difference in
entropy across the shock wave to be

s2 � s1 D cV ln

�
p2
p1

�
�1

�2

�	�
: (4.24)

Thus, in an adiabatic transition that keeps p=�	 constant, the entropy does not
increase. Shocks increase entropy because they are irreversible, non-adiabatic
transitions. For single strong shocks, the argument of the logarithm is dominated
by p2, as the density ratio varies only over a limited range. Taking the strong shock
limit, we find

s2 � s1 D cV ln

�
p2
p1

�
	 � 1
	 C 1

�	�
� cV

�
ln

�
p2
p1

�
� 2:2

�
; (4.25)

in which the final equality is obtained by setting 	 D 5=3. Noting once again that
in a fully ionized plasma both electrons and ions carry heat, one has

cV D .Z C 1/kB

Amp.	 � 1/ D .Z C 1/

A.	 � 1/9:57 � 107 J/(keV g); (4.26)

expressed to accommodate temperature in keV. As we will see, the entropy in an
inertial fusion capsule needs to be kept below about 4�108 J/(keV g). Since the ratio
of pressures is >1000 in this case, compression for inertial fusion cannot occur by
means of a single shock.

It may seem strange to the reader that entropy is generated by shock waves, when
we have shown that shock waves are consistent with the fundamental equations for
mass, momentum, and energy in the fluid, because these same equations produced
(2.3), which we showed in Chap. 2 to express the conservation of entropy. In
other words, if the conservation of entropy is consistent with and derived from the
equations that include the presence of shocks, why is entropy not conserved across
shocks? The solution to this puzzle is that shocks are in fact dissipative structures
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whose details cannot be described by (4.1)–(4.3). From the point of view of these
three equations, the shock transition can be taken to be a thin layer of zero thickness,
because it does not alter the mass, momentum, or energy fluxes in the flow. However,
the shock does convert kinetic energy to heat, and thus is an entropy source. If we
were to describe the action of the shock in detail, we would need to add terms to
the momentum and energy equations to account for the changes in the fluid. When
we then used these equations to obtain an equation for the entropy, we would be left
with an entropy source term, and this source term would not have a limit of zero as
the thickness of the shock transition approached zero.

Now suppose that instead of using a single strong shock to achieve a desired
value of p2=p1, which we write here as pfinal=pinit, we use n shocks. Each of these
will produce pressure ratio Rp D .pfinal=pinit/

1=n and a density ratio R�. The density
ratio produced by each shock may or may not approach ( 	 C 1)/( 	 � 1), but the
final density ratio �final=�init will be much larger than .	 C 1/=.	 � 1/ for n > 1.
The temperature will be correspondingly smaller, as the pressure is the same yet the
density is higher. Thus, the entropy increase will be smaller for multiple shocks than
for one shock. Specifically,

s2 � s1 D ncV ln

�
Rp

�
1

R�

�	�
D cV ln

�
pfinal

pinit

�
1

R�

�n	�
: (4.27)

Figure 4.5 shows the resulting entropy increase, using (4.12) to compute R�, for a
value of pfinal=pinit D 1000. One can see that only a few shocks are needed to greatly
reduce the total increase of entropy. The limit of a very large number of shocks
with progressively smaller individual pressure jumps, as n ! 1, is an adiabatic
compression, which produces no entropy increase.

The use of multiple shocks to apply the available pressure is thus an important
design tool. If one desires to achieve low entropy or high densities, as one does,
for example, in ICF, then one should use several shocks. If one desires high
temperature, as one does to produce fast ejecta, then one should use a single shock.

Fig. 4.5 The total increase in
normalized specific entropy,
.s2 � s1/=cv is shown vs. the
number of shocks, for an
overall pressure increase of a
factor of 1000
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If one desires to more carefully tailor the density, temperature, and entropy of a final
state, then one can use multiple shocks chosen for that purpose.

4.1.5 Oblique Shocks

We now return to the issue of oblique shocks, which we must analyze when there is
a reason to choose a shock frame with an upstream velocity component transverse
to the shock that is nonzero. This issue arose in the context of (4.5)–(4.7), which are
valid only for zero transverse velocity. Note that an oblique shock may develop in
more than one way. A shock can be launched as an oblique shock, by something as
simple as a tilted piston. Also, a shock can become oblique by interacting with an
interface. The geometric definitions we need for this problem are shown in Fig. 4.6.

To deal with nonzero transverse velocity, we define the shock normal, a unit
vector n, which is normal to the shock front and in the direction of the normal flow
into the shock front (thus, n points from right to left in our standard orientation).
Then the component of u in the normal direction is n.u � n/ while the transverse
component of u is u? D .n � u/ � n. Using the subscript n for the normal
direction, (4.1)–(4.3) give us the following relations:

�1un1 D �2un2; (4.28)

�1u
2
n1 C p1 D �2u

2
n2 C p2; (4.29)

u?1 D u?2; and (4.30)

�1�1 C p1 C �1
u2n1
2

D �2�2 C p2 C �2
u2n2
2
: (4.31)

By comparison with the previous equations, one can see that we have gained
one important new piece of information: the transverse velocity is conserved across
the shock. Otherwise we have regained the previous equations (or an equivalent
one in (4.31)) with u replaced by un. It is not surprising that the change in un is
responsible for the changes in pressure and internal energy.

Fig. 4.6 Definitions for
oblique shocks
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A clear consequence of these equations is that the fluid velocity is bent away from
the normal as it crosses the shock. The normal velocity decreases but the transverse
velocity does not, and this is the consequence. We can develop the mathematics for
this situation as follows. Suppose that u1 � n D u cos�1, thus defining the angle of
the incoming flow, �1. Then the angle of the outgoing flow can be found from

tan�2 D u?
un2

D u?
un1

�2

�1
D tan�1

�2

�1
; (4.32)

which for a polytropic gas becomes

tan�2 D tan�1
M2

nu.	 C 1/

M2
nu.	 � 1/C 2

; (4.33)

in which the upstream Mach number, calculated using un1, is Mnu.
One may in some cases need to know how much the flow is (or can be) deflected

by the shock, which is relevant, for example, to the supersonic movement of bodies
through fluids. For this purpose we seek  defined by u1 � u2 D u1u2 cos . By
expressing the velocities in terms of their normal and tangential components, then
dividing by u1u2; one can show

cos D cos�2 Œcos�1 C sin�1tan�2� ; (4.34)

from which via (4.32) we have

cos D Œcos�1 C sin�1tan�1.�2=�1/�p
1C tan2�1.�2=�1/2

: (4.35)

An interesting implication of (4.35) is that there is a maximum possible angle
of deflection that can be produced by a shock. Figure 4.7 shows the dependence of
 on �1 for several specific density ratios. One can see that the maximum angle of
deflection depends on the density ratio across the shock. If a supersonic object is too

Fig. 4.7 Flow deflection vs.
incident angle for a density
ratio from bottom to top of 2,
4, 7, and 14. The thick gray
line shows the maximum
deflection, producing flow
parallel to the shock front
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Fig. 4.8 Schematic of object
and resulting shocks
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blunt, so that it attempts to deflect the incoming material by more than this angle,
then a bow shock forms in front of the object, heating the material so that its flow
around the object is subsonic. Figure 4.8 illustrates the case where a deflecting shock
can be established, enabling supersonic flow around the object. These two figures
are most useful for strong shocks with well-known density ratios. For weaker shocks
in polytropic gases one could substitute from (4.33), noting that the upstream Mach
number also depends on angle of incidence. This can be put into a standard form
known as the shock polar, discussed in Landau and Lifshitz (1987) and many other
texts on fluid dynamics. We will have an interest in the small-angle limit of (4.35)
when we consider shock stability in Chap. 5. Assuming that �1 is small enough that
�.�21=2/.�2=�1/2 remains small, this is  D �1.�2=�1 � 1/.

4.1.6 Shocks and Interfaces

Understanding the basic properties of an isolated shock is an important fundamental
building block. There are cases, such as the edge of a supernova remnant or the
initial response of a target to laser ablation, in which the dynamics is essentially
single-shock dynamics. There are many more cases, however, in which the dynamics
is produced by the interaction of shock waves, interfaces, and other phenomena.
This occurs, for example, when the shock wave in a supernova remnant encounters
a molecular cloud or other dense obstacle, and also in experiments that use shock
reverberation to compress and heat a material. The first of these that we discuss
is the interaction of a shock wave (or in general, an incoming fluid with specific
properties) with an interface at which the density increases. In general, this leads to
a “reflected” shock in the initial fluid and a “transmitted” shock in the denser fluid.
This is an example of the one possible response when a shock reaches an interface—
two shocks are produced. Figure 4.9 shows a schematic of such an interaction. We
discuss it further here. Other cases are discussed in Sect. 4.6.

The introduction of the second material and the interaction greatly complicates
our bookkeeping. As is shown in Fig. 4.9, we designate the unshocked first fluid as
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Fig. 4.9 Schematic of steady
shock incident on interface
where density increases.
(a) Before shock reaches
interface. (b) After shock
reaches interface
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state o, the shocked fluid as state 1, the state of the reflected shock as state 2, the state
of the transmitted shock as state 3, and the unshocked second fluid as state 4. We
have little interest in the properties of state o, except in whatever way they influence
state 1. In addition, the material in state 4 would expand to the left unless this
material is a solid (the typical case) or po D p4. Our goal is to calculate the properties
of the reflected and transmitted shocks, given the properties of the fluids and the
initial shock. We can take advantage of two conditions in this calculation. These are
p2 D p3 and u2 D u3. That is, the pressure and velocity are both continuous across
the density interface. If this were not the case, one would produce additional waves
(or voids) at the interface in the postshock state, which is not consistent with our
definition of the shocks as discontinuous, localized transitions in fluid properties.
To develop an analytic treatment of this behavior, we will designate the polytropic
index of the first fluid by 	1 and that of the second fluid by 	4.

Our approach here will be fairly general, which will give us results that can be
applied to a number of specific cases. Some simpler cases, such as the reflection
of a shock from a rigid wall or the behavior of an ideal flyer plate, are left as
homework problems. In the case of an incoming shock as shown in Fig. 4.9a, one
can find �1, u1, and p1 from (4.5), (4.14), and (4.15) and the properties of state
o. Alternatively, Fig. 4.9b also may describe the interaction between an incoming
block of solid material (a flyer plate) that strikes a second block of solid material.
In this case, the properties of region 1 will not be determined by shock relations. As
an extension of this analysis, one can use Fig. 4.9b to approximately describe the
interaction of two colliding fluids with more general properties, if it makes sense
after some initial transient to ignore the behavior of their leading edges. This may,
for example, occur in experiments that produce a flyer plate that is in the plasma
state. The net effect is that we start with the properties of state 1, in which the ratio
of p1 to �1u21 will depend on the way in which the interaction develops. In any event
we have the following equations, assuming that 	1 D 	2 and 	3 D 	4:
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�2

�1
D M2

12.	1 C 1/

M2
12.	1 � 1/C 2

; (4.36)

p2
p1

D 2	1M2
12 � .	1 � 1/
.	1 C 1/

; (4.37)

�3

�4
D M2

34.	4 C 1/

M2
34.	4 � 1/C 2

; (4.38)

p3
p4

D 2	4M2
34 � .	4 � 1/
.	4 C 1/

; (4.39)

usT � u3 D �u0
3 D usT�4=�3; (4.40)

u1 � usR D us12; (4.41)

u2 � usR D u0
2 D us12�1=�2; (4.42)

p2 D p3; (4.43)

u2 D u3; (4.44)

in which M12 D us12=cs1 where cs1 D p
	1p1=�1, M34 D usT=cs4 where cs4 Dp

	4p4=�4, the upstream velocity in the reflected shock frame is us12, the postshock
fluid velocity in the reflected shock frame is u0

2, the postshock fluid velocity in the
transmitted shock frame is u0

3, and the reflected and transmitted shock velocities in
the lab frame are usR and usT , respectively.

The known quantities in these nine equations are �1; �4; p1; p4; u1; u4; 	1; 	4.
The unknowns are �2; �3; p2; p3; u2; u3; us12; usR, and usT , so the set of equations is
closed, even if complex.

One can, with some work, solve (4.36)–(4.44). One approach is to solve for the
various quantities in terms of u2, the postshock fluid velocity in both materials, and
then to obtain an equation for u2 itself. This is productive since most aspects of
the shock in one material do not depend on the properties of other material. This
produces the following eight (4.45)–(4.52) in addition to (4.44):

0 D 16	1p1 C
2
4
s
16c2s1 C .	1 C 1/2.u1 � u2/2

.	1 C 1/2.u1 � u2/2
� 1
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"
4.	1 C 1/.p1 � p4/

� .	1 C 1/.	4 C 1/�4u
2
2

 
1C

s
1 � 16c2s4

.	4 C 1/2u22

!#
; (4.45)
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��
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(4.46)

p2 D p1
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p3 D p4
.	4 C 1/
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�
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(4.49)

us12 D �2.u1 � u2/

�2 � �1 ; (4.50)

usT D 1

4

�
.	4 C 1/u2 C

q
16c2s4 C .	4 C 1/2u22

�
; (4.51)

and

usR D �2u2 � �1u1
�2 � �1 : (4.52)

The first of these equations (4.45) is an implicit equation for u2 in terms of known
quantities. It can be converted to a polynomial equation in u2, whose order depends
on the assumptions. The second (4.46) determines �2 based on u2 and known
quantities. The remaining equations determine the other unknowns based on �2,
u2, and known quantities. A convenient and meaningful normalization is to divide
velocities by u1, densities by �1, and pressures by �1u21, since these quantities
determine the dynamics. These equations may appear complicated, but this is mainly
because of the numerous parameters that must be specified to define the system. We
will show results for two examples.

The first example is that of reflected and transmitted shocks, produced when
a first shock is incident on an interface where the density is greater than .	1 C
1/�1=.	4 C 1/ � �1. Thus, �1, u1, and p1 are produced by a shock, so that p1 D
.	 � 1/�1u21=2. Figure 4.10 shows how the normalized interface velocity, u2=u1,
varies with the density ratio �4=�1. One sees that the normalized velocity is quite
close to 1=

p
�4=�1. This is sensible. Once the density beyond the interface is a few

times �1, the incoming plasma is nearly stopped and the pressure on the interface
is approximately constant and approximately equals �1u21. For fixed pressure, the
transmitted shock velocity scales inversely with the square root of the density. So
this is what one sees.
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Fig. 4.10 The dependence of
the normalized interface
velocity on the density ratio
when a shock encounters an
interface. The two solid
curves are for 	 D 4=3

(lower) and 	 D 5=3 (upper).
The gray curve shows
1=

p
�4=�1
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Fig. 4.11 The velocity of the
reflected shock decreases as
the density ratio increases.
The lower curve is for
	 D 5=3 and the upper curve
is for 	 D 4=3
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The transmitted shock velocity is .	4 C 1/=2 times u2, which is shown in the
figure. This is a simple relation because the upstream fluid for this shock is at rest
in the lab frame. The reflected shock is more interesting. Its velocity is shown
in Fig. 4.11. The velocity and direction of the reflected shock shows a strong
dependence on 	 . If the material being impacted is sufficiently compressible and
low enough in density, then the momentum of the incoming fluid is sufficient to
push the interface forward faster than the reflected shock retreats from it. In this
case the reflected shock continues to move forward in the lab frame. On the other
hand, if the material being struck is sufficiently incompressible or sufficiently dense,
then the reflected shock will recoil from the interface in the lab frame. The limiting
reflected shock velocities are �u1=3 for 	 D 4=3 and �2u1=3 for 	 D 5=3. This can
be a useful limit, for example, to estimate how thick a wall one may need to contain a
shocked material in an experiment. One can use shock reflections in measuring EOS.
One measures the time it takes for the reflected shock to return to the downstream
surface, known as the time for shock reverberation. This time is sensitive primarily
to the compression produced by the initial shock.

In addition, this case is relevant to interaction of the forward shock in a supernova
remnant with a molecular cloud. Figure 4.12 shows an image of such a collision.
The spherical object is the remnant, and the figure shows both X-rays and radio
emission produced by its interaction with the cloud. Leaving aside the clumpiness
of the cloud, we can take 	 to be 5/3 for both the interstellar medium and the cloud.
Typical densities for the interstellar medium and the cloud are 2.5 and 104 cm�3,
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Fig. 4.12 Interaction of a supernova remnant (the spherical object to the lower left) and a
molecular cloud (the elongated object above). The figure shows a grayscale image of the X-ray
emission, overlaid with a contour image of the radio emission. Credit: D. Burrows of Penn State
and T. Landecker of the Dominion Radio Astronomy Observatory

respectively, so that the forward shock in the remnant has a density of 10 cm�3. We
will estimate its velocity as 1000 km/s; it could be somewhat larger. Given these
numbers, we would find the shock transmitted into the cloud to move at about
40 km/s while the reflected shock moves at 330 km/s back into the remnant. Given
the comparable scale of these two objects in the image, it is clear that the entire
remnant might be affected before the transmitted shock has traversed much of the
cloud.

4.2 Flyer Plates and Shock Hugoniot Measurements

Here we consider the flyer-plate problem and then the application of flyer plates
to shock Hugoniot measurements, both of which are further examples of shock-
wave behavior at interfaces. Flyer plates have long been used to measure the
shock Hugoniot. Historical experiments typically used either gas guns or rail guns
to launch the flyer plates, and were limited to pressures below 1 Mbar prior to
roughly the turn of the century. Hydrogen was a very active area of study in such
experiments, because of its application to the interiors of gas giant planets (see
Nellis 2006). Some experiments were done using nuclear weapons to launch flyer
plates at a higher velocities, producing higher pressures. These experiments were in
the high-energy-density regime, but were certainly not “laboratory” experiments in
the usual sense. With the advent of modern, high-energy-density laboratory systems,
it became possible to launch flyer plates at high enough velocity to access pressures
well above 1 Mbar.

There is a key equation that is used for such measurements. It is derived starting
from (4.5) and (4.6), using subscripts u for upstream and d for downstream to find

pd D pu.�uuu/.uu � ud/; (4.53)
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and then recognizing that for a material stationary in the laboratory frame uu D
�us and ud D up � us, where up is the post shock fluid velocity in the laboratory
frame, also known as the “particle velocity”, which is equivalently the velocity of
an imaginary piston driving the shock, so that

pd D pu C �uusup: (4.54)

One can often measure or know us, up, �u, and pu, enabling one to infer pd from
( 4.54). One can also infer �d from us; up, and mass conservation.

4.2.1 Flyer Plates

The ideal flyer plate is a cold, planar material moving at a high velocity. An ideal
flyer plate, by cleanly striking the surface of a target material, can create a very
uniform and well-characterized shock in the target material. Very often the flyer
plate does not directly impact the sample to be studied, but instead impacts a fixed
layer of the same material, through which the resulting shock propagates to reach
the sample. In this case using the notation of Fig. 4.9, �4=�1 D 1. Ideally p1 � 0 and
p4 � 0. Figure 4.13 shows the resulting dependence of u2=u1 on the initial pressure
in the flyer plate. As the pressure becomes small, u2 approaches 0.5 u1. This limited
result is straightforward to obtain from the original equations, which is left as an
exercise. In addition, so long as p1 is small, the interaction of the incident flyer
plate with a material at any density produces reflected and transmitted shocks. (We
discuss the behavior when p1 is not small when treating rarefactions at interfaces,
below.) In this case one can simplify (4.45) to find that

u2
u1

D 1

1C
q

�4.	4C1/
�1.	1C1/

: (4.55)

Fig. 4.13 The dependence of
u2=u1 on the normalized
initial pressure of a flyer plate
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We now designate the material of the flyer plate and target as material A and
label the downstream state in the flyer as state 1, with the upstream state being state
o, anticipating the application of Fig. 4.13 to the interaction of the shock wave from
the target material with the sample. For a flyer plate of initial velocity uf , we apply
( 4.54) to the target of the flyer plate. Knowing that uA1 D uf =2, we have

pA1 D pAo C �Aous1uf =2: (4.56)

Known variables include �Ao and pAo, which is ideally zero. We can measure uf

optically and can measure us1 from the shock transit time through the target of
the flyer plate. As a result, we can know pA1 (and �A1 from mass conservation).
Because aluminum is a very practical material for flyer plates, the shock Hugoniot
of aluminum is now very well known at pressures below several Mbars.

4.2.2 Impedance Matching

Once one has a material with a known shock Hugoniot (and a known relation of
pressure and expansion velocity), one can use this to advantage in determining
the shock Hugoniot of other materials. This technique is commonly known as
impedance matching, although it actually depends on measuring the difference in
the degree to which two materials impede the shock. The analysis used in impedance
matching is as follows, with reference to Fig. 4.14. With reference to Fig. 4.13, our
notation includes designating the material in regions 1 and 2 as material A and the
material in regions 3 and 4 as material B. One begins by producing a known and
steady shock, with a known postshock fluid velocity, up1 in the laboratory frame.
It is essential that the shock be steady to very high (�1%) accuracy, otherwise one
finds large errors in the inferred pressure and compression. One then allows this
shock to enter a layer of the sample to be measured, of material B, of initial density
�B4 and initial pressure pB4 (often negligible). This produces a transmitted shock
through the sample and either a reflected shock or a rarefaction (discussed below) in

Fig. 4.14 How impedance
matching works. The initial
shock in material A is located
by the dashed line. The
curves for pA2 and pB3 shows
how the pressure varies with
velocity. Their intersection
gives the values of pressure
and of �u D up3 � up1 for
the EOS measurement
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the first material. One measures the shock velocity in the second material, usB, also
in the laboratory frame. The post-shock velocity of material B is uB3 in the shock
frame and up3 in the laboratory frame. Applying (4.56) to this system to find the
post-shock pressure in material B one has

pB3 D pB4 C �B4usBup3: (4.57)

One knows the initial density of this material, �B4, so one knows that its postshock
pressure, pB4, lies along the line given by (4.57), in which up3 is the (not yet known)
postshock fluid velocity of material B in the laboratory frame. Note that pB3 is an
increasing function of up3. We can plot this equation against an independent variable
up3 � up1, as shown in Fig. 4.14, to allow further analysis.

Consider the reaction of material A when the initial shock wave reaches material
B, with reference to the same figure. As discussed in Sect. 4.1.6, one also knows that
up2 D up3, so that one can also plot the response of material A against the velocity
difference (up3 � up1) which is also (up2 � up1). Given sufficient knowledge of the
equation of state of material A, one can plot a curve giving pA2 as a function of this
variable. One finds that pA2 is a decreasing function of up3, because a decrease of
up3 corresponds to an increase in the velocity at which the reflected shock separates
from the interface, and thus to a higher reflected-shock pressure. In the event that
the reflected wave is a rarefaction rather than a shock, it remains the case that pA2 is
a decreasing function of up3, as one can verify from Sect. 4.4 below. The net result
is that the curves for pA2 and pB3 cross at only one point (actually an area whose size
is determined by the uncertainties). Because pA2 D pB3, this point determines both
pB3 and up3, giving us the shock Hugoniot at one point. Hugoniot results are often
plotted in a space of pressure versus density. The postshock density is related to up3

by �B3=�B4 D .1 � up3=usB/
�1.

One way to apply the initial pressure to material A, so that one can know its value
with high accuracy, is to make material A be Al and to apply the pressure by using an
Al flyer plate to strike it. This has been accomplished using magnetically launched
flyer plates from pulsed power machines, discussed in Sect. 10.10.2. Figure 4.15
shows a drawing of the experimental system used (Knudson et al. 2001) to determine
the Hugoniot of D2 by this method, at pressures above 1 Mbar. The Al flyer plate
impacted a “drive plate”, also of Al, producing an interface velocity of half the
flyer-plate velocity and a shock pressure (pA1) known from the Al EOS. The flyer
plate was thick enough to sustain this pressure throughout the experiment. When the
shock in the Al reached the D2, it drove a transmitted shock through the D2 (and a
rarefaction into the Al). The diagnostics measured the emergence of the transmitted
shock after it had propagated through each of two thicknesses of D2, thus giving usB,
which with the density of D2 defines the slope of the curve for pB2 in Fig. 4.14. From
this the authors obtained the shock Hugoniot, to a sufficient accuracy to exclude
some models.

An alternative way to apply the pressure to material A is to use a laser or other
radiation source to do so. In this case the initial shock velocity in material A is not as
well known, so one must also measure it. Figure 4.16 shows a measurement of the
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Fig. 4.15 Flyer-plate driven
impedance matching
experiment. From Knudson
et al. (2001)
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shock Hugoniot of copper by this method. A steady shock wave was driven through
a stepped aluminum plate using a pressure source (in this case from laser ablation;
see Chap. 9). A sample of Cu abuts part of the surface of the thinner step. The optical
emission produced upon the emergence of the shock from each region is detected
using an optical streak camera. Such data are shown in Fig. 4.16b. What matters is
the time difference between the signal in the middle (from the thin Al step) and
the signals through the two thicker layers. An experimental complication is that the
edges of the samples affect the shock propagation (slowing it down from the edges
inward). This limits how thick one can make the samples, which limits the accuracy
of the measurement.

The emergence of the shock is detected from both the thin and the thick
aluminum steps. This determines the shock velocity in the Al, from which the known
Al EOS implies the postshock fluid velocity and the pressure pA1 in the Al. The time
of emergence of the shock from the Cu sample then determines the shock velocity
in the sample, usB. Then one applies the analysis illustrated in Fig. 4.14 to find the
pressure and postshock fluid velocity in the Cu, shown in part Fig. 4.16c.

4.3 An Introduction to Self-similar Hydrodynamics

The majority of students to whom I have taught this material have been unfamiliar
with self-similar behavior until we discussed rarefactions and blast waves. Yet in
fact self-similarity appears in many diverse physical systems. A dynamical system
is self-similar if it has a normalized structure whose shape is fixed in time, being
a function of a dimensionless variable that in general depends on both space and
time. A very simple example is the planar, isothermal rarefaction we will derive
below. The density profile will turn out to be � D �oe�� , where the density of
the source material is �o and the dimensionless variable is � D x=cot, with the
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Fig. 4.16 Laser-driven
impedance-matching
experiment. (a) Sketch.
(b) Spatial profile of emission
with time increasing to right.
(c) Inferred EOS of Cu. Parts
(b) and (c) are from Benuzzi
et al.

sound speed being co. Within the assumptions of the calculation, the density profile
is always exponential in terms of � . Another example that may be familiar to the
reader is simple diffusion with a constant diffusion coefficient. Simple solutions
of this type of problem often show a Gaussian shape, again independent of time.
Self-similar models are often very useful in the approximate description of how
a system evolves. For example, good experiment design is very often based on
simple physical reasoning, and self-similar models are an important tool for the
experiment designer. They also provide a useful conceptual framework to discuss
(and to estimate) how a system will evolve.

Before we take up the mathematics for fluids, we briefly discuss the broader
context. Dynamic physical systems often evolve into a state that is (nearly) self-
similar for some extended period of time. This behavior is technically described as
intermediate asymptotic behavior. There are typically some initial conditions and
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very early evolution that is not self-similar, and there is often some region in space
where the influence of the initial conditions remains. Examples include the initial
core of a lightning channel or the leading edges of self-similar expansions. But in
fact the behavior can be well-described by a self-similar solution for a long period
of time and large regions of space. Eventually the system evolves to the point that
the assumptions of the solution are violated, beyond which the further evolution is
not self-similar. We will see examples of this below. The book by Barenblatt (1996)
on intermediate asymptotics provides a thorough and outstanding treatment of this
general topic.

One key to self-similarity is that physical systems are often meaningfully
characterized by a very small number of properties, even fewer of which are truly
independent of one another. In the case of the isothermal rarefaction just mentioned,
these are the density and the sound speed. In simple diffusion problems, they are
the diffusion coefficient and the total amount of whatever is diffusing (mass, energy,
etc.). There is a method for determining which physical properties of a system are
independent of one another, often taught in fluid mechanics courses, that involves
application of the Buckingham Pi Theorem. This topic is also discussed at length
by Barenblatt. Here we will not invest time in this topic, but note that if the reader
seeks to know whether some new problem admits self-similar solutions, that is the
place to go.

Self-similar solutions are often considered in connection with similarity trans-
formations, in which a scaling of some variables leads to identical equations using
scaled variables. The general problem of similarity transformations is discussed
briefly in Chap. 10, at some length in Zel’dovich and Razier (1966), and often also
in books on fluid dynamics.

4.3.1 Self-similarity in Hydrodynamic Flows

We now turn to the mathematics we will need for the remainder of this chapter.
Here we are concerned with finding self-similar solutions, in which there is a single
variable � that describes the shape of the solution for all time and all space. In
hydrodynamics, self-similar solutions have shapes in space that are independent of
time, with a spatial scale, R.t/; that is a function of time. Thus, the generally useful
similarity variable, which traces out the shape of the fluid parameters, turns out to
be � D r=R:

We consider the possibility of self-similar motions in systems whose evolution
is symmetric (planar, cylindrical, or spherical). These motions are described by the
corresponding versions of (2.1), (2.2), and (2.14), which are

@�

@t
C u
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�
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r

�
D 0; (4.58)
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�
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in which s D 0, 1, and 2, respectively, for planar, cylindrical, and spherical
symmetry. Observe that so long as the EOS that relates sound speed to density and
pressure is a function of these quantities and numeric parameters (such as 	 ), these
equations contain only variables. We will use a polytropic equation of state, as is
already assumed in (4.60). The parameters having numerical values with physical
dimensions (such as a density of 1 g/cm3) enter through the boundary conditions
and initial conditions that are necessary to solve these equations for some specific
case. Note that the third equation is trivially zero if the sound speed is independent
of space and time, but not otherwise.

The key to finding a self-similar solution to these equations is to transform
them to ordinary differential equations involving dimensionless functions of � that
represent the shape of the fluid variables. We will work with density, velocity, and
pressure. Alternatively, we could use the sound speed instead of the pressure. To
reduce (4.58)–(4.60) to self-similar form, we must express each of u, �, and p as the
product of a dimensionless function � , here r=R, and other necessary parameters.
This turns out to require that we specify a normalizing amplitude for either density
or pressure. Here we work with density, which is the most common case. We take

u D PRU.�/; � D �o.r; t/˝.�/; and p D �o.r; t/ PR2P.�/; (4.61)

in which the overdot represents a time derivative and the initial density �o is in
general a function of both space and time. We convert to a coordinate system, using
� and t0, in which � D r=R and t0 D t. For some general function g.�; t0/; we have
by the chain rule

@g.�; t0/
@t

D @g

@�

@�

@t
C @g

@t0
@t0

@t
(4.62)

for time derivatives and a similar expression for the spatial derivatives. Of course,
@t0=@r D 0 and @t0=@t D 1. However, the tricky point is that we are seeking a
solution in which all the time dependence is included in the dependence on � so
that @g=@t0 D 0. This in the end imposes a restriction on the number of constraints
imposed by any other boundary or initial conditions. Recognizing that

@h.�/

@t
D ��

PR
R

h0.�/ and
@h.�/

@r
D 1

R
h0.�/; (4.63)

in which the 0 designates the derivative with respect to � , we can obtain after some
algebra the following equations, in which �0

o is the spatial derivative of �o,
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(4.66)

In (4.64)–(4.66), we have obtained three ordinary differential equations, with
explicit dependences on time and space in some terms. These dependences must also
cancel out if the evolution is to be self-similar. Consider first (4.65). The dependence
on time in the second term cancels out if R is a power law in time or an exponential
with an argument that is linear in time. Here we will emphasize power-law solutions,
and so we will take

R D Rot˛; (4.67)

in which Ro is the position at time t D 1. (In some practical applications, it can
be useful to specify a starting time, and so to replace t with t=to in this equation.)
This is sufficient to remove all the time dependences from (4.64) to (4.66) except
those involving the density. If the density has a time dependence, one can see that
self-similar behavior can follow only if the dependence of �o and R is the same
type of function. They can both be power-law dependences, for example, and any
difference in the exponent will just produce a constant factor in the equations. If the
time dependence of �o does not have the same functional form as R; then the system
will not exhibit a self-similar evolution. In other words, its shape will change with
time.

In order for the spatial dependence to drop out of (4.64), the quantity �0
oR=�o

must have a constant value. This will occur if �o is a power law function of position,
so that

�o.r/ D O�rı D O��ıRı and (4.68)

�0
o.r/R

�o
D �0

o.�/

�oR
R D ı

�
: (4.69)

Thus, any power-law dependences of �o on r and t are consistent with a self-similar
evolution involving a scale R that is a power of t: However, the time dependence
of R is part of the time dependence of �o, so if �o is / tˇ overall, one must have
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O� / t.ˇ�˛ı/. At times, self-similar solutions can be found in two adjacent regions,
for example in which �o may have two different dependences on space and time.
What is required is that one be able to specify boundary conditions that connect the
two regions. This is the case, for example, in the treatment of the structure of young
supernova remnants by Chevalier (1982).

To obtain (4.64)–(4.66) in a self-similar form, we must specify an initial density
(or pressure) and are restricted to certain types of functional dependences in space
and time, as just discussed. This amounts to having specified a single parameter
with physical dimensions. If this is all that is specified, then one has a self-similar
problem. An example is the propagation of a shock wave through a fluid whose
density decreases as a power law in space and has a specified initial profile. This
occurs, for example, when a shock wave emerges from a star. This specific case
is treated by Zel’dovich and Razier (1966), when they discuss this type of self-
similar problem. In this case, one must solve the equations numerically to determine
the value of the parameter ˛. Curiously, the “impulsive loading” problem (the
planar blast wave problem), discussed thoroughly there, is also in this category,
even though it seems to have two parameters. The open boundary creates special
problems, because beyond it the acceleration is large enough to cause a divergence
of the energy integral in the self-similar solution. The solution to this problem is
that there is always a small initial quantity of mass to which the self-similar solution
does not apply, and that this mass contains only finite energy.

If the specification of the system includes a second parameter with physical
dimensions, such as a total energy, then one has self-similar behavior of the type
discussed by Sedov (1959). The definition of � must be related to the known
properties of the system, since these establish the relation between r and t in the
actual physical system. For example, more energy will lead to faster motions,
corresponding to larger values of PR, so if energy is specified then this must be
included in the definition of R and hence � . One can define R to within a constant
by creating a dimensionless combination of the known physical quantities, r, and t.
This must be constant for r D R, and so can be solved to find the dependence of
R on time (i.e., ˛) and on the specified physical quantities. The constant, unknown
coefficient can then be specified during the solution of the problem. We carry out
this exercise for the spherical blast wave, below.

If the specification of the system includes a third parameter with physical
dimensions, such as the location of an interface in a blast-wave problem, then
the evolution is not self-similar. The solution of (4.64)–(4.66) permits only one
additional parameter to be defined, whether as a boundary condition, an initial
condition, or an integral property of the system. Once this constraint is imposed
on the solution, there remain no further undefined variables. Adding an additional
constraint causes the self-similar problem to be overconstrained. The system may
still evolve to have a fixed shape in space and time, but it will have distinct reference
scales for r and for t. We discuss an example of this in Chap. 10.

This makes it fairly easy to tell whether there is a self-similar solution for a
hydrodynamic flow. If the system is described by one or two dimensional parameters
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and these are simple power laws (or perhaps exponentials) in space and time, then
a self-similar solution will exist. If there are more than this, then there will be no
self-similar solution. Later in the book, and especially in Chap. 7, we will encounter
self-similar solutions for other sets of equations.

4.4 Rarefaction Waves

A rarefaction is a decrease in density and pressure caused by expansion of a material.
Rarefactions are common to many laboratory and astrophysical systems. Releases of
energy, as when a shock wave emerges from a dense material layer or an exploding
star, produce expansions. The flow of material, whether emerging from a channel
in an experiment or emerging from a star to form a planetary nebula, produces an
expansion. The cessation of pressure when a radiation source, whether a laser or
a z-pinch or a star, becomes less powerful is followed by an expansion toward the
source. Thus, expansions have broad relevance.

A rarefaction wave occurs when the onset of the expansion propagates through
the material from one edge. Thus, for example, when the laser pulse that is
creating pressure and plasma on the surface of an object ceases, the dense plasma
expands outward. The corresponding decrease in pressure propagates into the object
at the sound speed, and is accompanied by an outward flow of material and a
corresponding density decrease. As another example, when a shock wave emerges
from an object into a region of lower density, the high pressure produced by the
shock wave causes material to accelerate forward from the object. As we will see,
the flow of material outward into the rarefaction begins at a point that propagates
inward into the material at the sound speed. In shock physics this behavior is
known as the release of the shocked material. In high-energy-density physics or
astrophysics it is often described as shock breakout.

In this section, we will first consider an idealized problem—the isothermal
rarefaction—that is a useful model in many cases. This problem will also serve
as our first application of self-similar solutions.

4.4.1 The Planar Isothermal Rarefaction

There are cases in which a plasma expands from a planar surface at constant
temperature. This requires a continuous supply of heat, to counteract expansion
cooling, and so can happen only when the Peclet number (Chap. 2) is small or when
the heat transport is very fast compared to the timescale of the expansion. A very
common example is the expansion of the low-density, laser-heated plasma from the
irradiated surface of a laser target. But there are also other cases when the plasma
does not cool too quickly and the very simple isothermal model can be used as
a good first estimate. Figure 4.17 shows a sketch of the initial condition for this
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Fig. 4.17 Sketch of initial
condition for isothermal
rarefaction

Vacuum

Heat flow

Density

Expansion

expansion. Our physical system at t D 0 has warm, dense matter of uniform density
�o to the left of a boundary at which the density drops abruptly to zero, and heat
flows into or through our system as necessary to keep the temperature constant,
so the system is characterized by a constant sound speed, co. Thus, we can expect
self-similar evolution. One can recognize that the only sensible normalization of the
velocity is to take PR D co, so that one also has R D cot. Since c2o D p=� is constant
everywhere, Eq. (4.61) implies that P.�/ D ˝.�/. In this case all terms in Eq. (4.66)
are zero and Eqs. (4.64) and (4.65) become

ŒU.�/ � ��˝ 0.�/C˝.�/U0.�/ D 0; (4.70)

ŒU.�/ � ��˝.�/U0.�/C˝ 0.�/ D 0; (4.71)

where for this one dimensional problem s D 0. These are very easily solved.
Substituting for˝.�/U0.�/ from the first equation, the second equation implies that
U.�/ D 1C � , and then the first equation implies that˝.�/ D ˝oe�� . Examination
of the problem shows that u must be positive or zero everywhere so the solution
applies for � 
 �1. We recognize that the point where � D �1moves into the dense
material as r D �cot, and so propagates as a sonic disturbance. This is very sensible
behavior, as there is nothing in this problem to drive a shock and so the effect of the
boundary should propagate into the material at the sound speed. At the point where
� D �1 we must have � D �o so ˝o D �oe�1. In physical units the solution is thus

u D co.1C �/ D co C r

t
and (4.72)

� D �oe�.1C�/ D �oe�Œ1Cr=.cot/�; where (4.73)

r 
 �cot: (4.74)

This solution has several features worth mentioning. First, it has a linear velocity
profile and an exponential density profile. Linear velocity profiles are common to
many free expansions, which is not surprising as the distance any unforced parcel
of fluid will travel is its speed times the time. The exponential density profile
reflects the specifics of this case; we will see others soon. Second, profiles are often
characterized by a scale length, L; typically defined as .d ln �=dx/�1, which is the
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distance over which an exponential profile decreases by a factor of e or a linear
profile decreases to 0. A potentially independent definition of L is the distance over
which the velocity changes by cs (thus L D .dM=dx/�1/. In this case by either
definition one finds L D cst. Thus, the scale length is the distance an acoustic
wave would travel in time t. It is also the distance over which the initial material
has begun to flow outward. Third, heat must flow outward to sustain an isothermal
rarefaction. In the absence of strong heat transport, expansion cooling will reduce
the temperature and sound speed, as we will see next. Fourth, the density stays
constant at the original interface as the expansion proceeds. A wave of this type
is known as a centered wave. The value of the density there is �oe�1. When an
isolated dense block of material expands, �o is the initial density of the material.
In other expansions, such as those produced by laser heating, the electron density
profile may tend to be exponential below the density at which the laser heating is
strongest, but to have a different shape at higher density. In this case one would
replace �oe�1 in (4.73) by the density below which the profile is exponential.

One can also find isothermal models of cylindrical or spherical self-similar
expansions in the specialized literature. However, these do not produce simple
solutions. They also have rather limited applicability, as diverging expansions cool
much more strongly than planar ones, so that the isothermal assumption is more
readily violated. So instead of pursuing them here, we turn to adiabatic expansions,
in which there is no heating and no heat transport.

4.4.2 The Planar Adiabatic Rarefaction

Now instead of assuming that the expansion is isothermal, we assume that it is
adiabatic with p changing in proportion to �	 and with 	 being constant. This
is often a sensible assumption when matter that is cool enough to be strongly
collisional emerges from the surface of some dense material. A good example is
a shock wave emerging from a material at some density near solid density.

We first consider the release of material into vacuum, so that the geometry is
just that of Fig. 4.17 above. The problem is characterized again by constant density
�o and sound speed co in the initial material, and so once again we know that the
disturbance will propagate into this material at speed co. Also again it is clear we
should take PR D co, so R D cot and we will use � D r=R. Since c2o D 	po=�o,
Eq. (4.61) and the adiabatic equation of state imply that P.�/ D Œ˝.�/�	=	 . In this
case all terms in Eq. (4.66) are zero and Eqs. (4.64) and (4.65) become

ŒU.�/ � ��˝ 0.�/C˝.�/U0.�/ D 0 and; (4.75)

ŒU.�/ � ��˝.�/U0.�/C Œ˝.�/�.	�1/˝ 0.�/ D 0; (4.76)
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where for this one dimensional problem s D 0. Solving these equations is a bit more
involved than was the case for the isothermal rarefaction. One can use Eq. (4.75) to
eliminate ˝.�/U0.�/ from Eq. (4.76) to find

U.�/ D � C Œ˝.�/�.	�1/=2: (4.77)

Then substituting for U.�/ in Eq. (4.75) enables one to integrate for˝.�/, using the
boundary condition that ˝ D 1 at � D �1, finding

˝.�/ D
�

2

	 C 1
� 	 � 1
	 C 1

�

�2=.	�1/
and so; (4.78)

U.�/ D 2

	 C 1
.1C �/: (4.79)

This solution also satisfies the expectation that U D 0 at � D �1. The corresponding
solutions for the physical profiles are

�

�o
D
�

2

	 C 1
� 	 � 1
	 C 1

r

cot

�2=.	�1/
; (4.80)

p

po
D
�

2

	 C 1
� 	 � 1
	 C 1

r

cot

�2	=.	�1/
; and (4.81)

u D 2

	 C 1
co

�
1C r

cot

�
: (4.82)

These profiles have the property that the density and pressure vanish at r D
2cot=.	 � 1/, where u D 2co=.	 � 1/ is the terminal velocity. The terminal velocity
is 3 to 6 times co for 	 from 5/3 to 4/3. The solutions for the profiles thus apply over
the region

� cot � r � 2cot=.	 � 1/: (4.83)

Also note that this rarefaction is also centered; the density and pressure at r D 0 are
constant.

The fact that the terminal velocity is 2co=.	 � 1/ is very useful. It is, for
example, the limiting speed when one material expands against a second material
of much lower density. An example of this phenomenon is found in the design of
experiments. It is common to create a shock wave or a blast wave that produces
a rarefaction when it reaches a second material layer of very low density. As we
discuss further below, the rarefaction drives a shock wave into the second material.
Intuitively, one would expect the driven shock wave to become faster when the
density of the second material is reduced. In practice, this often is not the case. If the
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density of the second material is low enough, then the leading edge of the rarefaction
is moving close to the maximum possible speed. In this regime, changing the density
of the low-density material has little impact on the speed of the shock driven into it.

On the other hand, any high-energy-density fluid is a plasma, and this single-
fluid description does not accurately describe the leading edge of a freely expanding
plasma. The behavior of the leading edge of a freely expanding plasma is much
closer to the behavior of an isothermal rarefaction, because as the density decreases
the electrons are able to transport heat throughout the expanding plasma. The
dynamical behavior is that the fast, light electrons try to rush out ahead of the
ions, establishing an electric field that accelerates the ions. Thus, the electrons
progressively give their energy to the electric field, which gives it to the ions. The
electrons get more energy from heating by the ions and from the new electrons
reaching low enough density to transport heat readily. The ions are accelerated by
their own pressure and by the electric field, and also lose some of their internal
energy to electron heating. From the perspective of two-fluid theory as discussed in
Chap. 2, the electric field is eE D kBTedŒln ne�=dx. The limitation on the acceleration
of the leading edge is a kinetic one. The electric field keeps nearly all of the electrons
in the hot plasma. They reflect at some density and return to the denser region. (This
behavior can be visualized as the electrons attempting to climb a long potential
hill—most of them roll back down.) Only the most energetic electrons reach the
leading edge of the expansion, where interactions with the surrounding gas can
cool them and can help shield the potential of the plasma. An accurate analysis
of this problem does not exist; it would require an entertaining foray into collisional
kinetic theory. But one would roughly anticipate that the leading edge will form
where ne � ngas, the gas density. Using a typical value of ngas � 1010 cm�3 and
a maximum density ne � 1023 cm�3, one finds that the plasma potential in energy
units is roughly 30 kBTe.

We next take up the case of a limited adiabatic expansion. Suppose that instead
of the material releasing into vacuum, it instead expands against a piston being
withdrawn at some speed 2co=.	 C 1/ < Up < 2co=.	 � 1/. This is supersonic, as
indeed is the entire rarefaction for r > 0. As a result, information about the piston
cannot move back up the rarefaction back toward r D 0, but instead continually
moves outward in the laboratory frame. So the rarefaction proceeds as though it
were in vacuum until u reaches Up. From Eq. (4.82), this occurs where

r D
�
	 C 1

2
Up � co

�
t: (4.84)

This must be where the expansion ends; the speed of the expanding material cannot
exceed that of the piston. But what is remarkable is that this location itself does not
keep up with the position of the piston, which is Upt. What happens is that the matter
expands until it reaches a final state in which its speed equals that of the piston, and
then accumulates in that final state, with constant speed, pressure, and density. Thus
the expansion occurs over the range



150 4 Shocks and Rarefactions

Fig. 4.18 Density (gray),
pressure (black), and velocity
(dashed) profiles in a planar
adiabatic rarefaction,
normalized to the �o, po, and
Up; respectively. Here
	 D 5=3,
cot D 1; and U D 1:5co
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� cot � r � 	 C 1

2
Upt � cot � 2

	 � 1cot: (4.85)

The resulting profiles are illustrated in Fig. 4.18. One can observe that density
and pressure reach their initial values at r D �cot and reach their steady values near
the piston when u D Up. (With the specific choice of parameters in Fig. 4.18, this
occurs at r D cot. This is not a general result.) In addition, the density, pressure, and
velocity are constant at r D 0. In (4.85), the limits on r are imposed by the trailing
edge on the left and the leading edge on the right, with the upper limit reached when
Up reaches the maximum value the fluid can accommodate, 2co=.	 � 1/. At this
point the leading edge equals the path of the piston. If the piston withdraws faster
than that, it will pull away from the expanding fluid. This case is equivalent to a free
adiabatic rarefaction.

Now instead of a piston, suppose that there is a zero-pressure, lower-density
material to the right of the initial interface, which has density �r and polytropic
index 	r. A strong shock will be driven into this material, at some velocity us, with
postshock velocity ur, producing a pressure pr D .	r � 1/�ru2r=2. The motion of
the interface then acts like the piston, so the rarefaction in the denser material will
proceed as described above, for a value of ur D U that is self-consistent, so that pr

is equal to the pressure at the piston in the description above.
Adiabatic rarefactions often are produced when shock waves reach an interface

where the density drops. This occurs several times during the explosion of a star,
with the added complication that the shock wave is a blast wave (below). It happens
frequently in experiments as well. We will apply the above equations to this case
when we consider the behavior of a shock at a density drop in Sect. 4.6.1.

4.4.3 Riemann Invariants

Another approach to the adiabatic expansion involves the use of Riemann invariants.
The discussion here of Riemann invariants is included primarily for historical
interest. They enable a time-honored approach to some problems, but the author
has not found them to be of very common use in the context of high-energy-density
research. They also are very time-consuming to teach.
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It will turn out that the Riemann invariants are two quantities that (for isentropic
flows) do not change along specific trajectories, known as characteristics. These
invariants also permit the calculation of adiabatic rarefactions, as we will see.
Adiabatic processes, which may involve mechanical work but not the flow of heat,
are also isentropic. Thus, they are fully described by the Euler equations.

A general disturbance in the properties of a moving fluid can affect the rest
of the fluid in two ways. It can generate sound waves, which move at the sound
speed relative to the fluid flow, or it can generate local changes in properties
(such as composition) that flow with the fluid at its velocity u: Of course, a
general disturbance produces sound waves that move in all possible directions. It
requires very special conditions to produce sound waves moving in a restricted
range of directions. The trajectories of such sonic or fluid disturbances are known
as characteristics. The position vector of a characteristic, x; changes for fluid
disturbances, as

dx
dt

D u (4.86)

and for sonic disturbances as

dx
dt

D u C cs Ok; (4.87)

in which Ok is a unit vector defining a direction of propagation and in which the
fluid velocity u; the sound speed cs, and Ok depend, in general, on x and t: The
trajectory defined by (4.86) is known as the Co characteristic. The trajectories
defined by (4.87) when Ok is aligned with or opposed to the x-axis are known as
CC and C�, respectively. As we will see, it helps one visualize and understand
planar rarefactions to plot the evolution of the fluid with position along the abscissa
and time along the ordinate. Then a surface moving at constant velocity is a straight
line.

We now develop the equations of motion into a form relevant to propagation
along characteristics. First recall that in general the derivative of some function
f .x; t/ along a specific trajectory defined by dx=dt D w is

�
df

dt

�
w

D @f

@t
C w � rf : (4.88)

Finding equations of motion that connect with characteristics turns out to be
easiest working with pressure rather than density so we take

d� D
�
@�

@p

�
S

dp D dp

c2s
; (4.89)

where the derivative is taken at constant entropy. Then (2.1) and (2.2) become
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1

�cs

@p

@t
C 1

�cs
u � rp D �csr � u and (4.90)

@u
@t

C u � ru D �rp

�
: (4.91)

To seek potential behavior along trajectories, we multiply (4.91) by a unit vector
Ok (which could be a direction of sonic propagation), add the equations, and seek an
equation in the form of (4.88) to obtain

Ok �
�
@u
@t

C
�

u C cs Ok
	

� ru
�

C 1

�cs

�
@p

@t
C
�

u C cs Ok
	

� rp

�

D �cs

h
�r � u C Ok �

�Ok � r
	

u
i
:

(4.92)

Here the quantity in the leftmost square brackets is the vector generalization of 4.88,
with ru being the tensor with element (i,j) equal to .@=@xi/uj, written in dyadic
notation. We can recognize that the two square brackets on the left-hand side contain
derivatives of the functions u and p along the trajectory given by (4.87), if Ok is a
direction of sonic propagation. In other words, we can write (4.92) as

Ok �
�

du
dt

�
uCcs Ok

C 1

�cs

�
dp

dt

�
uCcs Ok

D �cs

h
�r � u C Ok �

�Ok � r
	

u
i
: (4.93)

One might have hoped to find here general three-dimensional invariants of the flow
with very broad applicability, which would have required that the right-hand side be
identically zero. However, there are special cases for which one does find invariants.
They include planar, one-dimensional flow, which is all we will consider from this
point forward. In this case we have

du C dp

�cs
D 0 along the CC trajectory

dx

dt
D u C cs; (4.94)

and by taking the difference of Eqs. (4.90) and (4.91) we also find

du � dp

�cs
D 0 along the C� trajectory

dx

dt
D u � cs (4.95)

These two equations, upon integration, yield the Riemann invariants JC and J�,
usually written as

JC D u C
Z

dp

�cs
and J� D u �

Z
dp

�cs
: (4.96)
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Here the integral is the indefinite integral. In effect, it is evaluated only at a
specific point of interest. By integrating either (4.94) or (4.95) from an arbitrary
starting point to two distinct but arbitrary final points and then subtracting the two
results, one can show that the value of JC and J� thus defined must be constant.
The meaning of these equations and of the fact that these are invariants is that
they remain constant along the trajectories, and can thus be used to help find the
properties of the flow. Note that neither � nor cs can be removed from the integral,
as both in general are functions of the pressure. The important application of (4.96)
is to polytropic gases. In this case one finds

JC D u C 2cs

	 � 1 and J� D u � 2cs

	 � 1 : (4.97)

To obtain useful information from the Riemann invariants, there are certain
properties one must understand. First of all, recalling that we are discussing only
planar isentropic flows, once one has specified an initial state of the fluid, only u
and one other quantity are needed to specify completely any other state of the fluid.
The second quantity can be density, pressure, sound speed, or any combination of
these, such as the

R
dp=.�cs/ in JC or J�. Because of this, it is also true that JC

and J�also completely specify the state of the fluid. Thus, if you can follow CC and
C� characteristics to specify JC and J� at their intersection, then you can infer the
properties of the fluid there.

We generally plot the characteristics in a space of x along the horizontal axis
and t along the vertical axis, as in Fig. 4.19. Consider (4.94) and (4.95) for the
characteristics. When both u and cs are constant, the characteristics are straight
lines. Along CC, for example, we know that JC is constant, yet both JC and J�
depend on similar variables. A change in slope of CC requires that either u or cs

changes. Since JC is constant, this means that J� must change in order for the slope
to change. This has a very useful implication: If one Riemann invariant is constant
over some region, then the characteristics for the other Riemann invariant as they
cross this region are straight lines. We will see how these two properties can be used
in describing the planar adiabatic rarefaction.

Next suppose that either CC or C� starts where u D 0, and, for a polytropic
gas, cs D co. Then ask, what is the largest speed that the fluid can flow? This will
occur where the internal energy becomes zero. This is no surprise—the limiting
speed of a fluid must be the speed it reaches when it has no internal energy so all its
energy is kinetic energy. For a polytropic gas, one finds the maximum speed to be
2co=.	 � 1/, which is 3co for 	 D 5=3. This, as discussed in the previous section, is
a useful estimate.

4.4.4 Planar Adiabatic Rarefactions via Reimann Invariants

We are now ready to revisit the planar adiabatic rarefaction. We imagine that there is
an initial, semi-infinite, uniform fluid to the left of the origin, bounded on the right
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Fig. 4.19 Trajectories of the characteristics in a planar adiabatic rarefaction. C� characteristics
are thin solid lines; CC characteristics are dashed lines

by a piston. At time t D 0, the piston instantaneously accelerates to a velocity U:
(We could consider gradual accelerations of the piston, but this has little importance
for our long-term applications of this conceptual model.) We desire to find the
profiles of the fluid parameters that result in time and in space.

Figure 4.19 shows such a rarefaction, with position along the abscissa and time
along the ordinate. In the figure, the thick line to the right shows the velocity U at
which a piston is withdrawing from its initial position at x D 0. (The fluid is uniform
to the left of the origin at t D 0.) The line labeled “Piston” is the boundary of the
fluid; it is not a characteristic. Now consider the region to the left of the origin, which
has uniform properties at t D 0. To the left of the thick line labeled “trailing edge,”
the CC and C� characteristics that intersect at any point originate from initial points
whose properties are identical. Thus, both JC and J� are the same as they were at
t D 0. In this region, the properties of the fluid are unchanged.

Indeed, changes in the fluid properties can occur only through the arrival of other
values of J�, from points where x 
 0. The earliest this can occur is along the
C� characteristic from the origin that is the line labeled “trailing edge.” This is
the tail of the rarefaction wave. One often sees such a feature propagate through a
region that has first been shocked or otherwise heated, when the edge of the region
is allowed to expand. This wave propagates at the sound speed of the initial medium.
The CC characteristics that reach the edge of the rarefaction wave continue across
the system toward the right, everywhere the fluid goes. As a result, because JC is
constant along x � 0 at t D 0, JC is constant everywhere. This implies as well that
all the C� characteristics are straight lines. For the case of a polytropic gas, one has
JC D 2co=.	 � 1/ so at any location one has

JC D u C 2cs

	 � 1 D 2co

	 � 1 , from which (4.98)
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cs D co � 	 � 1
2

u: (4.99)

This tells us how the sound speed (and thus temperature) varies through the
rarefaction. As u increases the medium cools—this is the anticipated expansion
cooling. Next consider the fluid properties at the piston. Since u is fixed there, as U;
determining either JC or J� determines the state of the fluid. The CC characteristics
propagate from the initial state to the piston, so JC is known. Knowing JC and U;
one can then find J� for the C� characteristics leaving the piston. For the case of a
polytropic gas, one has

J� D U � 2cs

	 � 1 D 2U � 2co

	 � 1 ; (4.100)

using (4.99). Because JC is constant, the C� characteristics emerging from the
piston are straight lines with

dx

dt
D U �

�
co � 	 � 1

2
U

�
D 	 C 1

2
U � co: (4.101)

Along these characteristics, JC and J� are both constant, so the state of the fluid is
constant. This portion of the fluid moves with the piston at velocity U and has sound
speed

cs D co � 	 � 1
2

U: (4.102)

This region with constant fluid properties is bounded on the left by the thick line
labeled “leading edge,” which is the front end of the region of expansion. What
remains is to describe the region between the leading edge and the trailing edge.
The C� characteristics form a fan of straight lines emanating from the origin. This
is sometimes known as a rarefaction fan. The rarefaction wave is centered, which
refers to the fact that one set of characteristics emerges from a common point.
Equation (4.99) gives cs as a function of u: As a result, the equations for the C�
characteristics are

dx

dt
D u � cs D 	 C 1

2
u � co D const. (4.103)

We can integrate this equation and rearrange it to find an equation for u:

u D 2

	 C 1

�
co C x

t

�
: (4.104)
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For the polytropic gas, we now have a complete description of the fluid because

�

�o
D
�

cs

co

�2=.	�1/
and

p

po
D
�

cs

co

�2	=.	�1/
; which become (4.105)

�

�o
D
�
1 � .	 � 1/u

2co

�2=.	�1/
and

p

po
D
�
1 � .	 � 1/u

2co

�2	=.	�1/
; or (4.106)

�

�o
D
�

2

	 C 1
� 	 � 1
	 C 1

x

cot

�2=.	�1/
and (4.107)

p

po
D
�

2

	 C 1
� 	 � 1
	 C 1

x

cot

�2	=.	�1/
; for (4.108)

� cot � x � 	 C 1

2
Ut � cot � 2

	 � 1cot : (4.109)

In this way we recover the same results for the profile that we found in Sect. 4.4.2.
It is likewise the same that the velocity of the point where u D U in the rarefaction
moves more slowly than the piston itself, so that there is a region of constant
properties attached to the piston, as shown in Fig. 4.18.

4.5 Blast Waves

A uniform shock wave can come to an end in two ways. The previous section
discussed one of them: the shock wave can reach a lower-density medium and a
rarefaction wave can propagate backward into the shocked material. This section
discusses the other one: the source of pressure can end, allowing a rarefaction wave
to propagate forward and overtake the shock. This forms the structure illustrated in
Fig. 4.20. In the figure, the first two curves show the nearly steady shock produced
by the pressure of laser ablation (Chap. 8). The curves are not completely flat
because, in the simulation and perhaps in a real system, the pressure produced by the
laser does evolve with time. The later three curves, all after the end of the laser pulse,
show the rarefaction wave developing on the left edge of the structure and soon
overtaking the shock to form a blast wave. (A word on semantics is in order here.
This definition of a blast wave as the structure formed when a rarefaction overtakes
a shock is fairly common in the astrophysical literature, and is the one we will use.
In the shock physics literature, the term blast wave is more often restricted to such
structures produced by spherical expansions from a point explosion, while other
cases would be described as “waves produced by impulsive loading,” or perhaps as
“planar blast waves.”)
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Fig. 4.20 Simulated evolution of a blast wave from a shock wave. Here laser irradiation from the
left drives a nearly steady shock wave for 1 ns, after which the rarefaction from the front surface
overtakes the shock wave to form a blast wave. The curves show the profile at 0.6, 0.8, 1.2, 1.4,
and 1.6 ns after the start of the laser pulse

Blast waves are very common because releases of energy are of limited duration.
On a small scale, processes such as solar flares release energy, causing blast waves
to form in the solar wind. In some systems, hydrogen can accumulate on the surface
of a neutron star, leading to occasional nuclear explosions known as “astrophysical
flashes.” Such flashes will drive blast waves through the surrounding material.
Stellar explosions at first drive shocks, not blast waves. But eventually, when the
interior pressure is much reduced and the accumulated interstellar material exceeds
the mass of the star, supernova remnants develop a blast-wave structure which they
retain for much of their evolution. One can think of many other cases, such as
the interaction of jets with clouds, in which blast waves are produced. The most
common blast wave in the Earth environment is produced by lightning, which briefly
deposits energy within the lightning channel.

Planar blast waves are often useful in high-energy-density experiments. They
can drive Rayleigh–Taylor instabilities at interfaces, as is discussed in Chap. 5. In
addition, they can be used as timescale converters. One may, for example, have a
laser that can provide power most effectively for 1 ns (or a Z pinch that can do so for
10 ns), but need to deliver energy over a longer timescale to some object. By forming
a blast wave and then letting it propagate, one creates a store of energy. With time
and distance, the blast wave carries more mass at lower velocity. If it is then allowed
to release that energy, for example, by encountering a lower-density medium, it can
drive further hydrodynamics for a much longer period than the duration of the initial
energy source.

4.5.1 Energy Conservation in Blast Waves

Because most of the material in a blast wave is near the shock, it is useful and
informative to see what one can infer from energy and momentum conservation.
Consider again Fig. 4.20. We will discuss the spherical case. Spherical blast waves
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are often known as Sedov–Taylor (or Taylor–Sedov) blast waves as Sedov and
Taylor, along with von Neumann, were the first to discuss their behavior. There
is an initial shock transition, followed by a rarefaction. The shock is nearly always
a strong shock; the source of energy in the problem is the energy behind the shock.
The total mass in the blast wave is the amount of mass that has been swept up by the
shock. If the mass density � of the external medium is constant and the shock radius
is R; then the total mass within a spherical blast wave is M D 4�R3=3. In cases
where very little energy has been lost by radiation or heat conduction, the energy
within the blast wave is approximately

E D M

�
2

	 C 1

�2
PR2; (4.110)

in which we assume the material is a polytropic gas to obtain the fluid velocity
in terms of the shock velocity PR. The important result does not depend on this
assumption. Equation (4.110) remains valid despite the conversion of thermal
energy to kinetic energy in the rarefaction, but does assume that all the matter has
been accelerated by the shock wave at its present velocity. In other words, it assumes
that the change in shock velocity is slow. Conserving energy, we obtain

dM

dt
PR2 D �M2 PRd2R

dt2
; (4.111)

in which dM=dt D 4�R2 PR, so

3 PR2 D �2R
d2R

dt2
: (4.112)

If one seeks a power-law solution of the form R D Rot˛ , in which Ro and ˛ are
constants, one finds ˛ D 2=5. The Sedov–Taylor blast wave thus has a radius that
increases in proportion to t2=5.

If an energy-conserving blast wave is able to propagate far enough, which
happens, for example, with blast waves from lightning, then the shock wave
becomes a weak shock wave and eventually a disturbance that propagates at the
local sound speed. This case is discussed in more detail in Zel’dovich and Razier
(1966). An estimate of the radius at which this will occur can be found by setting
the explosion energy Ex per unit volume equal to the thermal energy. For a spherical
explosion, this occurs when r � .3Ex=.8po//

1=3, where po is the initial pressure.
Thus, for a typical supernova, which deposits about 1051 ergs in exploding stellar
material, and a typical interstellar pressure of 1.6 picodynes (1 cm�3 and 1 eV), one
finds a radius of 6 � 1020 cm, or about 600 light years. For a cylindrical explosion,
where Ex is now the energy per unit length, one finds r � p

Ex=.9po/. For lightning,
which has Ex � 105 J/m D 1010 ergs/cm, one finds r � 33 cm. One can see that one
could not experience the shock wave produced by lightning at a safe distance from
the lightning itself.
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The estimate of ˛ D 2=3, obtained in a homework problem, on the assumption
that all the mass is near the shock, is only an upper limit because the mass is in
fact distributed to minus infinity. (The lower limit is ˛ D 1=2, and for 	 D 5=3,
˛ D 0:611.)

To examine momentum conservation in a blast wave, it is tempting to take
the same approach and to set the derivative of M PR equal to 0. However, this
is not generally valid. While the conversion of thermal energy to kinetic energy
in the rarefaction does not affect the overall energy balance, the production of
momentum in the rarefaction does affect the momentum balance. While outward
momentum is added to the newly shocked matter, inward momentum is generated
by the rarefaction. In consequence, momentum conservation is more difficult to
calculate and does not generate much insight into the global evolution of an energy-
conserving blast wave.

However, momentum conservation is sometimes important because radiative
energy losses are not always negligible. There are circumstances in which a blast
wave enters a strongly radiating phase, so that it no longer conserves energy. All
supernova remnants eventually enter this phase, when they become slow enough
that the postshock material cools rapidly by radiation (see Chap. 7). The thermal
energy produced by the shock is radiated away, so the energy remaining in the
system steadily decreases. At the same time, there is little thermal energy to drive
a rarefaction so the shocked material tends to become a dense shell moving with
the shock. The pressure of this shell must equal the ram pressure of the incoming
material, so as it loses energy by radiation it becomes quite dense and cool. At the
same time, its velocity approaches the shock velocity in the frame of the unshocked
matter. (In the shock frame, the very dense material that has been shocked and then
cooled can move only very slowly away from the shock.) Such a system is often
described as a momentum-conserving snowplow.

The time evolution of a momentum-conserving snowplow can be found by
setting the derivative of M PR equal to 0. The approach to the solution is identical to
that used for the conservation of energy. For the spherical case, one finds ˛ D 1=4.
Thus, spherical momentum-conserving snowplows expand with R / t1=4.

4.5.2 The Sedov–Taylor Spherical Blast Wave

We now turn specifically to the problem of finding the profiles of the fluid variables
in a spherical blast wave. This is often known as the point explosion problem, as self-
similar solutions require one to assume that the energy originated at an initial point
(or line). Solutions found under this assumption will apply only when the blast wave
is far enough from the source that this assumption becomes accurate. This problem
can be solved analytically, as is discussed by Sedov (1959). The first numerical
solution was reported by G.I. Taylor, and von Neumann also contributed an early
solution. Here we show how to develop a set of ordinary differential equations
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in terms of an appropriate similarity variable. These equations can typically be
integrated quite quickly using a computational mathematics program.

The point explosion problem has only two constraints having physical dimen-
sions. There are the explosion energy, Ex, and the initial density of the surrounding
medium (assumed constant), �o. The independent variables are space r and time t:
This allows us to carry out the procedure described in Sect. 4.3. The ratio of Ex to
�o has units of length to the fifth power divided by time squared, so we can obtain
a dimensionless parameter from these quantities. For a self-similar motion, we then
have �

Ext2

�or5

�
D const; (4.113)

in the sense that the motion of any feature or point must keep this parameter
constant. For this problem it is convenient to consider the position of the shock,
R.t/; for which

R D 1

Q

�
Ex

�o

�1=5
t2=5; (4.114)

where Q is a constant to be determined later. Then we can use � D r=R as the
similarity variable and we see that ˛ D 2=5. Note that we have determined the
scaling of the radius with time much more easily and exactly than we did in the
energy argument of Sect. 4.5.1. This is rather amazing, since we needed only a little
simple reasoning to do so. Note also that the shock velocity is PR D .2=5/R=t: We
apply the general transformation relations of Sect. 4.3, writing

u D 2

5

R

t
U.�/; � D �o˝.�/; and p D

�
2

5

R

t

�2
�oP.�/: (4.115)

Here U; ˝, and P are dimensionless functions providing the shape of each of the
fluid variables. We then have for any function h.�/,

@h.�/

@t
D h0.�/

@�
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D �

�
2
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�
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�
h0.�/; and (4.116)
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D
�
�

r

�
h0.�/: (4.117)

Here the prime designates the derivative of the function with respect to its argument.
Using (4.115)–(4.117), Eqs. (4.64)–(4.66) become

ŒU.�/ � ���˝ 0.�/C Œ�U0.�/C sU.�/�˝.�/ D 0; (4.118)

� 3

2
˝.�/U.�/C ŒU.�/ � ��˝.�/U0.�/C P0.�/ D 0; and (4.119)

� 3˝.�/P.�/C ŒU.�/ � ��Œ˝.�/P0.�/ � 	P.�/˝ 0.�/� D 0: (4.120)
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Fig. 4.21 Dimensionless
profiles for the Sedov–Taylor
blast wave. U (dashed),
˝(black), and P (gray) are
shown as a function of r=R.
The amplitudes are
normalized to unity at the
shock radius r D R
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Here s D 2 for this spherical case. These are the ordinary differential equations we
set out to obtain. Note that 	 enters explicitly as a parameter in these equations.
Thus, the solution is not independent of the equation of state. The numerical
coefficients arise from the scaling of the dimensionless parameter, and thus are
specific to this problem.

The boundary conditions required to integrate the equations are obtained at the
shock front, where

U.1/ D 2

	 C 1
; ˝.1/ D 	 C 1

	 � 1 ; and P.1/ D 2

	 C 1
: (4.121)

By numerically integrating (4.118)–(4.121), one finds the profiles of the three
dimensionless functions. These are shown in Fig. 4.21 for the spherical case (s D 2)
and for 	 D 5=3. This value of 	 is reasonable for nearly all astrophysical systems
and for some laboratory experiments. For explosions in air, it would be better to take
	 D 1:4 and for many laboratory experiments 	 could be as low as 4/3 or even less,
as was discussed in Chap. 3. One sees that nearly all the mass is concentrated near
the shock (even more than it first appears, when one realizes that the total mass per
unit radius is proportional to r2˝).

The above equations are sufficient to give us the profile shapes, but not to
determine the quantity Q, which sets the absolute value of R at a given time. Here is
where we must make use of the second parameter having physical dimensions, Ex.
To find Q, one can evaluate the total energy in the self-similar profile, which must
equal the explosion energy Ex. The integral for Ex is

Ex D
Z R

0

�
p

	 � 1 C �u2

2

�
4r2dr; (4.122)

from which one can show that

Q5 D 16

25

Z 1

0

�
P.�/

	 � 1 C 1

2
˝.�/U2.�/

�
�2d�: (4.123)
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Evaluating this integral for the profiles shown in Fig. 4.21, which assumes 	 D
5=3, one finds Q D 0:868. This in turn lets us evaluate from (4.114) the radius
for actual cases. For a supernova remnant formed by the release of 1051 ergs into a
medium with a density of 10�23 g/cm3, one finds R D 1:2t2=5, with R in light years
and t in years. Obviously this does not apply within 1 year, and in fact hundreds
to thousands of years are required to sweep up enough mass that a point-explosion
model is appropriate. As another example, a laboratory blast wave experiment might
release 100 J into a gas at a density of 10 mg/cm3. In this case R D 11:1t2=5, with R
in mm and t in �s.

4.6 Phenomena at Interfaces

All of the discussion above, with the exception of the discussion of reflected
shocks, relates only to the behavior of an isolated hydrodynamic phenomenon in
an unbounded medium. This is a necessary start, but the features of interest in
most physical systems arise from the interaction of hydrodynamic phenomena with
structure in the medium or with each other. Understanding these effects is also
needed to design clever experiments.

4.6.1 Shocks at Interfaces and Their Consequences

In Sect. 4.1.6, we discussed the generation of reflected and transmitted shocks
when a shock wave approaches an interface where the density increases. We also
discussed the flyer-plate case, described by the same mathematics, in which a cold,
moving material collides with another material. In general, the material approaching
(or creating) the interface has a velocity u1 and a pressure p1, and the pressure p1
can range from 0 to .	 � 1/�1u21=2; which is the limit obtained when the pressure
was produced by a strong shock (and is �1u21=3 for 	 D 5=3). Here we want to
consider the more general case in which a shock wave (or in general a moving slab
of material) approaches an interface beyond which there is material of arbitrary
density, specified as �4 in the notation of Sect. 4.1.5, which we will use in this
discussion.

This more general case is of interest in the laboratory and in astrophysical
systems. In the laboratory, a radiation source can accelerate material in addition
to shocking it, as is discussed in Chap. 9. This can be useful in an experiment if
the goal is to make more energy available for the later evolution of the system.
Such an object—a shocked and accelerated slab—might be described as a plasma
flyer plate. In astrophysics, enduring radiation sources can shock and accelerate
the objects they irradiate. This is the case, for example, in the star-forming region
that includes the Eagle nebula, where the bright young stars have shocked and are
now accelerating the nearby molecular clouds. When such an accelerated object
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Fig. 4.22 A rarefaction may
occur when a shock wave
reaches an interface where
the density drops, as
illustrated here
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encounters a stationary one, which might be a clump at higher density or a cloud
at lower density, then on a global scale the kinds of interactions discussed here will
ensue.

If �4 is small enough, we expect to see an adiabatic rarefaction when the shock
reaches the interface. Figure 4.22 illustrates the situation in the lab frame. Let us
apply the theory of Sect. 4.4.2 to this case. The new feature here is that it is best
to do the mathematics in the downstream frame, in which the fluid downstream
of the shock is at rest. We want to examine the system at the precise moment
when the shock has reached an interface where the density decreases. In this frame,
the expansion of the shocked matter follows identically (4.79)–(4.83). All the new
aspects of this problem then have to do with correctly specifying the properties of
the upstream medium.

In the downstream frame, at the moment the shock reaches the interface, the
new upstream material (of density �4) is moving toward the shocked material at a
velocity u1. The rarefaction then pushes shocked material forward at a velocity U
in the downstream frame, which is U + u1 in the lab frame. Thus, U + u1 is the
postshock fluid velocity of the upstream material in the lab frame. This implies that
the transmitted shock velocity, in the lab frame, is .	3C1/.UCu1/=2:We described
the head of a centered rarefaction wave as moving backward in the material, which it
does do in a Lagrangian sense. In the lab frame, however, the head of the rarefaction
wave moves forward at urw, which is

urw D u1

 
1 �

p
	1.	1 � 1/p

2

!
: (4.124)

Note that u1 can also be written 2us1=.	 C 1/. The pressure in the shocked
upstream medium, p3, based on (4.18), is
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Fig. 4.23 Profiles of the
normalized interface velocity
in the downstream frame
when a shock encounters a
density drop. The black curve
shows 	1 D 5=3 and the gray
curve shows 	1 D 4=3, with
	4 D 5=3 in both cases
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p3 D 	3 C 1
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�4.U C u1/

2 : (4.125)

Matching this pressure is the value at the interface, pi. This can be found
from (4.106), evaluated at the piston, which with current variable definitions is

pi D p1

�
1 � 	1 � 1

2

U

cs1

�2	=.	�1/
; (4.126)

in which cs1 is the sound speed in the initial shocked matter. One can find U by
setting pi D p3. For any specific choice of 	 , the resulting equation can be converted
to a polynomial equation for U. Figure 4.23 shows, for 	3 D 5=3 and for two
values of 	1, how the resulting value of U=us1 depends on the density ratio �4=�o.
Remember that this is in the downstream frame; in the lab frame, U is increased by
2us1=.	1 C 1/.

One can see in Fig. 4.23 that there is a limiting value of �4=�o beyond which
U disappears on the plot. In terms of the mathematics just described, U becomes
negative, but this is not the physical solution. Instead, at this point the response of
the system is to produce a reflected shock rather than a rarefaction. This can occur
even if �4 < �1. The gray curve in Fig. 4.23 illustrates this case. To see how this
occurs, consider that a reflected shock will form once the pressure in the shocked,
low-density material exceeds p1. Consider also that the postshock fluid velocity in
the low-density material decreases as �4 increases, and has a limiting value of u1
at the transition from a rarefaction to a reflected shock. Thus, assuming the shock in
the low-density material to be a strong shock (so (4.23) applies), we would expect
this transition to occur when .	3 � 1/�4u21=2 D p1. In the specific case in which
p1 is produced by a strong shock in a stationary material (which then approaches a
stationary interface), one has p1 D .	1 � 1/�1u21=2, from which one can obtain the
threshold density for a reflected shock as

�4 D .	1 � 1/
.	3 C 1/

�1 D .	1 C 1/

.	3 C 1/
�o: (4.127)
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This is no surprise. It just says, for 	1 D 	3, that the transition occurs when �4=�o at
the interface exceeds 1, or in other words when the interface changes from a density
decrease to an increase. But on the other hand if 	3 > 	1, then this transition will
occur while there is still a density drop.

Consider also the more general case of a plasma flyer plate in which material that
has been shocked or otherwise heated is accelerated to a higher velocity before it
impacts a second material, creating an interface. In this case p1 < .	1�1/�1u21=2. If
we express this as p1 D f�1u21, where as discussed above 0 < f < 1=3 for 	 D 5=3,
then the condition to produce a reflected shock becomes

�4 D 2f

.	3 C 1/
�1: (4.128)

Here we see that the transition from a rarefaction to a reflected shock can occur at
an arbitrarily low density, which depends on the properties and thus the history of
the incoming matter.

4.6.2 Overtaking Shocks

It is not uncommon to find shock waves produced in succession, whether by a
sequence of energy releases at the solar surface or by a sequence of irradiation
pulses in an experiment. If a second shock is stronger than a first shock, then it
moves more rapidly and will overtake the first one. The discussion so far in this
chapter makes the qualitative behavior of such systems fairly obvious. We review it
briefly here.

As the stronger second shock overtakes the first shock, there is a moment when
they coalesce. In Fig. 4.24, the left set of curves show the two shocks, before the
stronger one has overtaken the weaker one. The middle set of curves shows them
as they coalesce. At this instant, the total density jump is the product of the density
jump produced by each of the two shocks. However, unless the two shocks are fairly
weak, this density jump is not consistent with a single shock. For example, if a shock
with a density jump of 4-to-1 overtakes a shock with a density jump of 3-to-1, the

Fig. 4.24 Dynamics of
overtaking shocks. Here a
polyimide material of density
1.4 g/cm3 is driven at 10 Mbar
for 1 ns and then is driven at
100 Mbar. The curves show
10.5, 12, and 13.5 ns. The
dashed gray curves are
pressure
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resulting instantaneous density jump is 12-to-1, which few materials can sustain. So
what does the system do?

One can see what happens by considering the moment of coalescence as an
initial condition, in which the postshock material has a certain density, pressure,
and velocity. What we have then is identical to the plasma-flyer-plate problem with
a low value of the density beyond the interface created when the flyer plate reaches
the object it collides with. The fact that the density of the doubly shocked material,
�1, is produced by two shocks guarantees that the unshocked density, �4, will be
less than that given by (4.128). As a result, there will be a rarefaction in the shocked
material, and a strong shock will be driven forward into the unshocked material.
One can see this shock and rarefaction in the rightmost curves in Fig. 4.24. Soon
after the rarefaction forms, the head of the rarefaction wave will return to the driven
surface where the pressure that drove the shocks was applied. We take up next what
happens then.

4.6.3 Reshocks in Rarefactions

The longer-term behavior of shocked layers of material is often very relevant to
systems of interest. As shock waves or rarefactions traverse a system, they encounter
interfaces or other waves and interact. This can be a complicating factor in any
system for which the study of a later interface is of interest. Once more than one
wave reaches the interface, its behavior becomes more complex. It is tempting to
form the conclusion that every wave always begets a next wave, but this is not
correct. In particular, when a rarefaction wave crosses a system, it may or may
not produce a subsequent wave. Suppose specifically that a pressure source creates
a shock wave in a layer of material, as described in Sect. 4.1. Suppose further that
when the shock wave reaches the end of the layer, a rarefaction forms as described in
Sect. 4.4. The head of the rarefaction moves back through the shocked material, and
eventually reaches the initial surface. What happens then is illustrated in Fig. 4.25.

In these simulations whose results are shown in the figure, a pressure of 30 Mbar
drives a shock through C1H1 of density 1 g/cm3. This produces the shock wave that
moves up and to the right across the system. Once the shock wave reaches zone
400 (the end of the system), a rarefaction wave returns toward the driven surface.
Consider first parts (a) and (b) of the figure. In the simulation producing these
results, the driving pressure is always present. One can clearly see the rarefaction
structure as a variation in density (shade of gray) between the rarefaction wave
and the top of the image. When the rarefaction wave reaches the driven surface,
a new shock is launched back into the plasma. This is easy to understand as follows.
The rarefaction wave decreases the pressure of the shocked material. Even so, by
assumption the driving pressure does not change. Once the pressure in the material
begins to decrease at the driven interface, the interface will accelerate in response.
This will launch either a sound wave or a shock wave back into the material.
One cannot tell which from simple reasoning, but it turns out in this particular case
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Fig. 4.25 A grayscale display vs. Lagrangian zone and time can be an effective way to see the
waves in a hydrodynamic system. In the first row are (a) density and (b) pressure for a reshock
in a rarefaction, created by the continuous application of a 30 Mbar pressure to a CH material at
1 g/cc. In the second row are (c) density and (d) pressure for a system in which the driving pressure
ends before the rarefaction returns to the driving surface, so no reshock is produced. The jagged
boundaries are caused by the finite zone size and finite number of time outputs in the simulation

that in response to the first rarefaction a second shock wave is launched. In this
specific system, there is no next wave, as the second shock just travels down the
density gradient to the end of the expanding plasma where it disappears. If there
were further layers of material, then the second shock might produce further shock
or rarefaction waves that would traverse the plasma. When this happens, it is known
as reverberation.

Consider now parts (c) and (d) of Fig. 4.25. In the simulation producing these
results, the driving pressure ends after 0.8 ns. One can see the shock and the
beginning of the rarefaction wave returning toward the driven surface. However,
there is a second rarefaction wave moving upward from the driven surface, due to
the expansion of this surface now that it is no longer driven. When rarefaction waves
meet, they do not produce further waves. There is no source of pressure to produce
a reshock in either rarefaction. Thus, if a rarefaction approaches a surface that was
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driven but is no longer driven, for example, because the radiation source has turned
off, then there will be no further wave. The result in Fig. 4.25 is that the density and
pressure of the plasma decrease smoothly in space and time as the plasma expands
and cools.

4.6.4 Blast Waves at Interfaces

We discussed above how common blast waves are in astrophysics, because the
originating event that produces a shock wave very often is short lived compared
to the lifetime of the shock. As a result, the rarefaction from the source overtakes
the shock and produces a blast wave. The blast wave then may encounter interfaces
where the density changes, in response to which these interfaces will evolve. A very
important application of this lies within a Type II supernova, in which the blast wave
generated near the core of the star encounters density drops at the boundary between
the C–O layer and the He layer, and again at the boundary between the He layer and
the H layer. The density also decreases within each layer as radius increases, but
this turns out not to be essential to the behavior at the interface.

Figure 4.26 illustrates the behavior. When the blast wave reaches the interface,
the density drop at the interface cannot be sustained by a single shock. Just as in
the cases of the adiabatic rarefaction and of overtaking shocks, a forward shock is
driven into the low-density material. The surprising development is that a shock
develops in the high-density material, despite the fact that (4.127) is not satisfied.
We can explain what this is and why it is called a reverse shock by contrasting this
case with the adiabatic rarefaction. In the adiabatic rarefaction, there is an indefinite
supply of density and pressure behind the interface. In the adiabatic rarefaction,
both the density and pressure increase with distance behind the interface, until they
eventually reach their initial values. In contrast, in the blast-wave case, a rarefaction
does propagate backwards, causing the plasma behind the interface to accelerate,
but the pressure in the blast wave soon drops below the pressure in the shocked
low-density material in front of the interface. One then has an expanding and

Fig. 4.26 Development of a
reverse shock when a blast
wave passes through an
interface. This case is
produced in a simulation
when a laser with an energy
flux of 4:2� 1014 W/cm2

strikes a 150-�m-thick layer
of polyimide, followed by a
low-density carbon layer
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Fig. 4.27 Result of a
simulation of the explosion of
SN 1987A. The forward and
reverse shocks are evident
near the outer edges. The
dramatic structures are
discussed in Chap. 5. Credit:
Kifonidis et al. (2003)

accelerating flow of material that encounters the slower, higher-pressure material
near the original interface. A shock develops at this transition. Thus, a reverse shock
is a shock formed when a freely expanding plasma encounters an obstacle. This is
distinct from the reflected shock formed when a shock wave crosses an interface. In
the blast-wave case, the blast wave creates its own obstacle through its interaction
with the interface.

One can also see in Fig. 4.26 that the density decreases behind the forward shock
and behind the interface. This reflects the gradual expansion of the region between
the shocks in response to the pressure gradient that develops as the system slows.
This has the additional consequence that the forward shock soon develops a blast-
wave structure itself. The shape of this structure may differ significantly from the
shape of the initial blast wave. It also may not soon be self-similar, as the distance
from the interface introduces an additional physical scale into the problem. Even so,
if the interface moves so that its position is / t˛ , then the profile of the shocked
low-density material is a self-similar one.

Systems in which blast waves encounter interfaces have been an important area
of activity in the early years of experimental astrophysics. This has been motivated
by instabilities in Type II supernovae, which we discuss further in the next chapter,
and by the question whether errors in calculations of their nonlinear evolution might
explain some discrepancies with data. Figure 4.27 shows results from a calculation
of the explosion of a Type II supernova (1987A). The forward and reverse shocks
are clearly evident. Figure 4.28 shows data from an experiment in which these two
features were also produced. The experiment was a well-scaled reproduction of the
supernova explosion for reasons discussed in Chap. 10. This particular experiment
was done to confirm that the correct one-dimensional behavior was achieved. It
lacked the initial perturbations that would have produced unstable structures.

4.6.5 Rarefactions at Interfaces

Rarefactions never proceed unimpeded forever. Whenever a rarefaction develops
in astrophysics, whether at the edge of a supernova when the blast wave emerges
from the star, at the edge of a molecular cloud when a shock wave emerges
from it, or somewhere else, the rarefaction encounters at minimum the interstellar
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Fig. 4.28 Data from
experiment sending a blast
wave through an interface.
Laser irradiation produced a
shock in a 150-�m-thick
layer of dense plastic
(1.41 g/cm3), then ended
allowing a blast wave to form.
At the time of the image, the
interface between the plastic
and 50 mg/cm3 foam has
moved 650-�m and 2D
effects, producing curvature
and rollups at the edges, are
becoming important

medium. In addition, it may encounter other objects as it propagates. This produces a
situation in which a flowing, expanding, cool plasma produces an interface through
its interaction with something. After reading the prior section, it will come as no
surprise that the interaction produces a forward shock and a reverse shock.

Experiments can produce similar phenomena, by creating rarefactions that
encounter a layer of material. In general, this can be a way to produce a high-Mach-
number flow and then to let it interact. It also can have the effect of converting
a brief source of energy into a lower-pressure source of much longer duration.
Among recent applications of this technique have been equation of state studies
(see Chap. 3), experiments related to supernova remnants (see below), experiments
to produce jets, and experiments to study the long-term interactions of shocks and
clumps.

The classic example of a rarefaction that encounters an interface is the young
supernova remnant. We can observe the explosion of a star for at most a few
years. In contrast, we can observe nearby supernova remnants for centuries if not
millennia. Supernova remnants are the observable structures that form through the
interaction of the ejecta from a stellar explosion with the surrounding (circumstellar)
environment. They are widely believed to produce most of the Cosmic Rays that
irradiate the Earth. Despite our ability to observe a number of supernova remnants
in considerable detail, the structure and the evolution of supernova remnants pose
many challenges to our understanding.

The energy that creates the supernova remnant is the kinetic energy of the
exploding star, typically about 1051 ergs. An interesting feature is that the “interface”
that leads to the structure has neither a decrease nor an increase of the density, but
rather has an abrupt decrease in the density gradient. The material emerging from
most stellar explosions can be argued to be self-similar (see Zel’dovich and Razier
1966) and to have an inverse-power-law dependence on radius and time. The profile
is quite steep, with an exponent of 8 or 9. The stellar ejecta undergo a homologous
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expansion, with velocity, v, radial distance, r; and time, t; related by v D r=t.
Expansion cooling reduces the temperature of this material to a low value early
on, so that nearly all the energy of the ejecta is kinetic energy.

In contrast, the circumstellar density falls off much more slowly, as 1=r2 if it is
due to a prior stellar wind or perhaps more slowly if the star has been an inactive
white dwarf, as in the case of Type Ia explosions. When the rapidly expanding
ejecta from the star interact with the nearly stationary circumstellar matter, forward
and reverse shocks develop. This initial velocity of the forward shock is of order
10,000 km/s. This first phase of supernova-remnant evolution is the free-expansion
(or “young-remnant”) phase. Ignoring clumps and instabilities, the entire structure
between the two shocks moves at a velocity that is determined by the properties of
the ejecta and the circumstellar material.

The system involves initial densities that are power laws, and the expansion
velocity, which is x=t, introduces no additional scales, which suggests that the
evolution might be self-similar. In 1982, R.A. Chevalier showed that it can be
analyzed as two self-similar regions that are matched across the contact surface.
One can find three coupled equations for the self-similar evolution of the density,
the velocity, and the sound speed between the reverse shock and the interface, and
between the forward shock an the interface, just as we discussed in Sect. 4.3. Here
again, modern computational mathematics programs make the integration of these
equations straightforward. Figure 4.29 shows the density profile for parameters
relevant to SN 1987A, with the ejecta density scaling as r�9 and the circumstellar
density scaling as r�2.

It may seem strange to treat the supernova remnant as a hydrodynamic object,
because the average density of the circumstellar medium may be of order 1 or 10
particles per cubic centimeter. The feature that permits a hydrodynamic treatment
is the presence of a magnetic field that is small enough that it does not affect the
dynamics yet large enough and structured enough to confine the particles to a very
small volume on the scale of the entire supernova remnant. This turns out to be
very much the case. The primary uncertainty in the hydrodynamic treatment is the
potential effect on the hydrodynamics of a developing population of cosmic rays.

One example of an extremely young supernova remnant is the remnant from
SN 1987A (reviewed by Chevalier 1992), shown in Fig. 4.30. At only 150,000

Fig. 4.29 Self-similar profile
of density in a young
supernova remnant, showing
forward and reverse shocks.
The supernova ejecta come in
from the left
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Fig. 4.30 The supernova remnant from SN 1987A and a related experiment. (On left) SN 1987A
in 1997. The arrow on the image of SN1987A shows the hot spot where interaction of the shocked
matter and the ring had begun. The image of SN 1987A is from the Hubble Space Telescope. It
was created with support to the Space Telescope Science Institute, operated by the Association of
Universities for Research in Astronomy, Inc., from NASA contract NAS5-26555, and is reproduced
with permission from AURA/STScI. (On right) Schematic of the experiment. The thickness of the
plastic layer is 200�m. The diameter of the foam cylinder is 700�m

light years, this object is far closer and thus far more diagnosable than any other
supernova of the modern era. The ring shown, and two larger rings as well, are of
unknown origin and provide an added element of excitement. During the years after
the explosion, the development of radio and X-ray emission from this object were
followed by the advent of visible emission at “hot spots” as the stellar ejecta began
to collide with the innermost ring.

Laboratory experiments can help improve our understanding of some of the
mechanisms present in supernova remnants, and can help test the computational
models we build to interpret their behavior. The design of the first such experiment,
by the author and colleagues (Drake et al. 2000b) is also illustrated in Fig. 4.30. The
arrows and labels in the figure identify the correspondence between features in the
experiment and those in SN 1987A. These experiments were in a planar geometry,
intended to simulate a small segment of the overall supernova remnant expansion.
The experiment began when an intense X-ray flux, produced by laser heating of a
gold hohlraum (see Sect. 9.3), irradiated a 200-�m-thick layer of plastic. The X-
rays ablated the plastic, launching a strong shock wave through it, at a pressure of
5�1013 dynes/cm2 (50 Mbar). This was the analog of the initial blast wave produced
by the SN explosion. This shock wave compressed, accelerated, and heated the
plastic. When the shock broke out of the plastic, the ejecta from its rear expanded,
accelerated, cooled, and decompressed across a 150-�m-wide gap. In an actual
supernova remnant, spherical expansion provides the decompression (McKee 1974).
Here the gap served an analogous function. The ejecta then launched a forward
shock into the ambient matter, in this case a foam whose density was less than
1% of the density of the compressed plastic layer. The ejecta stagnated against the
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Fig. 4.31 Data from an
ejecta-driven shock
experiment. The image shows
the X-ray transmission
through the experimental
system. One can clearly see
the reverse shock and forward
shock. The curves show
evaluations of the optical
depth of the system as a
function of position from an
initial surface. The spatial
resolution is limited, so the
transitions in optical depth
are smoothed out somewhat.
From Drake et al. (2000a)
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(moving) contact surface with the foam, which launched a reverse shock into the
ejecta, just as occurs in a supernova remnant.

Figure 4.31 shows the measured profile, obtained by X-ray radiography. The
forward shock and reverse shock are clearly established. This system is a well-
scaled model of the basic hydrodynamic structure of a young supernova remnant
(see Chap. 12 regarding how to scale such systems). Specifically, with reference
to quantities defined in Chap. 2, in the supernova remnant and the experiment,
respectively, Re D 6 � 108 and 7 � 106, Pe D 107 and 104. Radiative losses
are unimportant in both systems. This basic experiment design has subsequently
been used to address instabilities in such systems and their interaction with other
structures.

The later evolution of the supernova remnant connects with other topics in this
book. Eventually, the mass of the accumulated circumstellar matter exceeds the
mass of the stellar ejecta. This is generally taken to mark the (gradual) transition
to the “Sedov–Taylor” phase. As this phase begins, the reverse shock runs in to
the center of the supernova remnant and dissipates, after which the supernova
remnant is believed to develop the characteristic structure of the Sedov–Taylor blast
wave discussed above. Throughout the development of the supernova remnant, the
shocked matter also radiates energy. Radiative losses are in some cases important
during the young-supernova-remnant phase, but were not in SN 1987A. They
are never important during the Sedov–Taylor phase, but eventually the remnant
slows down and cools enough that they become important (they pass through the
minimum of the “cooling function” discussed in Sect. 6.3.2). Once enough cooling
has occurred, the remnant becomes a momentum-driven snowplow (Sect. 4.5.1)
and the shell structure (now much thinner) may become unstable to thin-shell
instabilities. The above is the one-dimensional story, but the extent to which three-
dimensional effects such as instabilities or interactions with clumps may distort this
picture is not entirely known. Not only supernova remnants but also other objects
such as molecular clouds are observed to be clumpy in general.
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4.6.6 Oblique Shocks at Interfaces

To prepare for the discussion in the next chapter, we also need to consider the
behavior that develops when an oblique shock wave arrives at an interface, where
the density increases or decreases. One can see from the discussion earlier in
this chapter that in general the result will involve a transmitted shock beyond the
interface and a reflected wave propagating backwards (relative to the interface). The
postshock contact surface will be between these, with the sign of the angles (˛ and �
in Fig. 4.32) depending on the type of reflected wave. The properties of the interface
will determine whether the reflected wave is a shock wave or a rarefaction wave. So
long as the EOS is the same on the two sides of the interface, the reflected wave will
be a shock when the density increases across the interface and a rarefaction when
the density drops. Figure 4.32 is a schematic of the essential geometry, assuming
the system to be uniform in the direction out of the page. We will label the shocked
or unshocked regions a; b; c; and d; as indicated on the subscripts on the density
�, and will use the subscript R for the region between the contact surface and the
reflected wave. So long as the pressure source driving the shock remains constant,
and so long as the edges of the system have no effect, the various waves will each
have a constant velocity. As a result, they will radiate in straight lines from the point
where the shock and the interface meet, and the fluid velocity will be independent
of the distance from this point. The entropy will be constant across each region of
this system, changing only at the shocks.

Following Section 109 of the fluid dynamics book by Landau and Lifshitz (1987),
we can observe that the sensible way to analyze this system is in a cylindrical
coordinate system centered at the point where the shock meets the interface. We
can make this coordinate system be stationary by working in a frame in which
u D ulab C uI , where uI is given by .us= tanˇ/Ox � us Oy, with the x and y directions
defined as shown in Fig. 4.32. We define the azimuthal angle � relative to the x-axis;
as usual. In this frame of reference, a point on the shock wave or the interface moves
radially inward with time, while a point on the transmitted shock or the reflected

Fig. 4.32 Sketch of behavior
occurring when a shock
approaches an oblique
interface. The angles shown
are for a reflected rarefaction
wave. For convenience, � and
ˇ as shown are taken to be
positive angles
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wave moves radially outward. Assuming that uz is constant everywhere, and based
on the assumptions of the previous paragraph, the derivatives in r and z are zero in
this coordinate system while ur and u� may vary with �. With these assumptions
the momentum equation implies

@ur

@�
� u� D 0 and (4.129)

u�
@u�
@�

C uru� D �1
�

@p

@�
D �@w

@�
; (4.130)

where dw D dp=� is the differential enthalpy at constant entropy, while the
continuity equation implies

�
ur C @u�

@�

�
C u�
�

@�

@�
D 0: (4.131)

By combining these equations, we can obtain some insight into the behavior.
Equations (4.129) and (4.130) imply that

w C 1

2

�
u2r C u2�

	
D constant; (4.132)

while these equations in combination with (4.131) imply that

�
ur C @u�

@�

� 
1 � u2�

c2s

!
D 0 ; (4.133)

where cs is the local sound speed. Equation (4.132) connects the changes in velocity
with changes in enthalpy as one moves across the system. We will return to it.
Equation (4.133) evidently has three solutions. One of these solutions occurs when
the argument of the left parentheses is zero. This corresponds to uniform flow.

The flow is uniform in regions a; b; c; and d; with discontinuities at the
boundaries between regions. The equations describing these parts of the flow do
not depend on the nature of the reflected wave. To simplify the mathematics, we
will assume the initial pressure in regions b and c to be negligible and the entire
system to have constant 	 . Then in regions b and c the velocity equals the velocity
of our moving frame of reference,

ub D uc D uI D us

sinˇ
ŒcosˇOx � sinˇOy� ; (4.134)

while in region a we have �a D �b.	 C 1/=.	 � 1/, and we use the results of
Sect. 4.1.5 for oblique shocks to find the postshock velocity, which is
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ua D us

sinˇ

�
cosˇOx �

�
	 � 1
	 C 1

�
sinˇOy

�
; and (4.135)

pa D �bu2s
	 C 1

: (4.136)

In region d we have �d D �c.	 C 1/=.	 � 1/, and the shock is also oblique in the
moving frame. One can show that

ud D us

sinˇ

�
	cosˇ C cos.2˛ C ˇ/

	 C 1

�
Ox

� us

sinˇ

�
	sinˇ � sin.2˛ C ˇ/

	 C 1

�
Oy and

(4.137)

pd D �cu2s
	 C 1

sin2.˛ C ˇ/

sin2ˇ
: (4.138)

The ratio of the component of ud normal to the surface of the forward shock to
the component parallel to this surface gives tan (˛ � �), as it is the radial flow away
from the forward shock that establishes the downstream boundary of region d: This
gives

�
	 � 1
	 C 1

�
tan.˛ C ˇ/ D tan.˛ � �/: (4.139)

All of the above applies whether there is a reflected shock or a rarefaction. We
consider these possibilities in turn. In the case of the reflected shock, the flow within
the reflected shock is also uniform. The difference with the planar case of Sect. 4.6.1
is that the transmitted and reflected shocks are both oblique. The angles ˛ and � in
Fig. 4.32 are both negative in this case, but (4.137)–(4.139) still apply. For region R
we have

uR D us

.1C 	/2sinˇ
.Œ	.	 C 1/cosˇ C 	cos.ˇ � 2�/C cos.ˇ C 2�/� Ox

C Œ�	.	 � 1/sinˇ C 	sin.ˇ � 2�/C sin.ˇ C 2�/�Oy/; (4.140)

pR D �bu2s
	 � 1

Œsin.ˇ C �/ � 	sin.ˇ � �/�2
.	 C 1/2sin2ˇ

; and (4.141)

�
	 � 1
	 C 1

�
sin.ˇ C �/ � 	sin.ˇ � �/
cos.ˇ C �/C 	cos.ˇ � �/ D tan.�C �//: (4.142)

Given the known parameters, one can solve numerically for ˛ and � by setting pd D
pR and setting equal the solutions of (4.139) and (4.142) for �.
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In the case of the reflected rarefaction wave, the flow is not uniform in the region
between the rarefaction wave and the contact surface. This region, which we can
call the rarefaction, is isentropic so p=c2	=.	�1/

s and �=c2=.	�1/
s are both constant.

In the rarefaction one must replace (4.140) through (4.142) with a description of
the rarefaction. Within this region, ur is clearly positive and the relevant solution
of (4.133) has u� D cs. If we designate the properties at the head of the rarefaction
wave as wa; ura, and ca, then we can write from (4.132)

u2r D u2ra C c2a � c2s C 2 .wa � w/ : (4.143)

Substituting these two results into (4.131), rearranging, and integrating gives

� C � D
Z �cs

�aca

d.�cs/

�
p

u2ra C c2a � c2s C 2.wa � w/
: (4.144)

Here � is as shown in Fig. 4.32, and would correspond to ��o if we designated the
angle of the rarefaction wave as �o. For a polytropic gas, this can be reduced to

� C � D
s
	 C 1

	 � 1
Z 1

cs=ca

d�p
Q2 � �2 ; in which (4.145)

Q2 D 1C 	 � 1
	 C 1

u2ra
c2a
> 1 (4.146)

Note that Q depends on �, because

u2ra
c2a

D .	 C 1/2

	.	 � 1/
cos2.ˇ � �/

sin2ˇ
> 1 (4.147)

We can find the angle � by considering the behavior of the rarefaction wave. In a
planar system, the rarefaction wave flows away from the shocked interface into the
downstream system at the downstream sound speed. One way to think of this is to
realize that sound waves are launched in all directions from the disturbed interface,
and that in the planar geometry the leading edge of their phase fronts initiates the
rarefaction wave. Taking this same point of view, we can say that sound waves
propagate from any point on the interface in the system of Fig. 4.32, beginning at
the moment the shock reaches the interface (taken as t D 0). The vector f describing
their location is then

f D
�

uI C ca Ok
	

t; (4.148)

in which Ok is a unit vector in an arbitrary direction. Defining the angle of this vector
as �s, and expressing both ca and uI in terms of us, we can find the following
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Fig. 4.33 The angle of
rarefaction produced by
oblique interface turns out to
depend only on 	 and ˇ.
Solid is 	 D 5=3; gray is
	 D 4=3
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equation for angle of the rarefaction, �:

� tan � D Min

2
64

� 	C1
	�1 sinˇ C

q
	

	C1 sinˇsin�s

cosˇ C
q

	

	C1 sinˇcos�s

3
75 ; (4.149)

where the minimum is found by varying �s. One typically finds �s � 180–250ı.
Figure 4.33 shows � vs. ˇ.

Knowing �, (4.99) allows one to evaluate cs (and hence other quantities) as a
function of the angle � in between the rarefaction wave and the contact surface as

cs D coQsin

"
sin�1

�
1

Q

�
�
s
	 � 1
	 C 1

.� C �/

#
: (4.150)

At the contact surface, this gives an equation for �, in terms of the sound speed
cend there:

�C � D
s
	 C 1

	 � 1
�

sin�1
�
1

Q

�
� sin�1

�
cend=ca

Q

��
; (4.151)

where the fact that the pressure in the rarefaction at the contact surface equals pd

gives

cend

ca
D
�

pd

pa

�.	�1/=.2	/
D
 
�c

�b

sin2.ˇ C ˛/

sin2ˇ

!.	�1/=.2	/
: (4.152)

Thus, (4.151) gives � as a function of � (already known as described above) and
˛. Equation (4.139) still gives � as a function of ˛. This allows one to obtain
numerically a solution for ˛ and �.

This completes our description of the shock at an oblique interface. When we
consider rippled interfaces in Chap. 5, we will work with the small-angle limits of
the above equations.
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Homework Problems

4.1 Add a gravitational force density and gravitational energy input to (4.2)
and (4.3) and derive the modified jump conditions.

4.2 Suppose that during the shock transition significant energy is lost by radiation.
Write down the modified jump conditions.

4.3 Determine from energy arguments how to generalize (4.20) for a plasma having
two ion species.

4.4 For 	1 D 	2, derive the equivalent of (4.18) and (4.20). Express the result in
physically clear parameters, so the relation among the terms is evident. Check your
result by finding it as a limit of (4.19) and by finding (4.20) as a limit from it. Using
a computational mathematics program is suggested.

4.5 Find an expression for the entropy production by a shock wave (4.24) as the
Mach number approaches 1 from above.

4.6 Derive the jump conditions for oblique shocks, (4.28)–(4.31).

4.7 Derive the relations of the angles for oblique shocks, (4.34) and (4.35).

4.8 Derive (4.42) relating the speeds in different frames of reference. This requires
thinking about which frame of reference one is working in, a key element in all such
problems.

4.9 Determine the equations and derive the behavior of the simpler case in which a
shock is incident on a stationary wall. Let state 0 be the state of the unshocked fluid,
state 1 be that of the once-shocked fluid, and state 2 be the state of the reshocked
fluid produced when the shock reflects from the wall.

4.10 Derive the differential equations for self-similar motions of fluids, (4.64)–
(4.66). Identify the requirements for quantity in the final curved brackets in the third
of these equations to vanish.

4.11 Show that the conservation of mass in the planar isothermal rarefaction in fact
requires r 
 �cst in (4.72) and (4.73).

4.12 Plot the minimum density and pressure in the planar adiabatic rarefaction as
a function of Up: Discuss the meaning of the plots. Reasonable normalizations are
recommended.

4.13 Sketch the CC and C� characteristics defined in Sect. 4.4.3 in a fluid flowing
uniformly with velocity u.

4.14 Show that the analysis of blast waves that preserves energy conservation
produces ˛ D 1=2 for cylindrical blast waves and ˛ D 2=3 for planar blast waves.

4.15 Find the coefficients ˛ for blast waves treated as cylindrical and planar,
momentum-conserving snowplows.
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4.16 Use a computational mathematics program to integrate the relevant equations
to find and plot the profiles, and to evaluate Q; of (4.123) for a cylindrical blast
wave. Apply this to find the behavior of a lightning channel produced by a deposited
energy of 1010 ergs/cm.

4.17 Assuming that a strong shock reaches an interface beyond which the density
(�4) is 0.1 times the density of the shocked material behind the interface (�1), solve
for the profiles of the fluid parameters in the rarefaction that results.

4.18 Assuming that 	1 D 	3 (or not, if you wish), derive (4.128) from (4.44) to
(4.52) by letting p3 approach p1 as the definition of the transition to a rarefaction.
Hint: This one is not easy. Taking a limit will be necessary and the approach to the
solution will matter.

4.19 An entertaining aspect of the problem of reshocks in rarefactions is that it
is one case where the traditional model in which shocks are driven by moving
pistons does not produce correct qualitative behavior. Consider a rarefaction as it
approaches a piston that is moving forward at a constant velocity. What will happen?

4.20 To obtain the behavior of oblique shocks at interfaces, one must evaluate
the equations in cylindrical polar coordinates. Beginning with the first two Euler
equations, carry out this evaluation.

4.21 Equation (4.133) implies that a property of uniform flow is that ur D
�@u�=@� in any cylindrical polar coordinate system. Landau and Lifshitz use a
geometric argument to demonstrate this. Instead, demonstrate this using a vectorial
argument. (Hint: Begin by taking dot products of unit vectors along r and � with an
arbitrary velocity vector.)
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Chapter 5
Hydrodynamic Instabilities

Abstract This chapter begins with a discussion of buoyancy as a driving force
and proceeds to derive the dispersion relation for the Rayleigh-Taylor instability.
It considers Rayleigh-Taylor in several specific contexts, the generalization of
Rayleigh Taylor, sometimes called the entropy mode, and the nonlinear behavior of
Rayleigh-Taylor-unstable systems. It hen discusses lift as a driving force, proceeds
to derive the dispersion relation for the Kelvin-Helmholtz instability, and discusses
Kelvin-Helmholtz in several specific contexts. Following that, it discusses the
stability of shock waves and then the Richtmyer-Meshkov process, through which
deposition of vorticity leads to evolving structure. The chapter concludes with a
discussion of hydrodynamic turbulence.

Our discussion of the previous chapter focused on one-dimensional phenomena, in
which a physical system was structured as a function of linear or radial distance, but
by assumption was not structured in the other two dimensions. Common experience
tells us that this will rarely be a good assumption. We see turbulent clouds and
whirlwinds in the air and complex eddies in water. We know of three-dimensional
turbulent motions within the Earth and within the Sun. For that matter, if we
focus our attention, we can see amazing hydrodynamic phenomena every day in
the bathroom sink. We know that one can save fuel in cars and in airplanes by
careful design that reduces the energy delivered to turbulence in the air. In fact, our
experiences and common knowledge would lead us to conclude that hydrodynamic
fluids are more often than not unstable and turbulent in some sense.

We might suppose, however, that all such effects are well understood, because
they have been studied in depth for more than a century. Surely a series of brilliant
humans, armed with modern mathematics and, more recently, with powerful
computers, working with phenomena that can very readily be observed in nature
or produced in laboratories, will have come to understand this subject thoroughly.
As it happens, this is not true. One could nominate hydrodynamic instabilities
and turbulence for an award in the category of area of physics in which the least
fundamental progress has been made during the last century. There are, of course,
positive outcomes of the effort in this area. Much has been learned, much is being
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learned, and what has been learned has often had real practical importance far
beyond any direct impact of the quest for the next quark. But one still must wonder
why this has been so difficult.

Much of the answer to this question can be found by contemplating the first
Euler equation—the continuity equation. This equation contains the divergence of
the product �u, which makes it a nonlinear equation. It often proves feasible in
physics to deal with nonlinear terms in physical equations by assuming that one of
the variables is constant or by linearizing both variables. Indeed, these approaches
will provide some insight into the fundamental hydrodynamic instabilities as this
chapter develops. In some physical systems, the nonlinear terms drive waves that
saturate themselves in ways that do not affect the global dynamics of the system.
In hydrodynamic systems, the variations in both density and velocity often become
large and structured in comparison with the initial values. The resulting dynamics
are not tractable. Even computer simulations cannot follow all of the behavior, as
the finite size of computer memory and run time imposes significant limits on the
resolution with which one can examine the dynamics.

Even so, gaining some understanding of hydrodynamic instabilities is feasible.
In particular, one can identify various circumstances that produce unstable behavior;
these give us the instabilities with well-known names. One can use linearized theory
to evaluate the initial growth rate of the instabilities when their amplitudes are small.
We will pursue this for some instabilities that are important to high-energy-density
physics. The cases we will examine all involve modulations of a system in only
two dimensions. This is where one finds the strong effects that tend to initiate the
growth of unstable structures in real fluids. As the modulations grow, they proceed
to develop structure in the third dimension, which sometimes sets the stage for
secondary instabilities that involve modulations of a system in three dimensions.
In contrast to the two-dimensional instabilities, which are few and ubiquitous, the
three-dimensional instabilities tend to be specific to a given detailed geometry.
We will leave their details to the specialized literature, but we will discuss their
consequence, which is a state of the fluid known as hydrodynamic turbulence.

5.1 Introduction to the Rayleigh–Taylor Instability

The Rayleigh-Taylor instability causes the interpenetration of fluid regions having
different density. Figure 5.1 shows an example. These fluid regions may be two
different materials, divided by an interface, or the same material at two different
average densities, with a density gradient between the regions. The instability, which
we will designate as the RT instability, is often said to occur whenever a less-
dense fluid supports a more-dense fluid against gravity. A first generalization of this
condition is to say that the RT instability occurs whenever fluid regions that differ in
density experience a pressure gradient that opposes the density gradient. A second
and broader generalization of this condition is to say that an entropy mode occurs
whenever the entropy gradient is parallel to the pressure gradient (see Sect. 5.3).
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Fig. 5.1 Growth and saturation of the Rayleigh–Taylor instability, observed by acceleration of two
fluids in a test facility. Credit: University of Arizona, Jeff Jacobs

5.1.1 Buoyancy as a Driving Force

We will focus here primarily on the condition of opposed pressure and density
gradients. This condition is perhaps too general to be immediately clear, but this
is necessary to cover most cases of interest in high-energy-density physics. When
this condition for instability is satisfied, the system can reduce its potential energy
through the interpenetration of the two fluid regions. Our approach to this instability
will be to begin with some simple analysis for the sake of improving our intuition
about both buoyancy and acceleration. Then we will proceed in the next section with
a formal derivation of the unstable behavior.

We begin with bubbles. We know that bubbles of air rise in water, and can define
analogies in other fluids. We can understand the upward force on the bubble, as
Archimedes did, by thinking about the force required to insert the bubble into the
water, thereby lifting the water surface. But this does not give us any understanding
of what really goes on in the bubble. So it is natural to ask why, in detail, a bubble
experiences a net upward force. We could begin to think about this by considering
the fluid momentum equation in a fluid without viscosity,

�
@

@t
u C �u � ru D �rp � r�; (5.1)

in which � is the potential, equal to
R
�gdz for gravity. (We ignore surface tension

here, although that would not be justified for air bubbles in water.) In steady state,
the gradients of pressure and gravitational potential balance one another, and indeed
we often determine the pressure at some point by thinking about the weight of the
fluid above it. If we think only in the vertical direction, it would seem that any
distribution of matter could come to an equilibrium, with as much pressure as is
needed to balance gravity. Then there would be no buoyancy (and no Rayleigh–
Taylor instability either).

In a structured fluid under gravity, the weight of the matter above various points
will vary. If this determined the local pressure, then there would be lateral pressure
gradients in the fluid. But the fluid cannot sustain such gradients. In a compressible
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fluid they would be relaxed through compression and sound waves. In the limit that
the fluid becomes incompressible, the pressure is instantaneously constant along
surfaces of constant potential energy (i.e., at the same height in a gravitational
potential). This implies that the pressure is determined by the average of the weight
of the matter above any such surface. In mathematical terms, if z defines an axis
parallel to the direction of the potential gradient, then

p D 1

A

Z
A

Z zmax

z
�@�
@z

dzdA D �1
A

Z
A

Z zmax

z
�.z; x; y/gdzdA; (5.2)

in which the area of the fluid over the .x; y/ plane is A and zmax is a height beyond
which there is no influence on the location of interest, and the rightmost expression
is specific to mass in a gravitational field. The corresponding term in (5.1) is

� dp

dz
D 1

A

Z
A

@�

@z
dA D 1

A

Z
A
�.z; x; y/gdA D �g; (5.3)

which defines the average density as �. For the simple gravitational case, we thus
have

�
@

@t
u C �u � ru D .� � �/g: (5.4)

Now we can see that the bubble, having � < �, experiences an upward force. Also
we see that the remaining fluid experiences a downward force. This corresponds to
the settling that must occur as the bubble moves higher. For a small bubble in a fluid
of density �2, � � �2, and by integrating over the bubble volume V one finds the
standard result that the upward force is .�2 � �/V . At this point we understand in
detail why the bubble rises. To understand the dynamics of the bubble as an entity,
we would also have to consider the consequences of displacing the fluid above the
bubble and any other forces such as surface tension. But (5.4) takes us far enough
to address RT instabilities, so we stop here for now.

The standard simple example of an RT instability is the evolution of a system
in which a denser fluid, such as water, is initially oriented above a less dense
fluid, such as oil, in a gravitational field (whose direction defines “above” ). A
standard demonstration uses a jar filled with oil and water, which is quickly yet
smoothly inverted. One can also find toys or desktop knick-knacks that display the
resulting dynamics. (For such demonstrations it does matter that the motion which
inverts the two fluids does not cause a change of state of the fluid. Thus, one may
observe that dark beer is less dense than amber beer, but the attempt by one of my
graduate students to invert a glass containing these two unmixed fluids had comic
consequences unrelated to RT.) Returning to our reference situation, first note that
the pressure increases toward the bottom of this structure, because of the weight of
the fluid above it. Thus, the pressure gradient is downward. Second, by assumption
the density gradient is upward. Within any ripple at the interface between the two
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fluids, the less dense fluid will feel an upward force while the more dense fluid
will feel a downward force. The result is that small ripples of the interface, always
present because of thermal noise, will grow. The comparison with the case of the
bubble makes it seem natural to describe the region of less-dense, rising fluid as
the bubble. This is standard jargon in discussions of RT. The denser material that
penetrates into the less-dense fluid is known as the spike.

The cases that arise in high-energy-density physics rarely involve gravity as
such. Instead, they tend to involve a low-density fluid that is pushing against a
higher density fluid, causing the acceleration or deceleration of the higher density
fluid. One example is that of hot air beginning to rise against cooler, higher
density air. An analogous case is that of a pulsar wind (a very high temperature
yet low-density fluid of positrons and electrons) accelerating outward the denser
matter surrounding the pulsar. A second analogous case is that of the low-density,
laser-heated corona surrounding a laser-fusion capsule pushing the denser capsule
material and accelerating it inward. In all these cases the pressure is higher in the
low-density fluid, so there is a pressure gradient that opposes the density gradient.
One way to see intuitively how the instability works in this case is to realize that
the inertia of any fluid will cause it to resist being accelerated. The denser fluid
has more inertia and the interpenetration of the two fluids allows some of it to lag
behind.

There is a counterintuitive aspect to such systems, though. The potential energy
is reduced when the denser fluid “falls” up the pressure gradient. In the context
of fluid dynamics, one tends to think that pressure gradients cause the acceleration
of material down the pressure gradient. This is true in isolation, but here it is the
behavior of each individual fluid parcel relative to the average behavior that matters.
If one thinks of the position and velocity of a fluid parcel relative to the position of an
accelerating interface, one can see that more energy must be invested to move ahead
of the interface rather than to stay with the interface, but less energy must be invested
to lag behind. Thus, in the context of a system with a steady, imposed acceleration of
an interface, the potential energy is proportional to the distance material has moved
ahead of the interface. This defines the analog of “up” in this system. The less-
dense fluid will feel a force, relative to the interface position, that is in the direction
of the acceleration, while the denser fluid will feel a force in the opposite direction,
causing it to lag behind.

A mathematically identical situation develops at a decelerating interface when
the densities are reversed. This occurs when denser matter has an initial velocity,
so it is moving into a region of less-dense matter. The compression and heating
of the less-dense matter, perhaps by a shock, establishes a pressure gradient that
acts to decelerate the denser matter, thus opposing the density gradient. Examples
occur in the laboratory when a blast wave exits dense matter into less dense matter,
as for example, at the interior surface of an inertial-fusion capsule. Astrophysical
cases abound, for example, at the head of some astrophysical jets, where the denser
material in the jet is decelerated by the less-dense material in front of it. In these
cases with a decelerating interface, less energy is again invested to lag “behind” the
interface, though now this is accomplished by slowing down less than the interface
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does. Here the interpenetration of the fluids reduces the potential energy of the
matter relative to that generated by the imposed deceleration of the interface.

Another example of a decelerating interface is found in supernovae.
Figure 4.28 showed the results of a simulation of one particular supernova
explosion (SN1987A). During supernova explosions the blast wave from
the explosion crosses the material interfaces in the star, where the density
decreases more rapidly. The interface then decelerates, as the blast wave
moves outward and the velocity of the interface decreases (see Sect. 4.6.4).
In the process, a pressure gradient is established (again this is just part of
the blast wave) that points outward, opposing the inward density gradient
at the interface. In consequence RT develops at each interface, and in the
nonlinear phase spikes of dense material flow outward through the star. The
regions between the spikes, where less-dense material moves inward are the
bubbles.

We can summarize the above mathematically by noting that the natural frame
of reference in which to examine RT growth is that of the interface. This frame is
typically accelerating relative to the frame of the laboratory. In the frame of the
laboratory, the acceleration of the interface might be written as a D �rp=�. In the
frame of the interface, any modulations see an average “gravitational” acceleration g
in the opposite direction. Thus g D rpo=�o, in which the subscript o designates the
averaged values. This completes our introductory contemplation. We now proceed
to develop a mathematical treatment of the linear phase of the RT instability.

5.1.2 Fundamentals of the Fluid-Dynamics Description

In the present section, we take up the fluid-dynamics description of the RT insta-
bility, in which we consider the behavior of the entire fluid using the fundamental
physical equations. An alternative approach is to use potential-flow theory, requiring
that one have, away from any surfaces or interfaces between fluid regions, both
r � u and r � u equal to zero everywhere. In this approximation, any vorticity
is localized to the interfaces. One ignores the diffusion of vorticity and cannot
treat phenomena that involve distributed vorticity, viscosity, density gradients, or
compressibility. The potential-flow description, being more limited, can be easier to
formulate mathematically and is often used in fluid-dynamics textbooks. However,
it is a dead-end approach.

So we proceed here with a full, fluid-dynamics description. We will end up
finding solutions for the RT modulations as surface waves, which are waves whose
influence on the medium decays as one moves away from the surface. We can
analyze the dynamics, using the fluid continuity and momentum equations. For
momentum, we will use (2.27). We take the radiation pressure, the electromagnetic
forces, and the other forces to be negligible, but we will keep the viscous force
to explore the effects of viscosity. For comparison with other literature, note that
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surface tension, treated for example in Chandrasekhar (1961) would be one of the
other forces in (2.27). We ignore this force because it has no relevance to high-
energy-density systems, which are too hot to allow the molecular interactions that
create it.

We define our fluid such that the initial unperturbed interface is in the x–y plane.
Our approach will be to linearize the fluid equations, so we take the unperturbed
pressure and density to be p D p.z/ and � D �.z/, respectively, and we take the
first-order perturbations in the same quantities to be ıp.x; y; z/ and ı�.x; y; z/. We
work in a frame in which the interface is at rest, so the zeroth-order velocity is 0
and we can take the first-order velocity to be u D .u; v;w/, with each component a
function of .x; y; z/. Our initial equations are those of a compressible fluid, and its
overall, zeroth-order behavior may involve compression. However, we anticipate
that the fluctuations in velocity caused by the instability will be very subsonic.
And the analysis of acoustic waves in Chap. 2 implies that very subsonic motions
produce very small density fluctuations. Accordingly, we assume the fluctuations
to be incompressible. The treatment of the fluctuations as compressible is much
more involved than the theory we explore here, and in the end the consequences of
compressibility are small, as expected.

The assumption of incompressible fluctuations is expressed as r � u D 0, so the
continuity equation becomes convective:

@ı�

@t
C u � r� D 0; (5.5)

and with our assumptions the linearized momentum equation becomes

�
@u
@t

D �rıp C r � � � � gı�Oz; (5.6)

in which Oz is a unit vector in the z direction and the effective gravitational
acceleration, in a (noninertial) frame of reference in which the interface is at rest,
is g. This can be tricky to apply, as one may be inclined to assume that g is in the
direction of the acceleration in the frame of reference of the laboratory. However, in
the frame of reference of the interface, g points toward the region of higher pressure,
for reasons discussed at the end of the previous subsection. Here � � represents the
linearized form of the viscosity tensor discussed in Chap. 2, with elements


�ij D ��

�
@ui

@xj
C @uj

@xi
� 2

3
ıij
@uk

@xk

�
C �ıij

@uk

@xk
; (5.7)

in which y and z are x2 and x3, respectively, one sums over repeated indices, and ıij

is the Kronecker delta function. Here the kinematic viscosity is � and the second
coefficient of viscosity, which is not important here, is �. Linearization does not
have a major effect here, only requiring that the full density, � C ı�, be replaced
with �. The term involving the viscosity tensor simplifies considerably (and the



190 5 Hydrodynamic Instabilities

term involving � vanishes), because @ui=@xi D 0 from incompressibility. Also, it is
consistent with our assumptions that the only nonzero derivative of � is d�=dz.D
d�=dx3/. With these observations and assumptions, one has for the k component of
r � � � ,


r � � �
�

k D ��r2uk C @.��/

@z

�
@uk

@z
C @w

@xk

�
: (5.8)

There are three very distinct directions in this problem, which are the direction
of gravity, the direction of the wavevector of a surface modulation, and the direction
perpendicular to these two. We will assume throughout that the mean surface is
perpendicular to the pressure gradient. We further assume the surface modulations
to be plane waves, expecting to express any actual surface modulation as a sum
over all the possible plane waves, which form a complete basis set. Our goal is
to find the evolution of an arbitrary plane wave, assuming that it grows in time
from a very small initial amplitude. We can now write the components of (5.6), the
incompressibility condition, and (5.5) as

�
@u

@t
D � @

@x
ıp C ��r2u C @.��/

@z

�
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@z
C @w

@x

�
; (5.9)
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C @v

@y
C @w

@z
D 0; and (5.12)
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This is the set of equations that describes the linear phase of the RT instability,
including effects of viscosity or density gradients. We look for waves that represent
growing modulations of the surface, and thus in general will have amplitudes with an
unknown variation in z but proportional to exp .ikxx C ikyy C nt/ in x; y, and time t.
Here kx and ky are the x and y components of the wavevector (which we could have
chosen to lie along one of these axes) and n is the exponential growth rate. With
these substitutions, we get a new equation set:

�un D �ikxıp C ��
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; (5.14)
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ikxu C ikyv D �@w
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; and (5.17)

nı� D �w
@�

@z
: (5.18)

in which k2 D k2x C k2y . It may be helpful to note that Eq. (5.18) gives the
density change due to the vertical displacement of the background density profile.
In atmospheric waves, this can produce a restoring force due to buoyancy that
contributes to their dispersion relation.

We can reduce these equations from five to two through the following steps.
Multiply the first by �ikx and the second by�iky, then add the first two equations
and use the fourth equation to simplify them. Also use the fifth equation to eliminate
ı� from the third equation. This gives us
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Recalling that �.z/ and �.z/ are given as properties of the unperturbed system,
we can see that we need only to eliminate ıp to have an equation for w in terms of
known parameters. Doing this, we obtain
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(5.21)

This equation, along with the previous ones and boundary conditions, provides the
tools we need to investigate RT growth rates in the linear regime. The equations
apply within the fluid on each side of an interface.

Boundary conditions are essential in finding the dispersion properties of surface
waves, including unstable waves. These are of several types. First are geometric
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boundary conditions. One example is that of an unbounded fluid, in which the
vertical velocity must die away at large distances from the interface. Another
example is that of a fixed wall, at which some components of velocity (or all of them
in viscous fluids) must vanish. As a result, in the present context of incompressible
fluctuations, the derivative of the velocity normal to the wall (typically @w=@z) must
also vanish there.

The second type of boundary conditions exist because the fluid must remain
continuous across the interface between two fluid regions having different prop-
erties, not developing gaps or zones of overlap. For non-viscous (inviscid) fluids
this requires that the velocity normal to the surface must be continuous, and for
small-amplitude waves the resulting, first-order condition is that w be continuous
across the interface. There may be discontinuities of u and v in such fluids, as we
will see later. In viscous fluids there could be no discontinuities in velocity, so that
u and v both would have to be continuous across an interface. This would imply, in
our present context, that @w=@z D 0 at the interface as well.

The third type of boundary conditions involves the forces at an interface. In an
inviscid fluid, pressure is continuous throughout the fluid (save at shocks). This
remains true at interfaces. In viscous fluids, the (tensorial) stress, � D pI C � � is
continuous throughout the fluid. This produces two useful boundary conditions . For
our surface waves, the continuity of the two tangential components of stress gives us
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which imply that
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is continuous across the interface. Specializing to a case with regions designated by
the subscript 2 at z > zo and by the subscript 1 at z < zo, with the interface at zo,
we can subtract (5.23) across the interface to find one boundary condition relating
to the forces at the interface. This gives
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and (5.24)

Continuity of the normal component of stress gives us another boundary
condition. We have

�zz D p C 
�zz D p C 2.��/
@w

@z
; (5.25)
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and can note that 
�zz is a first-order quantity here. In order to make use of this, it is
helpful to explore the precise meaning of ıp in the above equations. We designate
the initial pressure profile within fluid region i as poi.z/ and the instantaneous
pressure profile as pi.z/. We define the deviation in the normal component of the
stress tensor as ıpi.z/ C 
�zz D pi.z/ C 
�zz � poi.z/. For a modulated interface
located at z D �.x; y; t/, we then have

ıpi.�/ D pi.�/ � poi.�/: (5.26)

Taylor expanding, we have

poi.�/ D poi.0/C
�
@poi

@z

�
o

� and (5.27)

ıpi.�/ D ıpi.0/C
�
@ıpi

@z

�
o

� D ıpi.0/ to first order in �; so (5.28)

pi.�/ D poi.0/C
�
@poi

@z

�
o

� C ıpi.0/ (5.29)

to first order. We also have .@poi=@z/o D ��i.0/g, where g is gravity and �i.z/ is the
initial density profile and its value at 0 is taken in the limit as the initial, unperturbed
interface is approached. Thus

pi.�/ D poi.0/ � �i.0/g� C ıpi.0/: (5.30)

In the absence of viscosity, continuity of pressure across the actual location of the
interface (z D �) implies pi.�/ D pj.�/ so ıpi.0/ ¤ ıpj.0/, for two fluids i and j.
For nonzero 
�zz, �zzi instead is continuous and we have

�zzi.�/ D poi.0/ � �i.0/g� C ıpi.0/C 
�zz.0/: (5.31)

Because poi.0/ D poj.0/, the boundary condition across the interface is

ıpj � ıpi C 2.��/j
@wj

@z
� 2.��/i @wi

@z
� .�oj � �oi/g� D 0; (5.32)

where all subscripted quantities are evaluated in the limit that one approaches z D 0

from within the fluid region designated by the subscript. Thus, continuity of the
normal component of stress at the instantaneous interface location at z D � turns
out to imply that the pressure modulations defined as above are not equal on the two
sides of the interface. Instead it is the quantity ıpi C 
zzi � �ig� that is continuous,
reflecting how the initial pressure profiles vary with z. We can note that, for inviscid
fluids, one can also obtain this same result using the Bernoulli relation.
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Again specializing to a case with regions designated by the subscript 2 at z > zo

and by the subscript 1 at z < zo, with the interface at zo, and recalling that @w=@z is
continuous across the interface, (5.32) becomes the boundary condition:

0 D �.ıp2 � ıp1/zDzo C
�
2 .�2�2 � �1�1/ @w1

@z

�
zDzo

C wo
g

n
.�2 � �1/zDzo ;

(5.33)
in which we have used wo to designate the common value of w at the interface.

We now return to our main line of discussion. Equation (5.33) in particular is
essential to the analysis of RT, but is not yet in the useful form of having only one
physical variable, specifically w. We need to eliminate ıp. To accomplish this we
can obtain another equation involving ıp, by subtracting (5.19) from itself across
the interface to find

k2.ıp2 � ıp1/

D �2

�
�n C �2

�
@2

@z2
� k2

��
@w2
@z

C �1

�
n � �1

�
@2

@z2
� k2

��
@w1
@z

C @.�2�2/

@z

�
@2

@z2
C k2

�
w2 � @.�1�1/

@z

�
@2

@z2
C k2

�
w1: (5.34)

We then combine this with (5.33) to eliminate ıp. (Here and henceforth we drop
the notation “z D zo”, realizing that in such boundary conditions all quantities
are evaluated as z approaches the interface from within the fluid designated by the
subscript.) After using (5.24) to eliminate two terms, this gives a usable, if complex,
boundary condition,

wok2
g

n
.�2 � �1/C k2

�
2 .�2�2 � �1�1/ @w1

@z

�

D �2

�
�n C �2

�
@2

@z2
� k2

��
@w2
@z

� �1
�
�n C �1

�
@2

@z2
� k2

��
@w1
@z
: (5.35)

Thus, the boundary conditions we have to work with are (5.24), (5.35), the
continuity of w across the boundary, additional constraints imposed by the geometry
of the problem, and for viscous flows the continuity of @w=@z and all components
of u across the boundary.

Aside: An Alternative Approach

One can also obtain these and other boundary conditions directly from
equations found in the course of the derivation, by integrating them across
the interface. Chandrasekhar (1961) uses this powerful method, but it comes

(continued)
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at the cost of losing the physical insight of the above discussion. We define
and use the method in this brief aside, and apply it below in the derivation of
the Kelvin-Helmholtz instability.

Consider the interface to be at z D 0. Suppose that q.z/ is an arbitrary
function that is continuous and differentiable everywhere. Suppose f .z/ and
h.z/ are arbitrary functions that are continuous and differentiable everywhere
except at the interface, so we can write, for example, f .z/ D f1.z/H.�z/ C
f2.z/H.z/, in which H.z/ is a Heaviside step function, equal to zero for z < 0
and to 1 for z > 0, and f1 and f2 are continuous, differentiable functions.
The derivative of f .z/, g.z/ D df=dz, can be written g.z/ D g1.z/H.�z/ C
g2.z/H.z/ C �f ı.z/, in which ı.z/ is the Dirac delta function, g1 and g2 are
continuous, differentiable functions, and�f D f2.0/� f1.0/. We then take the
limit of the integral over a small region about the interface, as the width of the
region goes to zero. Evidently this will give zero unless the argument of the
integrand includes a delta function. Specifically we find the set of relations
shown below.

Here the subscript z D 0 indicates that the quantities should be evaluated
as the interface is approached. Just as in the case of shock waves, the interface
may be treated as a mathematical discontinuity, although in microscopic
reality all physical quantities and their derivatives vary continuously across
the interface.

Applying the relations of (5.36) and (5.37)–(5.19) and (5.20), realizing
that w is continuous across the interface and that all derivatives of w in z are
continuous and bounded as one approaches the interface, we again find the
same boundary conditions of Eqs. (5.24) and (5.33).

lim
�!0

Z �

��
f .z/dz D lim

�!0
Œ�f2.�=2/ � �f1.�=2/� D 0;

lim
�!0

Z �

��
.@f .z/=@z/dz D f2.0/ � f1.0/;

lim
�!0

Z �

��
.@2q.z/=@z2/dz D lim

�!0

�
@q2
@z

� @q1
@z

�
D
�
@q2
@z

� @q1
@z

�
zD0

;

(5.36)

(continued)
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lim
�!0

Z �

��
q.z/

@f .z/

@z
dz D qs.f2 � f1/zD0 C lim

�!0

Z �

��
�
@q

@z

@f

@z
dz

D qs.f2 � f1/zD0;

lim
�!0

Z �

��
f .z/

@q.z/

@z
dz D qs.f2 � f1/zD0 � lim

�!0

Z �

��
q.z/

@f

@z
dz D 0; and

lim
�!0

Z �

��
@f .z/

@z
h.z/dz

D lim
�!0

Z �

��
.f1.z/ı.z/h1.z/H.�z/ � f2.z/ı.z/h2.z/H.z// dz

D 1

2
.f2.0/h2.0/ � f1.0/h1.0// :

(5.37)

5.2 Applications of the Linear Theory
of the Rayleigh–Taylor Instability

At this point we have the tools we need to address various cases. We now proceed to
consider three basic applications of the theory developed in the previous section. We
begin with the simple case of an interface separating two fluids of different density.
We then discuss the effects of viscosity on the instability. This is important for
example in the atmosphere. It seems that it might not matter for high-energy-density
systems, which have large Reynolds number (see Chap. 2). However, viscosity can
play a role in such systems in altering the growth of small-scale structures. After
that, we turn to the impact of density gradients, which are important in many
applications.

5.2.1 Rayleigh–Taylor Instability with Two Uniform Fluids

The simplest case is that of two uniform fluids with a boundary at z D 0 and with
no viscosity. Equation (5.21) then becomes

@

@z

�
��n

@w

@z

�
D k2

�
��nw C w

g

n

@�

@z

�
; (5.38)
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in which @�=@z also equals zero for the uniform fluids. This then simplifies for
uniform density in each region to

@2w

@z2
D k2w: (5.39)

The fluid must be undisturbed at sufficiently large distances, as z ! ˙1, so the
solutions are

w1 D woekz for z < 0 and

w2 D woe�kz for z > 0;
(5.40)

where wo is the same in both solutions because w must be continuous at the interface
(to avoid the creating of voids or the accumulation of matter). Here we have defined
fluid 1 as the region below the interface and fluid 2 as the region above it, by using
subscripts on w. Our primary differential equation has thus given us the profiles but
not the growth rate. To find this, we use the boundary condition (5.35) to find

wo
g

n
.�2 � �1/ D n

k2
.�2 C �1/kwo; from which (5.41)

no D
r
�2 � �1
�2 C �1

kg D p
Ankg (5.42)

in which we have labeled the growth rate for this case as no and defined the Atwood
number, An D .�2 � �1/=.�2 C �1/, which varies from �1 to 1 and measures
how strong the density jump is at an interface. When An is negative, meaning that
the denser fluid is already “below” the less dense one, then in the simple limit
of (5.42) no is purely imaginary and the modulations oscillate but do not grow.
(If we included finite viscosity such modulations would damp, as is discussed at
length in Chandrasekhar (1961).) Equation (5.42) gives the simplest result for the RT
growth rate, and for this reason is often referred to as the “classical” RT growth rate.
(Thus continuing the flagrant abuse of the term “classical” throughout physics.) This
growth rate no provides a reference for the growth in more-complicated systems.
Adding complications tends to reduce this growth rate below no.

Before considering complications, it is worthwhile to point out how RT inher-
ently provides circumstances that may lead to further instabilities. Suppose that the
wavevector points in the x direction, so that k D kx. Then in light of the solution
given by (5.40), (5.17) implies iu1 D wo and u2 D �u1. The first of these relations
implies that u and w are out of phase spatially. The second implies that there
is shear flow across the interface. Figure 5.2 illustrates this. Material must flow
along the interface to provide the mass that penetrates across the original interface.
Correspondingly, the material must flow in opposite directions on the two sides
of the interface. This shear flow provides the potential for growth of the Kelvin–
Helmholtz instability, discussed later in the chapter.
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Fig. 5.2 Shear flow induced
by Rayleigh-Taylor. The
arrows show the location and
direction of the maxima in the
velocity perpendicular to the
interface and along the
interface. The amplitude
shown is nonlinearly large. In
the linear limit, u is
horizontal to first order
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5.2.2 Effects of Viscosity on the Rayleigh–Taylor Instability

As a first example of a complication that reduces the RT growth rate, consider
the effects of viscosity. (We leave to the specialized literature the effects of mass
diffusion due to binary collisions, which complement viscosity and further reduce
the RT growth rate.) As a preliminary exploration, let us assume that the viscosities
on the two sides of the interface are nonzero, and that the densities on the two sides
of the interface are different in magnitude, but that the densities and viscosities are
both otherwise uniform in space. In this case, (5.21) becomes

�
�n C �

�
@2

@z2
� k2

��
@2w

@z2
D
�
�nw C �

�
@2

@z2
� k2

�
w

�
k2: (5.43)

This equation has a general solution,

w.z/ D C1e
s1z C C2e

�s2z C C3e
kz C C4e

�kz (5.44)

in which si D k
p
1C n=.k2�i/with i being 1 or 2. To assure that w vanishes at ˙1,

it is clear that C1 and C3 are zero for z > 0 and C2 and C4 are zero for z < 0. Note
that this choice regarding how to satisfy the specific boundary conditions used here
implies that the real parts of k; s1, and s2 are all positive. This will be an important
constraint as we develop our solution. We have four boundary conditions. These are
the continuity of w.z/, the continuity of @w=@z, (5.24) and (5.35). These with the
definition of si give us

C1 � C2 C C3 � C4 D 0; (5.45)

s1C1 C s2C2 C kC3 C kC4 D 0; (5.46)

n.�2C2 � �1C1/C �2�2k
2 .2C2 C 2C4/ � �1�1k2 .2C1 C 2C3/ D 0; and (5.47)

0 D 2Angk2

n
.C1 C C3/ � kn .C3.1 � An/C C4.1C An//

�2k2.kC3 C s1C1/.�1 � �2/C 2Ank2.kC3 C s1C1/.�1 C �2/:

(5.48)
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Since we have four equations that are linear in the four amplitudes, we can
write (5.45)–(5.48) as an equation in which a matrix M multiplies the vector
.C1;C2;C3;C4/. Then the determinant of M must be zero, which gives us the
following general dispersion relation for this case:

0 D n2
�
2A2nk � .s2 C s1/C An.s2 � s1/

�
C2k2n Œ.s2 � s1/C An.2k � .s2 C s1//� Œ�2.1C An/ � �1.1 � An/�

C2 �k5 � k4.s2 C s1/C k3s1s2
�
Œ�2.1C An/ � �1.1 � An/�

2

CAngk Œs2.1 � An/C s1.1C An/ � 2k� :

(5.49)

For further discussion here, we will specialize to the case �1 D �2 and thus
s1 D s2, obtaining

0 D 2n2


A2nk � s

�C 8nA2nk2�.k � s/C 8A2nk3�2.k � s/2 � 2Angk.k � s/:
(5.50)

This equation is deceptively simple, as s depends on n. We could solve for either
variable, but it is most useful to solve for s because s is constrained to have a positive
real part. Substituting for n (as a function of s) in (5.50), we obtain a fifth-order
polynomial for s,

0 D �s5�2 C s4k�2A2n C 2s3k2�2.1 � 2A2n/C s2k3�2.6A2n/

C s.Angk � k4�2.1C 4A2n// � Angk2 C A2nk5�2: (5.51)

By taking the limit as the viscosity vanishes, one can see from (5.51) that the
growth rate goes to

p
Angk, as it should. While one can solve (5.51) straightfor-

wardly with a computational mathematics program, it is more useful to first cast it
in a nondimensional form. If one compares the terms in the coefficient of s, it is
clear that g corresponds to k3�2, suggesting that one uses a normalized wavenumber

Qk D k

.g=�2/1=3
D
�
.k2�/p

gk

�2=3
; (5.52)

so one sees that Qk depends on the competition between diffusion and growth.
Specifically, for a spatial scale of 1=k, Qk is the 2/3 power of the ratio of the rate
of viscous diffusion to the fundamental RT growth rate

p
kg. Comparing the third

term on the right-hand side with the sixth term, one sees that s3�2 here corresponds
to g, suggesting that one uses a normalized value

Qs D s

.g=�2/1=3
; implying (5.53)

Qn D n

.g2=�/1=3
D np

kg

�
k2�p

kg

�1=3
; (5.54)
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which depends on the growth rate per unit fundamental RT growth rate times
pQk.

With these normalizations, the zero-viscosity growth rate is Qn D
p

An Qk, and the
dispersion relation becomes

0 D �Qs5 C Qs4A2n Qk C 2Qs3 Qk2.1 � 2A2n/

C 6Qs2A2n Qk3 C QsQk �An � Qk3.1C 4A2n/
� � An Qk2 C A2n Qk5: (5.55)

This equation provides a universal relation between the normalized growth rate and
the normalized wavenumber, depending only on the value of the Atwood number.
Any root of this equation (for Qs), whose real part is positive, corresponds to a
physical mode, but this mode is only exponentially growing if <.s/ > k. Otherwise
the mode is damped. Any roots with nonzero imaginary parts would correspond to
oscillating modes, which might in principle be growing or damped.

Figure 5.3 shows the non-trivial solutions of (5.55) for Qs. One of the roots has
a positive real part that always exceeds one. This is the exponentially growing
mode. Two of the roots always have negative real parts, and so never correspond to
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Fig. 5.3 Solutions for the spatial decay rate s for the Rayleigh-Taylor instability with viscosity,
for An D 0:5. The real and imaginary part of each root are shown using the same curve type in
both (a) and (b). (a) Real parts. Modes with positive real parts are physical solutions to the problem
considered here. (b) Imaginary parts



5.2 Applications of the Linear Theory of the Rayleigh–Taylor Instability 201

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1
(a)

(b)

N
o

rm
al

iz
ed

 g
ro

w
th

 r
at

e 
 n

/(
g

2 /
ν)

1/
3

Normalized wavenumber k(g/ν2)1/3

0.2

0.4

0.6

0.8

Fig. 5.4 Rayleigh-Taylor instability with viscosity. The black curves show the actual growth rates.
The solid gray curves show the zero-viscosity result, n D p

Ankg. The dashed gray curves shows
the approximation of (5.57). The panels show (a) An D 1 and (b) An D 0:2

solutions of this problem. These two roots also have imaginary parts; the other two
are purely real. The final root is negative at small Qk (small viscosity) but becomes a
damped mode as Qk increases.

Figure 5.4 shows the corresponding values of the normalized growth rate Qn, for
the root corresponding to an exponentially growing mode, for two values of An.
The roots shown in Fig. 5.4 are readily obtained from a computational mathematics
program, but are not algebraically simple. However, it turns out that a simpler
equation captures much of the behavior with high accuracy except at very small An.
The physical basis for this is that the growth will approach the zero-viscosity value
when viscosity is small and that viscous effects will dominate at high viscosity,
so that a solution that joins these two regimes may work well even through the
transition between them. To obtain such a solution, one can replace s in (5.50) with
the value from an expansion for high viscosity, s � kŒ1 C n=.2k2�/�. Making this
substitution and solving the resulting equation produces the much simpler dispersion
relation

n D
p

Ankg C k4�2 � k2�; (5.56)
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which in our dimensionless units becomes

Qn D
q

An Qk C Qk4 � Qk2: (5.57)

This solution, originally developed by Duff et al. (1962), is shown as the dashed
gray curves in Fig. 5.4.

It is no surprise that the wavenumber of the mode with the highest growth rate has
a normalized wavenumber that is some fraction of unity. The largest growth occurs
at wavenumbers just smaller than those for which viscosity begins to substantially
reduce the growth. The wavenumber of maximum growth is approximately that
given by (5.56) and (5.57), from which Qk D A1=3n =2 or

k D 1

2

�
Ang

�2

�1=3
(5.58)

at the maximum. The magnitude of the growth rate at this wavenumber is

n D .Ang/2=3

2�1=3
: (5.59)

Another observation from (5.56) and (5.57) is that, although the effect of
viscosity is to reduce the growth rate, viscosity alone can never reduce it to zero.
This makes physical sense, because while the viscosity can resist the flow of fluid
and turn some kinetic energy into heat, the system will still seek its minimum-
potential-energy state. Turning to real numbers, the viscosity is given in (2.40), and
in a very rough estimate has a typical value � 0:01 cm2/s in high-energy-density
experiments. A characteristic value for g might be (100 km/s)/(10 ns) = 1015 cm2/s.
With these assumptions, the wavenumber of maximum growth for an RT mode,
already well below

p
Ankg, from (5.58) with An D 0:5, is of order 106 cm�1, so

the wavelength is of order 0.1�m. In some experiments this wavelength can be
larger, of order 1�m. Wavelengths shorter than this will experience greatly reduced
RT growth. This will definitely limit the ability of RT and related mechanisms to
produce short-wavelength turbulence. In an astrophysical context, one might have
� � 1020 cm2/s and g might be (100 km/s)/(100 years) �0.003 cm2/s. In this case,
the maximum growth occurs for a wavenumber of 10�15 cm�1, or a wavelength of
order 1016 cm � 0:01 light years. Wavelengths much shorter than this would be in
the high-viscosity regime and experience reduced growth.
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5.2.3 Rayleigh–Taylor with Density Gradients and the
Global Mode

Some interfaces are abrupt, and one can design experiments to create abrupt
interfaces at least initially. However, the RT instability occurs in many situations
that have a gradual interface. Indeed, sometimes there is no “interface” as such but
merely an extended density gradient that opposes a pressure gradient. This is the
case, for example, in supernovae. So it is worthwhile to explore the effects of a
density gradient on this instability. Given that the effects of viscosity are typically
small, it is sensible to set � D 0 for this calculation. In this case our basic differential
equation (5.21) becomes

k2
�
�n � g

n

@�

@z

�
w � @

@z

�
n�
@w

@z

�
D 0: (5.60)

Before proceeding to specific cases, it is worthwhile to observe that this equation
has the solution w D woe�kz for an arbitrary density profile, corresponding to a
growth rate of n D p

kg. This mode is known as the global Rayleigh–Taylor mode,
and this growth rate is the largest RT growth rate that exists (Bychkov et al. 1990).
One might think that this is the end of the story for RT in density profiles. However,
this mode does not always exist because it may not satisfy the boundary conditions.
On the one hand, whenever a high-pressure region of negligible density is either
accelerating or decelerating a fluid layer of some thickness L, the fluid layer will be
unstable to the global RT mode for modes with kL 	 1. The maximum amplitude of
these modes will be at the free surface where the high pressure is located. This mode
can also be viewed as a generalization of the mode we found in Sect. 5.2.2 to an
arbitrary density profile and to An D 1. On the other hand, if there is a nonnegligible
density on both sides of the interface, then the boundary conditions do not allow
the global mode. We consider next such a case in which the instability develops
somewhere on an extended and continuous density profile.

We will assume, as a sensible general case, that the density is exponentially
distributed, so that �.z/ D �oez=L. Thus the density increases with “height”, defined
as the direction opposite the acceleration g in the frame of reference of the interface.
Thus �0.z/ D �o=L. Substituting for � D �.z/, (5.60) has the solution

w D C1 exp
h�p

1C 4k2L2 � 4gk2L=n2 � 1
	 z

2L

i
(5.61)

C C2 exp
h
�
�p

1C 4k2L2 � 4gk2L=n2 C 1
	 z

2L

i
;

with two constants C1 and C2. Here again these constants respond to the boundary
conditions. If, for example, the unstable zone is confined between two boundaries,
as can happen in the Earth’s atmosphere, then one would need the amplitude to be
zero at these boundaries (though for a linear theory this would be relevant only to
wavelengths of order the distance between boundaries). Such close boundaries are
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Fig. 5.5 A Rayleigh-Taylor
mode on a density gradient.
This grayscale representation
shows a vertically exponential
density profile in which there
is a density perturbation due
to a single mode

less common in the systems of interest to us, so we will take C1 D 0 for z < 0 and
C2 D 0 for z > 0, in order to assure that the perturbation dies out with distance.
Then the remaining constants are of equal magnitude to keep w continuous at the
interface.

It is worth focusing on the fact that the notion of an interface is somewhat
artificial in a continuous density profile. The instability might develop at any
location in the profile. The largest fluctuations in the profile, wherever they may
be, will produce large modulations first. Figure 5.5 illustrates the impact of a
single mode in such an environment. The mode is strongest at some location (about
halfway up the figure) and results in the flow of material both laterally and vertically.
Matter flows into the downward moving spikes and upward moving bubbles. In
reality, instabilities are likely to be seeded throughout the profile, and the entire
unstable region is likely to become very clumpy.

Indeed, the localized modes with k ? rp that we consider here are a subset of
the possible modes. In a continuous profile the direction of k (and thus the “surface”
considered) are not restricted to lie in the plane perpendicular to rp, but for a given
magnitude of k this direction will correspond to the direction of largest growth.
In addition, one can find plane-wave solutions to (5.60) in which the growth rate
has both real and complex parts. These correspond to modes that grow while they
propagate. Their growth rate is somewhat smaller than that of the global RT mode.

Returning to a localized RT mode in a continuous density profile, we find the
RT growth rate by applying the boundary condition (5.35), noting that at the chosen
interface �1 D �2 D �o, so the term involving g in this equation drops out. Some
simple algebra then gives an equation for the growth rate,

0 D n2.1C 4k2L2/ � 4gk2L; (5.62)

with the obvious solution for the growing mode

n D p
gk

r
4kL

1C 4k2L2
: (5.63)
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Fig. 5.6 Impact of density
gradient on Rayleigh-Taylor
growth rate. The black curve
shows the result from (5.63).
The gray curve shows the
approximate relation,p
1=.1C kL/, discussed in

the text
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The normalized growth rate, n=

p
kg, is plotted against kL in Fig. 5.6. The growth

rate reaches the value for the global mode at kL D 1=2, corresponding to a
wavelength about ten times the density scale length. (For comparison, Fig. 5.5 shows
a mode whose wavelength is about 30% of the density scale length, so kL � 20.)
The normalized growth rate is finite but rapidly decreasing at small kL, becoming
proportional to

p
2kL. If one thinks about a steadily increasing wavelength in

Fig. 5.5, one can see that more mass has to flow over longer distances as the
wavelength increases. On the other hand, at large enough kL the growth rate goes
to
p

g=L, losing all dependence on k. This is thought to be the relevant limit for
many cases in astrophysics. If we write g D jrpj=� D p=.�Lp/, where Lp is the
scale length of the pressure profile, then the growth rate takes a form familiar to
astrophysics, becoming .c2s=	/=

p
LLp. (There is also a contribution to growth from

the pressure gradient alone in this limit, which we discuss in Sect. 5.3.)
There are cases in which a density gradient exists and may even be exponential,

but only over a limited range of densities. A prime example is found in inertial
fusion, at the inner surface of the fusion capsule. Unstable wavelengths that are
small compared to the density scale length are affected by the density profile, while
wavelengths that are long compared to the density scale length tend to respond to
the densities at the upper and lower boundaries, behaving as though the interface
is abrupt. The gray curve in Fig. 5.6, showing the function

p
1=.1C kL/, is a

reasonable compromise to approximate the behavior under such conditions. It is
widely used, as is the similar approximation

p
An=.1C AnkL/.

5.3 The Convective Instability or the Entropy Mode

The RT instability is in fact a special case, although it is a very important one.
Consider, for example, the behavior of the Earth’s atmosphere near the surface.
The density gradient is negligible in comparison to the temperature gradient. On
a hot day, when the air is hottest and the pressure is greatest near the surface, a
parcel of air that rises slightly will expand to equalize its pressure. This in turn
reduces the density of the parcel and makes it buoyant. The reverse happens when
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a parcel of air drops slightly. In short, the air is unstable to convective motions
that will have the net effect of bringing cooler air down and hotter air up. Cumulus
cloud formation is often a diagnostic of this. This instability is naturally called the
convective instability.

The general instability of which the convective instability and the RT instability
are special cases is the entropy mode. The instability occurs when rs�rp > 0, where
once again s is the specific entropy. This condition is known as the Schwarzschild
stability criterion in the Western literature. When rs � rp < 0 the fluid supports
stable, oscillating waves. The Rayleigh-Taylor instability is all that remains in the
fully incompressible limit. The condition rs �rp > 0 can be reduced to r� �rp < 0
by recalling that the specific entropy s can be expressed as so C cV ln.p=�	 / and that
in the incompressible limit 	 ! 1. The more general condition allows for the
possibility described above that a fluid parcel may expand or contract adiabatically
as it crosses the interface, because of the overall pressure gradient. In that case,
interpenetration of the fluids leads to a reduction in potential energy if rs � rp > 0
is satisfied. Landau and Lifshitz (1987) anticipate this instability in their section
entitled “internal waves in an incompressible fluid.” We can develop a linear theory
of this mode as follows.

We use the same conventions as in Sect. 5.1.2, with s.z/ being the initial entropy
profile and ıs being the first-order deviation. We also assume that only the first
derivatives of p; �, and s are nonzero in the initial state. The linearized conservation
of entropy can be written as

@

@t
ıs D �u � rs: (5.64)

Although we will take the medium to be compressible, we look for fluctuations
that involve no compression to simplify the mathematics. There is some chance that
these will be the fastest growing modes, as they invest no energy in longitudinal
compression. Thus

r � u D 0: (5.65)

As in the case of Rayleigh–Taylor, we want to consider the motion in the plane of
the interface, so the momentum equation in this accelerating frame becomes

@

@t
u D �1

�
rıp C rp

�2
ı�: (5.66)

Here we have explicitly written the force introduced by the accelerating frame in
terms of the pressure gradient. Equivalently we could write g D rp=�.

To solve these equations, we begin by using pressure and entropy as the
thermodynamic variables. Thus � D �.p; s/ and

ı�

�
D 1

�

�
@�

@s

�
p

ıs C 1

�

�
@�

@p

�
s

ıp: (5.67)
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The second term in this equation is negligible, as ıp � �c2s , which is necessary
for a linear theory to be valid. This term also introduces no new dependences in the
solution. Thus the momentum equation becomes

@

@t
u D �1

�
rıp C

�rp

�2
@�

@s

�
p

ıs: (5.68)

We look for solutions to this equation of the form expŒnt C ikxx�, allowing for
exponential growth and for propagation in some direction perpendicular to z, which
we designate as x. The y component of u is not affected by these dynamics, as the
right-hand side of (5.68) has no curl. We seek a wave equation for the fluctuating
velocity w as in Sect. 5.1.2. We begin by taking the dot product of (5.68) with rs,
and also use (5.64) to obtain

� @2

@t2
ıs D �1

�

@s

@z

@

@z
ıp C

�
1

�2
@p

@z

@s

@z

@�

@s

�
p

ıs: (5.69)

The time derivative of this equation, with (5.64) and dividing out the common factor,
gives

n2w D � n

�

@

@z
ıp �

�
1

�2
@p

@z

@s

@z

@�

@s

�
p

w: (5.70)

Next we use the x component of (5.68) and (5.65) to eliminate ıp, finding

ıp D �n�

k2x

@w

@z
: (5.71)

Noting that both w and � in this equation have finite derivatives in z, (5.70) becomes

n2w D n2

k2x

@2w

@z2
C n2

�k2x

@�

@z

@w

@z
�
�
1

�2
@p

@z

@s

@z

@�

@s

�
p

w; (5.72)

which is a wave equation

k2x

�
1C !2s

n2

�
w � 1

L

@w

@z
� @2w

@z2
D 0; (5.73)

where for convenience we have defined 1=L D @ ln �=@z and

!2s D
�
1

�2
@p

@z

@s

@z

@�

@s

�
p

: (5.74)
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Equation (5.73), in combination with boundary conditions developed as
described above, covers a wide variety of limiting cases. For example, in the limit
as L ! 1, one obtains plane-wave solutions having n2 D �!2s sin2 � , where � is
the angle between the z axis and k. This is the solution found in the fluid mechanics
text of Landau and Lifshitz (1987), which also covers stable gravity waves. We will
develop these applications further shortly, but first it is useful to return to the use of
p and � as the thermodynamic variables, in which case, using the thermodynamic
relation

�
@�

@s

�
p

�
@s

@p

�
�

D �
�
@�

@p

�
s

: (5.75)

This allows us to connect several useful forms of !s as

!2s D �1
�

@p

@z

�
1

�c2s

@p

@z
� 1

�

@�

@z

�
D �c2s

	

"
1

	L2p
� 1

LpL

#
D �gkp; (5.76)

in which the third term assumes a polytropic gas, p=Lp D @p=@z, and kp D
jrpj=.�c2s / � .1=L/. Note that both L and Lp can be positive or negative. One sees
that a pressure gradient is always destabilizing, which is sensible from the discussion
at the beginning of this section, and that a density gradient must oppose the pressure
gradient to be destabilizing. The frequency!s, when real, is called the Brunt–Väisälä
buoyancy frequency (see, for example, Tritton 1988).

If we seek a general solution to (5.73), we find

w D C1 exp

�� z

2L

	�q
1C 4k2x L2.1 � gkp=n2/ � 1

��

CC2 exp

���z

2L

	�q
1C 4k2x L2.1 � gkp=n2/C 1

��
;

(5.77)

in which C1 and C2 are constants. For L ! 1 and no pressure gradient, the two
terms here are proportional to expŒ˙kxz�, as they should be. Just as in the above, one
needs the boundary condition to find the growth rate. If one finds the growth rate for
the simple case that w ! 0 at ˙1, with finite density and pressure gradients near
an interface where the Atwood number is An, one finds

n2 D gkx

�
2kxL

1C 4k2x L2 � A2n

�
�
h
kpL � A2n C

q
k2pL2 C A2n.1C 4k2x L2 � 2kpL/

i
:

(5.78)

This equation includes most of the cases one may encounter in the laboratory or
in astrophysics, with the exception of a density gradient that extends for a finite
distance between two layers of constant density.
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5.4 Buoyancy-Drag Models of the Nonlinear
Rayleigh–Taylor State

Once the amplitude of a single-mode RT instability reaches about 10% of the
wavelength of the initial perturbation, nonlinear effects begin to alter the rate
of growth. For a purely sinusoidal initial condition, the first development is
that harmonics of the imposed wavelength begin to appear as the shape of the
perturbation becomes distorted. This development has been studied in experiments
and may have some relevance to specific applications. Even so, like the linear phase,
the phase when harmonics are important is only transitory. Eventually the instability
develops very elongated bubbles and spikes. In addition, the response to the lift
induced by the shear flow at the tips of the bubbles and spikes is to broaden the tips
until the interface, expressed as a function, becomes double-valued. This evolution
can be seen in Fig. 5.1. This phase of the evolution, with elongated bubbles and
spikes growing in time and having broad tips, may last for a significant time. The
evolution during this phase can be thought of as the buoyancy-driven rising of the
bubbles, limited by the drag on their tips. Models that describe this behavior are
known as buoyancy-drag models. We discuss an example here. At present, more
details can be found only in the literature, for example in Oron et al. (2001) and
Dimonte (2000), and in the references these contain.

A buoyancy-drag model describes the velocity of the interface, ui, with the
equation

.�1 C �2/
dui

dt
D .�2 � �1/ g � Cd

�
�2u

2
i ; (5.79)

for densities �1 < �2 and with � a “wavelength” corresponding to the width of
a bubble. This is not quite a simple Newtonian force equation. Here we focus
on the evolution of the bubbles. Similar considerations apply to the spikes. The
contribution of �2 on the left-hand side represents the fact that as the bubbles rise
the denser mass must be displaced sideways. This might not necessarily contribute
with a factor of 1 as assumed here. The first term on the right-hand side gives the
buoyancy force causing the bubble to rise. Compressible effects might modify this
term. The second term on the right-hand side gives the drag force that resists the
rise of the bubble. For three-dimensional bubbles, Cd D 2 . The factor of 1=� in
this term is not genuinely an inverse wavelength. Physically it represents the ratio
of the bubble volume, which contributes to the other two terms, to the bubble area,
which produces the drag. However, the drag on the bubble will vary in response
to its shape, which varies a great deal across different experiments and computer
models. All in all this model is a nice way to capture key physics but it would be
foolish to imaging that it captures the absolute truth.
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When (5.79) applies, the bubble will accelerate until the two terms on the right-
hand side balance. This defines the asymptotic bubble velocity,

ui D
s

Ang�

.1C An/
; (5.80)

in which we have employed the Atwood number. But reaching this saturation veloc-
ity is not instantaneous. Estimating the saturation time �t from (5.79) and (5.80),
one finds

�t � ui

Ang
D
s

�

Ang.1C An/
: (5.81)

For � � 2 �m and g � 1014 cm/s2, this gives 1 ns. Saturation might be up to an
order of magnitude faster or slower for inertial confinement fusion and decelerating-
interface experiments, respectively. So one must pay attention to the question of
saturation time in applications.

There are two cases for which one can extend the buoyancy-drag model. Defining
the bubble height h as the displacement of the bubble from the mean position of the
original interface, one has ui D dh=dt. For isolated single bubbles, which may occur
for example in an experiment that seeds a long-wavelength modulation, � in (5.79)
is actually the bubble height, h. One can then convert (5.79) into an equation for h.t/
that can be solved numerically.

For broadband spectra in a sufficiently unstable system, one can assume that the
bubbles have a characteristic shape, so that the ratio of the inertial and buoyancy
terms to the drag term sustains a characteristic value such that h D �b, for
lateral scale size �. In addition, it is reasonable to suppose that the bubbles have
a characteristic shape (see below). One can express this as a ratio b D h=�.
Substituting for � in (5.80) gives an equation one can solve for h, finding

h D
�

1

2b.1C An/

�
Angt2 D ˛BAngt2; (5.82)

defining a parameter ˛B or “alpha bubble”. One can observe the growth of unstable
structures in experiments or simulations to find a value of ˛B. Typical values of ˛B

are within a factor of 2 of 0.05. There is much physics in the details that can be
summarized by a certain value of ˛B, but these are not our concern here.

Interfaces that are not prepared with a specific initial mode typically have a
broad spectrum of initial modes. Our discussion of RT makes some features of such
systems evident. The initial growth of the unstable modes will be most rapid for the
short-wavelength modes, whose exponential growth rate is proportional to

p
Ankg.

These modes grow faster and also have a smaller asymptotic velocity from (5.80).
Thus, they reach their final velocity first. As time progresses, larger bubbles reach
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their final asymptotic velocity, overtaking and absorbing the smaller bubbles. This
process is known as bubble competition. In what is known as the self-similar regime,
the net effect of bubble competition is that the characteristic shape of the bubbles
remains constant as they grow in amplitude. Detailed calculations have shown that
such a self-similar regime is reached, for an initial broadband spectrum and for
constant acceleration. Experiments or other physical systems, however, may not
have a broadband initial spectrum, may remain for a very long time in a state in
which the initial conditions impact the structure, and may not have truly constant
acceleration. As a result, the bubble-competition viewpoint and (5.82) are a useful
model but not one that can be assumed to always apply.

5.5 Mode Coupling

Thus far we have considered the RT modes to be independent of one another, even
in the nonlinear regime. This is consistent with our treatment of the equations in
Sect. 5.1.2. Indeed, it is implied by these equations, because we began by linearizing
them. Linearization amounts to assuming that the modes do not affect one another,
because it is the nonlinear terms that would permit such effects. From the point of
view that the nonlinear terms are small during the initial phases of RT growth, this
is perfectly acceptable. However, as the modes grow (or if their initial amplitude is
not very small), the existing modes do in fact couple to one another. This produces
source terms for modes whose wave vector is the sum or difference of the wave
vectors of existing modes. The production (or enhancement) of some modes by this
process is known as mode coupling. We explore this here.

The general notion that the beating of two waves can produce sum and difference
modes is a familiar one from general physics, often discussed in the context of
music. In such discussions, it is only sometimes emphasized that it is the nonlinear
terms in the underlying equations that create such possibilities. In general, such
mode coupling can develop in two ways. On the one hand, the coupling can occur
throughout a volume in which waves are present. In this case, the equations of
continuity and of momentum are key to describing the interaction of the waves
throughout space. Harmonic generation in music, laser scattering, wave coupling in
the ionosphere, and the interaction of fluctuations in the solar wind all are examples
of such volumetric mode coupling. This type of coupling, however, is of limited
importance in RT. On the other hand, the coupling can occur at a surface, where
the requirement that the surface move self-consistently and the other boundary
conditions may include nonlinear terms and introduce mode coupling. Such a
surface is often, but not always, an interface between two regions with distinct
properties.

Let us begin by considering the behavior of such a surface, and return to
the volumetric behavior later. The velocity of a point on a continuous surface is



212 5 Hydrodynamic Instabilities

determined by the combination of its local time variation and motion that propagates
to that point from adjacent regions. The requirement for continuity of the surface can
be written

@xs

@t
C u.xs/ � rxs D us; (5.83)

in which xs is the location of a point on the surface, u.xs/ is the fluid velocity at that
point, and us is the velocity of the point on the surface at xs. Note, for example by
reference to Fig. 5.2, that the fluid velocity may differ substantially from the velocity
of the point on the surface.

The important point about (5.83) is that the second term in this equation is
nonlinear. The fluid velocity u includes motion due to all the modes that are present
at the surface, as does the location of the surface xs. This inherently produces
coupling of any two modes present at the surface to drive other modes. This is
known as second-order mode coupling. In more detail, the fact that u is evaluated
at xs and not at an unperturbed, flat, initial interface, creates finite though weaker
coupling at all higher orders. We will not discuss this aspect here.

To see more clearly what happens in second-order mode coupling at surfaces,
we can explore mathematically a simple case that an experiment might attempt.
Suppose we have an interface, separating two uniform fluids of different density
and negligible viscosity, initially perturbed by some number of modes of small
amplitude. The amplitude of each of these modes is made to be much larger than that
of the other modes. All these other modes have finite initial amplitudes, at minimum
corresponding to variations in the surface location on the atomic scale, but we take
these to be negligible. We then apply and maintain a constant acceleration g to the
system, beginning at some time t D 0.

We know from the differential equation (5.38) found in Sect. 5.2.1 that all the
modes decay exponentially in ˙z. We can specify the perturbed velocity as a sum
over surface fluctuations involving the possible wavevectors in the x � y plane, km.
As we are considering mode coupling, we cannot use the usual complex notation
without thought, but instead must represent the physical variables as real quantities.
Taking all this into account, we can write the z-component of the velocity as

w D
X

m

wm.t/e
�skm.z�zs/ cosh.ikm � x � i�m/; (5.84)

in which �m is the phase of mode m, s is C1 for z > zs and �1 for z < zs, wm.t/
is its time-dependent amplitude, and zs, also a function of time, is the location of
the surface. It would be mathematically simpler but less intuitive to absorb the
term involving zs into the time-dependent function wm.t/. In addition, the present
formulation explicitly shows that the behavior of every mode is affected by all the
other modes, through zs.

Since r � u D 0 by assumption, the fluctuating velocity along the surface, u? is
given by

u? D
X

m

um? D
X

m

wm.t/e
�skm.z�zs/.�is/ sinh.ikm � x � i�m/Okm; (5.85)
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in which Okm is a unit vector in the direction of km. Note that um? has this definite
direction, but that the mode having a wave vector of �km is redundant, as the
hyperbolic sine changes sign, compensating for the change in unit-vector direction.
One could attempt to sum over only a half space but the bookkeeping would become
messy. Instead, we will sum over all directions and realize that the amplitude a
measurement would detect is twice that corresponding to any one term in the sum.

We can express the position of the surface as a sum over the same modes

zs D
X

m

zm D
X

m

zm.t/ cosh.ikm � x � i�m/; (5.86)

in which only some modes have finite initial amplitude at t D 0. If we take the
average initial position of the interface to be at z D 0, then modes with an initial
amplitude small enough to be in the linear regime evolve with zm.t/ / cosh.nmt/,
where nm is the linear growth rate, and have wm.t/ D nmzm.0/ sinh.nmt/.

Some further discussion of these initial values is worthwhile. Note that they
involve functions of ˙nmt. Although in Sect. 5.2.1 we took n > 0 to find growing
modes, we can observe that the differential equations found there for an interface
separating two uniform fluids are unchanged for n < 0. Modes with n < 0 decay
with time and so are not relevant to the behavior after a few growth times. However,
they may be important to the initial condition. Examination of our derivation in
Sect. 5.2.1 shows that the implicit initial condition in that section is that of a
flat interface on which a velocity perturbation has been imposed. Such an initial
condition is physically sensible and might be achieved in practice, but is certainly
not typical. Much more typical is the case of (5.86), in which the interface is initially
structured and the velocity is initially zero.

With these definitions, we can evaluate the z component of (5.83), using an
overdot for the partial derivative in time. This gives

X
m

ŒPzm.t/ � wm.t/� cosh.ikm � x � i�m/ D
X
`

u`?.t; zs/ � r
X

j

zj

D
X
`

X
j

w`.t/zj.t/.Ok` � kj/s sinh.ik` � x � i�`/ sinh.ikj � x � i�j/;
(5.87)

which becomes, upon expanding the hyperbolic sines and cosines,

X
m

ŒPzm.t/ � wm.t/� cos.km � x � �m/

D s

2

X
`

X
j

kjw`.t/zj.t/.Ok` � Okj/

(5.88)� 
 cos
�
.k` C kj/ � x � .�` C �j/

�
� cos

�
.k` � kj/ � x � .�` � �j/

� �
:
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We want to identify the term in the sum corresponding to any specific mode m.
Each possible combination of two modes ` and j shows up four times in the sum,
in consequence of summing over all directions. To be specific, a sum mode with
k D k1 C k2 shows up twice in each term through various combinations of terms
involving ˙ each wave vector. The redundant mode with k D �.k1 C k2/ also
appears four times. The result for any one of the redundant modes, summing over
only one of the two wave vectors, is to introduce a factor of 2. We get

Pzm.t/ � wm.t/ D s
X

j

kjw`.t/zj.t/.Ok` � Okj/

ˇ̌̌
ˇ
kmDk`Ckj;�mD�`C�j

�s
X

j

kjw`.t/zj.t/.Ok` � Okj/

ˇ̌̌
ˇ
kmDk`�kj;�mD�`��j

:

(5.89)

Here the matching condition in wave vector and phase is indicated by the vertical
line following each sum. This designates which terms in the sum are selected;
these are the terms that contribute to mode m. The other terms in the sum are
ignored. (Alternatively, one could devise some more-complicated notation related
to a Kronecker delta function.)

When existing modes are creating new modes by beating together, we call them
the driving modes and call the beat modes the driven modes. A consequence of the
two terms in this equation is that any two driving modes produce driven modes with
wave vectors that are the sum or difference of their wave vectors. Any two driving
modes will produce one term driving a mode with a larger wave number, said to
be upshifted and one term driving a mode with a smaller wavenumber, said to be
downshifted.

In addition, the phase �m of the driven mode is determined by the phases of the
driving modes. A specific driven mode may already be present at some amplitude,
but how this mode is affected by the driving modes will depend upon the relative
phases. In experiments using initial modes to drive others, the phases are chosen.
Then the phases of the driving modes determine the phase of the driven mode.
In more general circumstances, such as an inertial fusion capsule, the amplitude
of the driven mode might be initially increased, initially decreased, or gradually
become altered in phase through the influence of the driving modes. Henceforth we
will ignore any contributions from the relative phases, assuming the modes to be in
phase. This allows us to rewrite (5.89), explicitly specifying k` in the argument of
z`, as

Pzm.t/ � wm.t/ D s
X

j

zj.t/

(5.90)

�
h
.Ok` � Okj/w`.t; k` D km � kj/ � .Ok` � Okj/w`.t; k` D kj � km/

i
:
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For our purposes, it will suffice to have a second-order expression for wm. We
can obtain one by realizing that wm D Pzm to first order. To second order in the mode
amplitudes, this gives us

wm.t/ D Pzm.t/C s
X

j

kjzj.t/
�Ok` � Okj

	
ŒPz`.t; k`/C Pz`.t;�k`/�

ˇ̌̌
ˇ
k`Dkm�kj

: (5.91)

For reasons discussed above z`.k`/ D z`.�k`/, but we leave them separate to
clarify some of the steps below. We will use this relation in another boundary
condition to find an equation for the overall behavior of the modes.

To make further progress, we now must return to the fundamental differential
equations. For our special case of constant density, the continuity equation does not
produce any contributions to mode coupling. (This is not true if there is a density
gradient.) The momentum equation under these assumptions is

�
@

@t
u C �u � ru D �rp � r�; (5.92)

in which � is the gravitational potential, given by � D R
�gdz. Note that � has

a discontinuous derivative at the interface, for our assumptions. The initial profile
of pressure is determined by the initial gravitational potential, and the gradients
of these profiles cancel one another in this equation. This lets us follow only the
variations, ıp and ı� . We can also expand the convective derivative, using u �ru D
�r u2

2
� u �r � u. This allows us to see, by taking the curl of the resulting equation,

that r � u must remain zero if it is initially zero. Since r � u is zero for our initial
conditions, (5.92) becomes

�
@

@t
u C �r u2

2
D �rıp � rı�: (5.93)

As an aside, it is worth mentioning that much of the literature takes an alternative
approach to this problem of a stationary, structured interface, by exploiting the fact
that r � u, which is known as the vorticity, is zero. The vorticity corresponds
qualitatively to the degree of swirling present in the motion. The vorticity plays
an essential role in the development of hydrodynamic turbulence, as is discussed
in Sect. 5.8. We show there that, in the absence of viscosity, vorticity is frozen
into the fluid volume. Thus, in this limit the volumetric vorticity is fixed in time
(the vorticity on a surface is not fixed). Therefore, if one assumes that the fluid
is inviscid (which means that the viscosity is zero) and also is incompressible,
then the velocity has both zero curl and zero divergence for all time. This in turn
implies that the velocity is the gradient of a potential, �v and that this potential
satisfies Laplace’s equation, r2�v D 0. Such models are known as potential flow
models, since the flow is described by a potential. In a potential flow model, one can
write the momentum equation (2.27), under the present assumptions, as the gradient
of an equation involving the density and gradients of pressure, velocity potential,
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and gravitational potential. The resulting equation corresponds to one version of
Bernoulli’s equation, which can also be used as a starting point. The potential-flow
approach enables some simpler approaches to numerical simulation. A drawback is
that such a model cannot describe any system containing actual vorticity and thus
cannot follow the onset of turbulence.

Returning our attention to (5.93), our assumption of uniform density implies that
the first term introduces no mode coupling, so that all the mode coupling enters here
through the term involving u2. In addition, we can identify ı� as

ı� D � .�2 � �1/ g Œz ŒH.z/ � H.z � zs/�C zsH.z � zs/� ; (5.94)

where again H is the Heavyside step function. As in Sect. 5.1.2, (5.93) has
components in the z direction and in the x–y plane, written for example as

�
@

@t
w C �

@

@z

u2

2
D � @

@z
ıp � @

@z
ı�; and (5.95)

�
@

@t
u? C �r?

u2

2
D �r?ıp; (5.96)

in which r? is the gradient in the x–y plane. Our first step in Sect. 5.1.2 was to take
the versions of these equations corresponding to specific assumptions and to find a
single differential equation. The general version of this is left for homework, but the
outcome is that no mode coupling remains in the differential equation for w. This is
the origin of the statement above that there is no mode coupling in the absence of a
density gradient.

To proceed toward a solution for the behavior with mode coupling, we proceed as
we did above in finding a boundary condition across the interface. Integrating (5.95)
across the interface gives

.ıp2 � ıp1/zs D .�2 � �1/ gzs; (5.97)

while operating on (5.96) with r?, using the incompressibility condition, and
subtracting across the interface gives

� r2?.ıp2 � ıp1/zs D � @

@t

�
�2
@w2
@z

� �1 @w1
@z

�
C �2r2?

u22
2

� �1r2?
u21
2
: (5.98)

Here as before the quantities are evaluated as one approaches the interface from
the side designated by the subscript. Together these give

� .�2 � �1/ gr2?zs D � @

@t

�
�2
@w2
@z

� �1 @w1
@z

�
C �2r2?

u22
2

� �1r2?
u21
2
: (5.99)
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In the absence of mode coupling, this gives the standard RT growth rate as found
in Sect. 5.2.1. Mode coupling appears to second order through (5.91) for wm and
through the final two terms (from the convective derivative). One finds

.�2 � �1/
2

r2?
u2

2

ˇ̌
ˇ̌
m

D .�2 � �1/
2

k2m
X

j

�
1 � Ok` � Okj

	
Pzj

� ŒPz`.t; k`/C Pz`.t;�k`/�

ˇ̌̌
ˇ
k`Dkm�kj

:

(5.100)

Now we can use this equation, (5.91), and (5.99) to obtain an equation for the
evolution of a mode on the interface having wave vector k, as

Rzk � Angkmzk D �An

X
j

kj

� �Ok` � Okj

	
zj.t/

�Rz`.t; k`/ (5.101)

C Rz`.t;�k`/
�C

�
1C Ok` � Okj

	 Pzj.t/

2
ŒPz`.t; k`/C Pz`.t;�k`/�

�
k`Dk�kj

:

Here again one sees that in the absence of mode coupling, one recovers the
usual RT growth rate. The presence of mode coupling can increase or decrease the
growth of the mode relative to this, depending on the sign of the right-hand side
(and thus on the phases of the modes). The right-hand side must be positive to add
to the growth of the mode (with the assumed phase). Note that the sum is over all
directions, so that if the term .1 C Ok` � Okj/ is 0 in one case, it will equal 2 for the
opposing mode. The mode-coupling terms will tend to dominate if kjzjz`=zk 	 1.
If the driving modes are growing exponentially, the right-hand side will have terms
proportional to n2`e

.n`Cnj/t and n`nje.n`Cnj/t. In this limit, the driven mode will grow
in approximately an exponential way and will have a growth rate larger than that
of the driving modes by approximately kjzjz`=zk. Thus, mode coupling can rapidly
bring the coupled modes up to an amplitude of order kz times that of the driving
modes. (Note: The precise result of (5.101) differs from that given in the original
paper by Haan (1991). The author asked a colleague to check these results in 2005,
and he found that agreement with them. Yet another colleague since remarked that
he had done the derivation and agreed with the results in Hahn. As with all theory,
any reader who actually needs a complete and accurate result had better derive it for
themselves.)

The modes driven as described above then act as driving modes in turn. In this
way, two initial modes can over time produce a broad spectrum of modes. These
modes will have a sparse spectrum that can be constructed by taking sums and
differences of multiples of the initial wave vectors. In applications, mode coupling
can play a substantial role in creating more complicated structures at an RT-unstable
interface.
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5.6 The Kelvin–Helmholtz Instability

The Kelvin–Helmholtz (KH) instability, like Rayleigh-Taylor, is seen frequently in
many disparate physical systems. Whenever two fluid regions flow past one another,
with a sufficiently narrow transition region at their mutual boundary, fluctuations at
the boundary are unstable and will grow. The transition region where the velocity
changes quickly in magnitude but remains along the same axis is known as a shear
layer. Figure 5.7 shows an example of modulations caused by a KH instability.
Modulations driven by KH can routinely be seen in clouds, in flowing water, and
in the ripples in the sand at the beach. They are also observed at shear layers in
the magnetosphere. Throughout astrophysics, there are many systems that produce
shear layers, anytime a flow of material from one object or region passes through or
around another object or region. In addition, the characteristic mushroom shape that
develops at the spike tips in the RT instability is produced by the same sort of lift
force that drives KH. (See, for example, the simulation results shown in Fig. 4.27.)
One can see that this process is so prevalent that it is worthwhile to understand.

5.6.1 Lift as a Driving Force

Lift is the second primary driving force, after buoyancy, that alters the structure
of flows. One often first meets this force in basic physics, when discussing the
Bernoulli effect and how airplanes work. By making the fluid flow faster over the
upper edge of the wing, the airfoil causes the pressure above the wing to be lower
than the pressure below it, and so the wing is pushed upward. A rippled interface
in a fluid is like a sequence of airfoils, with each one inverted by comparison to the
previous one. Figure 5.8 illustrates the effect by plotting the fluid streamlines near

Fig. 5.7 The structures seen along the upper edges of these clouds were produced by the Kelvin-
Helmholtz instability
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Kelvin Helmholtz Airplane wing

Interface
Flow

Flow

Fig. 5.8 Lift on airplane wings and in fluid flows. On the right, the solid curve is a rippled interface
across which the velocity changes (a shear layer). The dashed curves show streamlines in the flow,
which close when the surface extends into the fluid and spread out when the surface recedes

U(z)

x ∇U

1(z)

2(z)

z

Nominal interface

Fig. 5.9 Geometry for Kelvin–Helmholtz instability calculations. The densities and velocities
may vary with z. The shear layer and velocity gradient may or may not be localized at the nominal
interface

the interface. Where they are tightly spaced the fluid flows quickly and the pressure
is reduced, and vice versa. The result is that each region of maximum displacement
experiences a force that pulls it further from the mean interface location. Small
ripples are caused to grow, until nonlinear effects limit the growth.

5.6.2 Fundamental Equations for Kelvin–Helmholtz
Instabilities

The fundamental equations for KH instabilities are similar to those for Rayleigh-
Taylor instabilities, but have differences reflecting the presence of a nonzero
velocity and velocity gradient in the initial, unperturbed state. As in the case of
the Rayleigh-Taylor instability, and for the same reasons, we will develop the
theory for incompressible fluctuations. Here again, the unstable behavior is not
strongly modified by compressibility. We consider the system sketched in Fig. 5.9.
We assume the shear layer to be planar and to lie in the x–y plane, so that the z-
direction is perpendicular to it. We further assume the initial flow, designated by
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U, to be parallel to the x-axis, and that the zeroth-order gradients of U and of �
are parallel to the z-axis. As in Sect. 5.1.2, we designate the first-order density and
pressure perturbations by ı� and ıp, respectively, and the x; y, and z components of
the first-order velocity perturbation, u, by u; v, and w. With these assumptions the
continuity and momentum equations become

@ı�

@t
C U � rı�C u � r� D 0; and (5.102)

�
@u
@t

C �U � ru C �u � rU D �rıp � gı�Oz; (5.103)

where once again Oz is a unit vector in the z direction. In addition, we have the
important additional condition expressed in (5.83) above, which is to first order

@ıxs

@t
C U � rıxs D us; (5.104)

in which ıxs is the location of a point on the interface relative to its initial position
and us is the velocity of that point. Here xs and us are both first-order quantities.
This equation specifies that the interface must move with the fluid self-consistently.
We will not consider mode coupling for KH instabilities, but it exists for the same
reasons that produce it in RT instabilities. One specific source is the requirement that
the interface remain continuous, as represented in its full nonlinear form by (5.83).

In writing (5.102)–(5.104), we have ignored surface tension for the reasons
discussed in Sect. 5.1.2. We also have ignored viscosity, for which we have much
less excuse. Viscosity can play a role in KH instabilities at short wavelength.
However, the mathematics turns out to be particularly intractable. Nonetheless, one
aspect of the influence of viscosity can be accounted for using the above equations.
Viscous diffusion of momentum causes the transition region in any initially abrupt
shear layer to develop a scale length of

p
�t. This stabilizes the KH instability for

the shortest wavelengths, and the maximum wavelength that is stabilized increases
with time. We consider the effect of an extended shear layer below in Sect. 5.6.3.

It is helpful to express (5.102) through (5.104) as equations for the components,
and to write out the incompressibility condition, in order to obtain a set of equations
we can solve to see the unstable behavior. These are as follows:

�
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@x
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@z
U D � @
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ıp; (5.105)
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@x
v D � @

@y
ıp; (5.106)
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@x
w D � @

@z
ıp � gı�; (5.107)
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@

@t
ı�C U

@

@x
ı� D �w

@�

@z
; (5.108)

@ızs

@t
C U

@

@x
ızs D ws; and (5.109)

@u

@x
C @v

@y
C @w

@z
D 0: (5.110)

Here only the z component of (5.104) is important in a linearized analysis. Note
that all three dimensions matter for KH, unlike simple RT. This is because three
directions—that of the gradients, that of U, and that of k—all matter independently.
Also note that the sign of gravity is such as to produce a downward acceleration.
We seek surface waves growing exponentially in time, but possibly also having
an oscillatory component, we assume all linearized amplitudes to be proportional
to exp i.kxx C kyy C nt/. This differs from our assumption in the Rayleigh-Taylor
problem. Now a growing instability will be one with negative imaginary n. Our set
of equations then becomes

i� .n C kxU/ u C �w
@U

@z
D �ikxıp; (5.111)

i� .n C kxU/ v D �ikyıp; (5.112)

i� .n C kxU/w D � @

@z
ıp � gı�; (5.113)

i .n C kxU/ ı� D �w
@�

@z
; (5.114)

i .n C kxU/ ızs D ws; and (5.115)

ikxu C ikyv D �@w

@z
: (5.116)

One sees that five of these six equations involve the term .n C kxU/. In a
system with uniform flow, this type of term introduces a Doppler shift into wave
frequencies. Here we have the added complication that U varies with z. We simplify
these equations first by obtaining from (5.111), (5.112), and (5.116)

� � .n C kxU/
@w

@z
C �kxw

@U

@z
D �ik2ıp; (5.117)

while from (5.113) and (5.114) we find

i� .n C kxU/w D � @

@z
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w

.n C kxU/

@�

@z
: (5.118)
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Eliminating ıp from these equations gives a single differential equation for w in
terms of known parameters,

� k2� .n C kxU/w C @
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:

(5.119)

One can see that this is a second-order equation for w and thus likely to allow
solutions that decay away from the interface, or that combine to satisfy specific
geometric constraints. Chandrasekhar (1961) points out that it is worthwhile to
separate out the role of the density in this equation, obtaining
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(5.120)

The right-hand side of this equation can be ignored so long as the scale length of the
density profile, L, is large compared to the perturbation wavelength of interest and
unless the gravitational acceleration is very large .> k2x U2L/.

To develop solutions that involve an interface, we need boundary conditions at
the interface. At this point we have incorporated (5.111) through (5.116) except
for (5.115), which gives us one boundary condition as the interface position must
be the same when approached from either side. This implies that w=.n C kxU/ is
continuous at the interface, so

w2
.n C kxU2/

D w1
.n C kxU1/

: (5.121)

Here and in the following the subscript 1 or 2 indicates the value found by
approaching the interface from the side designated by the subscript and the subscript
s designates the value of a continuous quantity at the interface. To find another
boundary condition, we can proceed as discussed in Sect. 5.1.2. We integrate (5.118)
across the interface, then subtract (5.117) from itself across the interface so we can
eliminate ıp. The resulting boundary condition is

gk2
�
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�
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�
: (5.122)

We are now prepared to consider specific cases of interest.



5.6 The Kelvin–Helmholtz Instability 223

5.6.3 Uniform Fluids with a Sharp Boundary

We consider the simplest case first, to determine the most general features of this
process. Consider the two fluids to have uniform densities and uniform initial flow
velocity, U, supposing that the value of these parameters may change only at an
interface. Further assume the gravitational acceleration to be negligible for now. We
then find from (5.120) that

� k2w C @2w

@z2
D 0; (5.123)

so that we have solutions that are a linear combination of terms proportional to
ekz and e�kz, with coefficients that must be set to match the geometric boundary
conditions. We will consider the case with the simplest algebra, in which the
boundary condition is that the disturbance become negligible at large distances, so
that

w D A2e
�kz for z > 0 and w D A1e

kz for z < 0; (5.124)

where (5.121) implies

A2 D A1
n C kxU2

n C kxU1

: (5.125)

It is convenient to work in a frame of reference corresponding to the average
velocity of the two regions, because the velocity difference is what drives the
instability and because one often knows the velocity difference in real applications.
In this case U2 D �U=2 and U1 D ��U=2. With these results, (5.122) becomes

0 D �2 .n C kxU2/
2 C �1 .n C kxU1/

2 ; (5.126)

which has the solution for n

n D �kx
An

2
�U ˙ ikx�U

p
�1�2

.�1 C �2/
: (5.127)

The real part of n is finite if An ¤ 0, so that in such cases the wave propagates
along the surface in this frame of reference. The negative imaginary part of n
describes the exponential growth, given our specification of the modulations. For
equal densities one finds the standard and very simple result that the exponential
growth rate is kx�U=2. (The factor of 2 reflects the definition of �U, which varies
among references.)
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There are some things worth noticing about the result of (5.127). First, this
process has no minimum wavenumber. Perturbations at all wavelengths are unstable
(until the wavelength approaches the scale of the system, in which case this
calculation becomes invalid). Shorter-wavelength perturbations have more-rapid
growth rates. On the one hand, if the initial fluctuations present at a sharp interface
corresponded to broadband noise, one would expect to see small-scale hair grow
first, followed by the evolution of larger scales. On the other hand, one does not
typically see this, which probably reflects the fact either that the initial fluctuations
are larger at some specific wavelengths or that the shear layer is not indefinitely
sharp. Finally, while the component of k along U determines the growth rate, there
is no limitation on the y component of k. Fluctuations whose wave vector makes
some angle with U grow freely, though more slowly than do fluctuations of the
same wavelength for which k is parallel to U.

If we now allow for gravity but change no other assumptions, then (5.123)
through (5.125) remain correct, but now (5.122) gives

� gk.�2 � �1/ D �2 .n C kxU2/
2 C �1 .n C kxU1/

2 ; (5.128)

in which we have divided out a factor of Œkw=.n C kxU/�s. The solution for n now
becomes

n D �kx
An

2
�U ˙ i

q
k2x�U2�1�2 C gk.�22 � �21/

.�1 C �2/
; (5.129)

in which if the argument of the square root is positive then there is an unstable
root. Our conventions imply that �2 is from the “upper” region as defined relative
to the gravitational acceleration. One sees that instability is always present if the
upper density (�2) is higher than the lower density (�1). In this case, the KH and
RT instabilities work together to produce larger growth. In contrast, when the lower
density exceeds the upper density, this places a condition on the wavenumber for
instability,

k >
g.�21 � �22/

�U2�1�2cos2�
: (5.130)

Here � is defined by cos � D kx=k. Thus, the RT dynamics at a given k opposes the
instability growth due to KH, but at large enough k the KH instability dominates
and one will see a positive growth rate. When gravity becomes large enough (and
�1 > �2) the argument of the square root in (5.129) becomes negative. Then any
modulations of the interface oscillate but do not grow.
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5.6.4 Otherwise Uniform Fluids with a Distributed Shear Layer

The next level of complexity is to assume that the shear layer is not an instantaneous
change in velocity, which at the microscopic level is unphysical in any case.
Realistic problems with shear can become quite complex. As a first simple problem,
we will suppose that the velocity shears but that the density changes abruptly at an
interface. This may be relevant, for example, to the KH instability at boundaries
between two fluids that are incompressible or that have only slow variations in
density. The boundaries created by the RT instability or at bow shocks may be of this
type. We mentioned above that the minimum width of the shear layer, in a system
that has kinematic viscosity � and has evolved for time t, is

p
�t.

We assume that the right-hand side of (5.120) is small, because the density is
constant or slowly varying in the sense required. Further assuming the velocity
profile to be given by Us.1 C z=L/, we can observe that the terms involving
@U=@z in this equation cancel out, and that we are left once again with (5.123),
solution (5.124), and condition (5.125) on the amplitudes. Here, because there are
no boundaries on the flow, L is the distance over which U changes by Us. Note that
this assumption implies working in an inertial frame for which U D 0 at z D �L
and that U1 D U2 D Us so w1 D w2 D ws. The boundary condition of (5.122) then
becomes

Angk2 C AnkxUs

L
.n C kxUs/C .n C kxUs/

2k D 0; (5.131)

which can be solved for n to give

n D �kxUs

�
1C An

2kL

�
˙ i

s
gAnk � A2nk2x U2

s

4k2L2
: (5.132)

We see that n has a real part, so these modes oscillate and propagate. For
instability, the argument of the square root must be positive. In particular, an
interface of this type (continuous linear U, discontinuous �) is always stable if the
product gAn is zero or negative. Another way to put this is that modes that perceive
the region of velocity shear to be large are stabilized, and here the shear region is
indefinitely large. In the next section, we will see that any boundaries, no matter how
distant, will have the effect of destabilizing modes whose wavelength is of order the
distance between boundaries. In contrast, when gAn > 0 the interface is unstable so
long as

kL >
Ancos2�U2

s

4Lg
: (5.133)
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This is a curious result, as the shear in this context acts to stabilize long-wavelength
modes but not short-wavelength ones. Note that the shear acts to stabilize modes
with k along U, but not modes with k perpendicular to U. If k is aligned with U
and the interface decelerates over some distance h so g � U2

s =h, then modes with
wavelength � > 8L2=.Anh/ are stable.

5.6.5 Uniform Fluids with a Transition Region

The notion of a sharp interface is an approximation, as molecular diffusion always
will mix the materials from the two sides of the interface to some extent. This is
particularly true in high-energy-density physics, where surface tension does not
exist. Unfortunately, when U and � both vary, the solutions become much more
complex. We will work out one standard case here, following Chandrasekhar (1961),
and will leave other and more realistic cases to the specialized literature and to
simulations. The geometry of this case is illustrated in Fig. 5.10. One has two
layers of fluid, of density �1 and �2, separated by a transition region of width 2L.
The velocity of the layers ˙Us, and with a linear velocity profile U.z/ D Usz=L
connecting them through the transition layer. The density of the transition layer
is assumed to be constant and equal to �o D .�1 C �2/=2. This corresponds to the
approximation that the transition layer is fully mixed, presumably through the action
of instabilities and turbulence. We will designate the lower and upper regions, using
the subscripts 1 and 2, respectively, and the transition region, using the subscript o.

We now can apply our fundamental analysis to this problem. We have three
distinct regions with two boundaries, and we will once again assume that the
perturbations must vanish at large jzj. Under the assumptions stated, (5.120) once
again reduces to (5.123), @2w=@z2 D k2w, in all three regions. [The right-hand side

Fig. 5.10 Geometry for
Kelvin-Helmholtz instability
with a transition region
having uniform density

+Us

z

1

2

o

−L L

−Us
Transition region

g
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of (5.123) is zero and the other derivatives on the left-hand side cancel one another.]
The solutions are w.z/ D Ae˙kz, with coefficients chosen so to make w vanish
appropriately in the outer regions. This gives

w D A2e
�kz for z > L;

w D Aoe�kz C Boekz for � L < z < L;

and w D B1e
kz for z < �L:

(5.134)

Thus, we have four unknown amplitudes. Our first boundary condition (5.121) tells
us that w.z/ must be continuous at both boundaries, because U.z/ is continuous by
assumption. This gives us two equations,

Aoe2kL C Bo � B1 D 0; and (5.135)

Ao C Boe2kL � A2 D 0: (5.136)

Our second boundary condition (5.122) applies at each interface, giving two
more equations,
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(5.137)
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�kL

�
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.n C kxUs/
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�
k C 1

L

�
kxUs

�
:

(5.138)

As before, we can express (5.135) through (5.138) as the product of a matrix and
the vector of coefficients (B1, Ao, Bo, A2). The determinant of this matrix then gives
the dispersion relation, which is fourth order in n.

Certain quantities appear in natural combinations in these equations. It simplifies
the resulting expressions to define � D kL; �g D n=.kxUs/; and ˇ D .�1 � �2/=�o.
In addition, one can define a Richardson number, Jr, which measures the ratio of
buoyancy to inertia, as

Jr D gk�ˇ

2k2x U2
s

: (5.139)
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For further discussion of the Richardson number, see Chandrasekhar (1961). With
these substitutions, and looking only at the modes with k D kx, the dispersion
relation becomes a fourth-order equation for the normalized growth rate �g:

0 D �4g

�
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� 1 � J2r

�
C 4e4�.�2 � �/:

(5.140)

The solution of this equation, readily obtained from a computational math-
ematics program, has only one root with an imaginary part that is at times
negative, corresponding to instability by our definition of the modes. It turns
out, quite fortuitously, that the growth rate is nearly independent of ˇ. As jˇj
increases, the root develops a finite real part, implying that the growing solution
would oscillate once the density difference becomes larger. The growth rates
can be accurately obtained from (5.140) assuming ˇ to be small. This equation
then becomes quadratic in �2g , and the growth rate can be displayed as con-
tours on a plot with �.� kL/ and Jr (buoyancy) as axes. Figure 5.11 shows
this.

This plot supports a number of observations. First, if there is no gravity and thus
no buoyancy, the KH instability is only unstable up to a maximum kL of about 0.65.
This short-wavelength cutoff is the effect of the gradient in velocity. It says that

Fig. 5.11 Kelvin-Helmholtz
at an interface with linear
velocity shear and a density
transition. Working from the
interior outward, the contours
show a growth rate, in units
of kxUs, of �0:3;�0:1, and 0.
Surface modulations outside
of the �g D 0 contour are
damped
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wavelengths shorter than about 10L are stabilized. As any given system evolves in
time, L, being approximately

p
�t, increases, so that growth of the KH instability

will be stopped at progressively longer wavelengths.
Second, for finite gravity, our new assumptions have introduced an additional

feature that was not present in the absence of velocity shear. In the presence of
a sharp interface and gravity, we found (5.130), which says approximately that
kL > Jr for instability. This corresponds to the left boundary in Fig. 5.11, and
determines the longest wavelength that is unstable. The right boundary is the new
feature, introduced by the presence of a velocity gradient that stabilizes the shortest
wavelength modes. This is the impact of a limited region of velocity shear, allowing
instability for waves to which the change in velocity seems abrupt. One sees that the
combination of buoyancy and shear can produce a very narrow range of unstable
wavelengths.

Finally, it is of interest to compare the results of these last two calculations. On
the one hand, with a velocity gradient that extended over all space and a sharp
density change at the interface, we found instability only in the presence of gravity
and only when the interface is RT unstable (An > 0 with our definitions). In effect,
the velocity gradient acted to stabilize all the modes we would normally describe
as Kelvin–Helmholtz modes. In the presence of shear but only across a transition
layer, we find instability whether or not there is gravity and for either direction of
the density gradient, but only over a range of wavelengths longer than some multiple
of the velocity scale length. In addition, the shear acts to stabilize the RT modes,
producing a long-wavelength limit like that we saw in Sect. 5.6.3.

5.7 Shock Stability and the Richtmyer–Meshkov Process

The two instabilities we have now considered develop within some enduring state of
a fluid system. Rayleigh–Taylor requires sustained acceleration, to create buoyancy,
while Kelvin–Helmholtz depends on sustained shear, to create lift. In both cases, a
calculation assuming incompressible fluctuations produces an excellent conceptual
model for observed phenomena, even when the actual fluids are compressible.
Even so, it was clear in Chap. 4 that real high-energy-density systems nearly
always involve some combination of shock waves, rarefactions, and interfaces. This
introduces an additional dynamical effect, which is the deposition of vorticity in
the fluid. (Recall that the vorticity is r � u.) This causes oscillations in shock
waves to damp and structure to grow at interfaces. In our description here, we
will summarize what has been learned from some complex calculations, and use
some very simple models to provide some perspective. A recent paper by Wouchuk
and Cobos-Campos (2017) provides an insightful discussion of these effects and a
summary of the complex calculations and their results.
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5.7.1 Shock Stability

We consider first what may happen to a shock wave that has lateral structure. We
will describe this as a rippled shock and assume the rippling (in the z direction)
to be proportional to cos.kx/, corresponding to a two-dimensional ripple with no
dependence on y. As usual, more-complex structures can be treated as a sum over
such plane waves. We will also suppose that the rippling is of a long-enough
wavelength that we can think about its effects using our analysis of oblique shocks
in Sect. 4.1.5. A rippled shock can be produced by pushing on a fluid with a rippled
piston, or by allowing a planar shock to interact with a rippled interface. Here we
focus only on the shock; later we will consider the interface. We will assume the
ripple to be of initial amplitude ao, and to be small (so that aok � 1). For our
specific calculations, we will also assume the shock wave to be strong, in order to
simplify the mathematics.

Figure 5.12 illustrates the deflection of the flow that occurs at a rippled shock.
Here a fluid moving in the �z direction approaches a shock whose z location is
given (in the shock frame) by a D ao cos.kx/. This results in a deflection of the flow
away from the shock normal. The shock normal is indicated in the figure by arrows
attached to the shock. The deflection has three consequences. First, material flows
toward the lagging section of the shock; the horizontal arrows in the figure indicate
this component of the flow. This causes the shock wave to oscillate. Second, vorticity
is deposited and sound waves are driven in the shocked material. This both speeds
up the oscillations and leads them to damp. Third, the shock transition is affected
by the change in deflection as a function of position. We consider these in turn.

The shock normal vector is shown in the figure and given to first order in aok by

n D �Ox.aok/sin.kx/ � Oz: (5.141)

tan�1 � �1 D .aok/sin.kx/; (5.142)

from which the small-angle formula for the deflection  of the flow away from the
�z direction,  D �1.�2=�1 � 1/ gives  D 2�1=.	 � 1/ for strong shocks. As is

Fig. 5.12 Sketch showing
the horizontal flow produced
by a rippled shock
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flow

Shock
normal

Resulting horizonal flow
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discussed in Sect. 4.1.5, the local transverse component of the flow is unchanged by
the shock, while the local normal component of the flow is reduced.

To first order in aok, the immediate postshock fluid velocity is given by

u2 D Oxus.aok/sin.kx/ � Ozus

�
	 � 1
	 C 1

�
; (5.143)

in which the shock speed is us and the postshock velocity, in the shock frame, is u2.
The lateral .x/ component of this, u2x, is proportional to aok sin.kx/, illustrated by
the horizontal arrows in Fig. 5.12. We can estimate the consequences of the lateral
flow by the following simple estimate. We make the oversimplified assumption
that the shape of the shock remains sinusoidal and that the amplitude is reduced
as material flows laterally. The rate of mass flow per unit length from the leading
to the lagging sections, on each side of the minimum of a.x/, designated as zmin,
is approximately the wave amplitude times the transverse mass flux at the mean
interface position, or �aous.aok/. This has units of mass per unit length per unit
time. The mass per unit length between zmin and z D 0, within half of the lagging
region of the shock, is �ao=k. If this flow of material were the only factor, one would
have

d

dt
ao � �.aok/2us � ao

�fill
; (5.144)

defining a characteristic time for the oscillation to be filled in of

�fill D 1

.aook/.kust/
so

us�fill

�
D 1

2.aok/
; (5.145)

in which the latter expression gives the distance the shock would travel, in
wavelengths, before the mass flux could have filled in the trough. This turns out
to be an over-estimate, and fails to capture the fact that the shock oscillates as it
damps. Both effects are a result of the second factor we mentioned above, discussed
next.

The horizontal flow illustrated in Fig. 5.12 produces pressure extrema, as illus-
trated in Fig. 5.13. These accelerate the flattening of the shock wave and cause
it to overshoot, producing oscillations. The resulting pattern of pressure extrema
corresponds to a pattern of standing acoustic waves. The figure makes no attempt
to show the subsequent fluctuations of the extrema. The variation in lateral flow
produced as the shock wave oscillates while moving forward has the effect of
continuously depositing vorticity in the fluid. The zones between the pressure
extrema each contain vortical flow around their center. The figure shows these
zones as symmetric, but they may not be. The net consequence of these dynamics
is that the amplitude of the modulations of the shock wave decays rapidly as the
shock propagates. Figure 5.14 shows the decay of a shock wave whose initial
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Fig. 5.13 The lateral flow produced by a rippled, oscillating shock creates both vortical flow and
pressure perturbations behind the shock wave. Here the upper part of the figure shows the phasing
of the shock wave corresponding to the upper row of arrows in the lower part. Figure 1 of Wouchuk
and Cobos-Campos (2017) shows a more detailed depiction of the vortical flow, from simulations

Fig. 5.14 The decay of a
rippled shock, adapted from
Ishizaki et al. (1996)
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amplitude is ao D 0:01�, from simulations. Note that the decay is rapid, with the
amplitude decreasing an order of magnitude after the shock has propagated about
six wavelengths.

One often describes this behavior by saying that shock waves anneal. They
smooth themselves out if allowed to propagate far enough. In some experiments, this
can be exploited. If one uses the phase plates discussed in Chap. 9, then structure is
initially produced at the scale of the speckles, typically of order 10�m. If the shock
wave propagates more than about 100�m before being used to some experimental
purpose, then it will have become substantially smoothed.

The third effect mentioned above is the change in the shock properties due to the
ripple. At any given location, the shocked material is diverted toward the unshocked
material, altering to some degree the conditions of the adjacent element of material
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as it is shocked. For ordinary materials and polytropic gases this is a small effect,
but for a sufficiently pathological material it can lead the shock to become unstable.
Landau and Lifshitz (1987) discuss the necessary conditions.

A qualitative summary is then as follows. Shocks are ordinarily stable. If they
become rippled somehow, the ripple damps out as the shock propagates. During
that period, the rippled shock wave deposits vorticity in the fluid it traverses. The
shock oscillates as it damps (sometimes this is described as superstable behavior).
The ripple damps and becomes negligible as the shock propagates.

5.7.2 Interaction of Shocks with Rippled Interfaces

In high-energy-density experiments, one is often concerned with the interaction of
a shock with an interface and with the structure that may be introduced by that
interaction. Here we consider first what structures result from the interaction of a
shock with a rippled interface. For modeling, we will assume that the analysis of
Sect. 4.6 can be applied point by point along the ripple. However, our conclusions
will be more general, as these depend mainly on the relative speed of the various
waves in the problem. At the interface of interest, the density may increase or the
density may decrease.

Figure 5.15 shows what usually happens when the density increases at a rippled
interface. We anticipate that there will be a transmitted shock and a reflected shock,
as discussed in Chap. 4. As the shock crosses the interface, the reflected shock moves
backward with a faster velocity than the incoming shock. As a result, the phase of the
ripple of this wave is the same as that of the interface ripple while the initial ripple
amplitude on this shock is larger than the ripple amplitude on the interface; the ratio
equals the ratio of reflected-shock velocity to interface velocity. For any ordinary
equation of state, the postshock velocity of the interface and the transmitted shock
velocity are each smaller than that of the initial shock wave. A first consequence is
that the ripple on each of them remains in phase with the ripple on the interface. A

Fig. 5.15 Behavior when a
shock reaches a rippled
interface where the density
increases

Higher 
density

Shock  wave 

Lower 
density

Transmitted
shock

Reflected 
shock



234 5 Hydrodynamic Instabilities

second consequence is that the amplitude of the modulation decreases, in this case
in proportion to the ratio of postshock interface velocity to incoming shock velocity.
The velocity of the transmitted shock will typically be somewhat larger than that
of the interface. As a result, the initial modulations of the transmitted shock will be
somewhat larger than those of the interface.

There are some differences in the response when a shock reaches an interface
where the density decreases. Figure 5.16 illustrates this case. We will assume
that the conditions are such that there will be a transmitted shock and a reflected
rarefaction wave; the specialized exceptions of Sect. 4.6.1 are straightforward and
we ignore those others that might correspond to a very unusual equation of state.
The reflected rarefaction wave again moves faster than the shock wave, though not
by much; it moves at the sound speed of the initially shocked matter. As a result,
the ripple on the reflected rarefaction wave remains in phase with the ripple on the
interface. Velikovich and Phillips (1996) show that such reflected rarefaction waves
are weakly unstable. The perturbation amplitude of the “trailing edge” (the one near
the interface) grows linearly with time. There are standing but damped sound waves,
emitted downstream and propagating in the rarefaction fan toward the interface.

In contrast, the transmitted shock nearly always moves faster than the incident
shock. As a result, the ripple of this shock is typically inverted in phase relative to
the ripple of the interface. This is equivalent to saying that ˛ > 0 in Sect. 4.6.6.
However, the postshock behavior of the interface depends on whether its postshock
velocity is larger or smaller than the incident shock velocity. The case � > 0

corresponds to a larger postshock velocity, which will occur for strong shocks if the
density ratio is large enough. As the density ratio becomes smaller, and depending
on the EOS, eventually one will have � < 0, and the interface will not be inverted
as the shock passes.

These dynamics of the rarefaction wave have interesting consequences for
experiments that view such behavior from the side (from above the page here).
It is common in such experiments to use a radiographic diagnostic whose X-rays
are preferentially absorbed by the material on one side of the interface. If the
downstream side is diagnosed in this way, then the signal decreases exponentially as

Fig. 5.16 Behavior when a
shock reaches a rippled
interface where the density
decreases. The transmitted
shock is labeled TS and the
postshock interface is labeled
PSI. Note that for nearly all
cases of interest, the interface
modulations invert as the
shock passes
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the areal density (mass/area) increases along any given line of sight. In consequence,
the diagnostic may be more sensitive to the higher-density material near the head of
the rarefaction wave (if the transmission is relatively high) or to the lower-density
material near the interface (if the diagnostic X-rays are strongly absorbed). Thus,
for large density ratios (so � > 0) the structure that the diagnostic detects may be
in phase or out of phase with the modulations at the interface, or may change phase
within the image.

5.7.3 Postshock Evolution of the Interface;
Richtmyer–Meshkov Process

When a planar shock encounters a rippled interface, the rippled shocks produced
in consequence will then deposit vorticity within the subsequently shocked fluid,
by the mechanism discussed above. Imagine inserting a diagnostic tracer layer,
transverse to the flow direction, into the fluid of Fig. 5.13. So long as the shock
does not happen to be flat when it meets the layer, the post-shock vortical flow will
proceed to create structure in the tracer layer. This is essentially what happens to a
rippled interface when it is shocked by a shock wave, or to any interface crossed by
a shock that is rippled.

At this point we have seen that modulations in shock waves are typically damped,
so modulations introduced by an interface on the shock waves will die away in time.
We have also seen that the heads of rarefaction waves are stable, so modulations
introduced by an interface will not grow further. The remaining issue involved in
understanding such systems is the postshock evolution of the interface. It turns out
that structure on the interface grows in time after the shock passes. The origin of
this is easily seen in Fig. 5.17a. This figure is centered on a trough in the interface
modulation. The behavior of the shock waves is clear from our discussion above.
As the shock crosses the interface, the postshock velocity slows. This causes a
deflection of the flow away from the normal to the interface, toward the trough. As
it moves, the transmitted shock wave continues at first to deflect material toward the
trough. This corresponds to ˛ < 0 in the analysis of Sect. 4.6.6. As the transmitted
shock propagates further, it begins to oscillate, depositing vorticity in the fluid
(Fig. 5.17b). Similarly, the reflected shock wave initially deflects the flow away
from the trough, and also deposits vorticity as it inverts. Thus, one can see that the
postshock flow of material on both sides of the interface acts to deepen the valleys
and raise the peaks of the initial modulations.

This process is known as the Richtmyer–Meshkov instability. We will designate
it by the initials RM. Independent of the history and semantics discussed in the gray
box, the best intuitive sense of the RM process can be found by thinking of the flow
that will develop following the initial conditions created by the shock. For the case
of Fig. 5.17, we can use this intuition and the analysis of Sect. 4.6.6 to develop a
semiquantitative description of the growth of modulations, as follows.



236 5 Hydrodynamic Instabilities

Higher 
density

Lower 
density

Transmitted
shock

Reflected 
shock

Higher 
density

Lower 
density

Transmitted
shock

Reflected 
shock

(a) (b)

a

R

d
c

Fig. 5.17 (a) Lateral velocities after a shock interacts with an interface where the density
increases. This schematic depicts the horizontal velocity components just after shock passage,
and does not include any post-shock evolution. (b) Schematic of structure after shocks have each
inverted and modulation at interface has grown slightly. Additional vortical flows near edges are
not shown. In later evolution, the modulation of the interface will continue to grow while the shocks
oscillate and damp. The letters show the regions as defined in Sect. 4.6.6

What Is an Instability?

The label “Richtmyer-Meshkov instability”, is firmly entrenched in the liter-
ature, but strikes the author of this book as problematic. We describe systems
as unstable if small perturbations can lead to large dynamical responses, the
classic example being a ball at rest atop a parabolic hill. But in common use
we do not describe the motion of the ball as an instability. In any event,
RM has little in common with the ball atop the hill. Instead, it is more
like analogous to the response of some hockey pucks connected by strings
and sitting on ice, once one of more of them has been given an impulse. A
common definition of an instability, in physics and in circuits, is “a process
through which the rate of increase of the magnitude of some physical quantity
increases in time.” This is typified by the equation df=dt D 	 f , in which
	 is the (exponential) growth rate of the quantity f . Instabilities satisfying
such a definition inherently involve some feedback mechanism. In the case
of Rayleigh–Taylor, for example, this mechanism is the increase in the net
buoyant force resulting from increased interpenetration of the two materials.
The RM process has no such feedback. A parallel definition of an instability is
“a process through which modulations of an initially steady system grow and
cause it to reach a state of lower potential energy.” RT likewise satisfies this
definition while RM does not. It seems to this author that it would be too big a

(continued)
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stretch to describe an instability as “a process through which the magnitude of
some physical quantity increases in time,” which is all that one can say about
RM. Many other phenomena, never described as instabilities, would satisfy
this definition. The main point is that, unlike every other process described in
this book as an instability, one will search in vain for a feedback mechanism
that increases the rate of RM growth with time.

There is also a further conceptual difficulty associated with the RM
process. The RM instability is often described as the impulsive limit of the
RT instability, from the point of view that it corresponds to the limit of RT
as the variation of the acceleration in time approaches the delta function
corresponding to the shock. This description originates with the original paper
of Richtmyer (1960), but he and others have recognized problems with it. The
evolution of the structure occurs after the shock passes, and thus is not the
limiting case of growth that occurs during acceleration. Correspondingly, one
does not do theory of RM by taking a limit of RT theory. In addition, as
Velikovich (1996) described, one can produce RM, at least in principle, in a
system with two rarefaction waves and no initial acceleration of the interface.

The four regions seen in Fig. 5.17a correspond from bottom to top to regions
a;R; d, and c of Fig. 4.33 and Sect. 4.6.6. The small-angle limits of (4.139)
and (4.142) and give

� D 2˛ � .	 � 1/ˇ
	 C 1

; and (5.146)

� D 2�.	 C 1/ � ˇ.	 � 1/2
.	 C 1/2

; (5.147)

respectively. Recall that ˇ is the angle between the initial shock normal and the
local interface normal. Setting the pressures in the two postshock regions equal, in
the small-angle limit, gives

�c

�b

�
1C ˛

ˇ

�2
D 	 C 1

	 � 1
�
	 � 1
	 C 1

C �

ˇ

�2
; (5.148)

These three equations can be solved to find the ratio of ˛, �, and � to ˇ as a function
of 	 and the density ratio at the interface, �c=�b. Also note that in the geometry
of (5.141) and for small ˇ one has ˇ D .aok/ sin.kx/. One ends up, for any given
value of 	 , with a figure like Fig. 5.18.
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Fig. 5.18 The dependence of the postshock angles of deflection on the density ratio at an oblique
interface where the density increases, for strong shocks. The angles of the transmitted shock, the
interface, and the reflected shock are ˛; �, and �, respectively, with � defined in the opposite
direction in Sect. 4.6.6

Fig. 5.19 The lateral flow
velocities produced by a
shock at an interface where
the density increases by a
factor of 10. This
circumstance produces shear
flow at the interface
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Equations (4.137) and (4.140), after transformation back into the lab frame, give
the lateral deviation of the flow as the x-component of the velocity vectors udlab and
uRlab. In the small-angle limit, these are

udlab D �2ˇ
.	 C 1/

us

�
˛

ˇ

�
1C ˛

ˇ

��
Ox C 2

.	 C 1/
us

�
1C ˛

ˇ

�
Oy and (5.149)

uRlab D 2ˇ

.	 C 1/2
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�
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ˇ
.	 C 1/

�
Oy; (5.150)

respectively. By substituting the solution to (5.146)–(5.148) into these two equa-
tions, one can find the deviations in velocity introduced by the shocks. For any given
value of the density ratio �c=�b, one can plot the lateral deviation as a function of
distance as Fig. 5.19 shows.

Referring again to Fig. 5.17, one can see that there is a significant difference
between the behavior at the interface and the behavior at the shock. The flow at
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the interface acts to increase (rather than to decrease) the size of the perturbation.
We can make an approximate calculation, similar to the one we did for the rippled
shock, to estimate how rapidly the ripple amplitude will increase. An important
difference is that the lateral velocity is set by the initial amplitude and does not
evolve further as the ripple changes, except perhaps due to the effects of the sound
waves emanating from the shock waves, which are not accounted for in the present
estimate. The lateral velocity produced by the reflected shock tends to be the larger
of the two, so we will assume that it is responsible for the flow. Using this velocity
to be uperp, taking �=ˇ � 0:9 as a typical value, and recalling that ˇ D apsk for
small angles, for initial postshock ripple amplitude aps, one can show

u? � 3:4	

.	 C 1/2
kusaps D 1:7	

.	 C 1/
kupsaps; (5.151)

in which the postshock velocity of the interface in the lab frame is ups

From the point of view that this inward flow of material from each side produces
a corresponding increase in the full amplitude .2ao/ of the ripple, we then estimate

d

dt
ao D 1:7	

.	 C 1/
kupsaps: (5.152)

Key qualitative features of this estimate are that the interface ripple grows linearly in
time, and that the rate of growth is proportional to the initial normalized amplitude,
apsk and to the post-shock fluid velocity. These features are also present in the
widely used formula due to Richtmyer,

d

dt
ao D kA�upsaps; (5.153)

which also involves the postshock Atwood number at the interface, A�. We discuss
the more general story below, after a look at the other type of interface.

Now we turn to the behavior when a shock reaches a rippled interface where
the density decreases. This can be analyzed in a similar way, using the equations
for a rarefaction from Sect. 4.6.6. Figure 5.20 illustrates the qualitative behavior,
for the typical case of a large enough density decrease that � > 0. One can see
that here again the amplitude of the ripple at the interface will grow with time. The
qualitative behavior at the interface is the same in this case as in the previous one.
A small ripple grows linearly with time, with the rate of increase of the amplitude
being proportional to the initial normalized amplitude and the shock velocity. After
this, the transmitted shock continues to deposit vorticity in the newly shocked fluid.
In contrast, the rarefaction wave does not deposit additional vorticity in the fluid it
affects, but does produce lateral flow that reinforces the growth of the modulations
at the interface while producing a standing acoustic structure.

If the density decrease is smaller, so that � < 0, then the interface at first retains
the phase of the initial ripple. The flows then cause the interface to invert before
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Fig. 5.20 Lateral velocities and vortical flow after a shock interacts with an interface where the
density decreases. (a) Lateral velocities after a shock interacts with an interface where the density
decreases. This schematic depicts the horizontal velocity components just after shock passage, and
does not include any post-shock evolution. (b) Schematic of structure after shock has inverted and
modulation at interface has grown slightly. Additional vortical flows near edges are not shown. The
rarefaction does not oscillate. In later evolution, the modulation of the interface will continue to
grow while the shock oscillates and damps

the ripples grow larger. For this case, there is a standard theoretical estimate due to
Meyer and Blewett, which involves the average of aoo and aps. It is

d

dt
ao D kA�ups

1

2
.aps C aoo/; (5.154)

in which one should note that A� < 0 for this case so the modulation inverts.
An interesting aspect of RM flows driven by shocks is that the RM structures

can overtake the shock waves. When this happens, the increased drag prevents the
structures from penetrating the shock front. They have been observed to distort it.
The condition for this is straightforward. Using the transmitted shock (of speed uTS

as an example), it separates from the interface at .	�1/uTS=.	C1/, so the condition
for the RM structures to overtake the forward shock is approximately

	 � 1
	 C 1

uTS <
d

dt
ao D .kao/

	 C 1

2
uTS or kao >

2.	 � 1/
.	 C 1/2

� 0:15: (5.155)

Such structures are in the weak nonlinear regime, but initial conditions with large
enough amplitude and few modes do produce structures that move with the shock
wave and distort it.

In the first two decades of the twenty-first century, a more complete understand-
ing of flows of this general type emerged, along with methods for treating them.
General, RM-like flows include any flows established so that they contain vortical
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flows within the fluid near an interface. The may involve rippled shock waves,
rippled interfaces, or other special initial conditions. The long-term, asymptotic
growth of the amplitude of modulations in such flows, while they stay in the linear
regime, is always described by

ao D a1 C v1t; (5.156)

in which a1 and v1 are long-term distance and velocity coefficients, respectively.
The methods for calculating a1 and v1, for arbitrary initial circumstances, are now
known (Wouchuk and Cobos-Campos 2017), though complex. In general, a1 is not
aps and v1 is not .kao/ups, though these quantities do set the approximate scale. In
addition, in at least some cases there is an initial, brief period of slower increase
before the system settles into the growth described by (5.156).

Finally, the RM structures do exhibit nonlinear behavior as they grow. Mode
coupling exists for the same reason it does for RT and KH—the interface must
remain continuous as it evolves. This has the effect of driving up the amplitude
of smaller-k structures over time, creating a behavior like that of bubble merger
for RT. Mode coupling has been observed. One can also note that the rate of
growth of any structure slows once it reaches nonlinear amplitude, which allows
smaller-k structures to overtake larger-k structures as time goes on. This behavior
is often described as “bubble-merger,” but this too is a misnomer since no buoy-
ancy force is at work; calling the lower-density structures “bubbles” is strictly a
convention.

5.8 Hydrodynamic Turbulence

We often see phenomena that one might describe as turbulent. This is particularly
true when two distinctly observable fluids, such as clouds and air or cream and
coffee, mix. But flow in a single fluid also can become in some sense turbulent,
as does the airflow behind an airplane wing or a racecar. There are a number
of possible definitions of turbulence, and one finds that the word has distinctly
different meaning in different areas of plasma physics and hydrodynamics. As a
result, when reading a wide range of literature one should be somewhat wary of
this term. A fairly general definition of turbulence is “the presence of structures
having a range of spatial scales that are smaller than the spatial scales of the motions
that provide the energy source producing the structures.” This may not satisfy the
extreme hydrodynamicist, who may insist that a system to be turbulent must have
evolved to a state that is independent of its initial conditions. Whether such a state is
practically realizable is not so clear. Here we will not trouble ourselves further with
definitions. Rather, we will examine the properties of hydrodynamic systems that
lead to the presence of structure over a range of small spatial scales. The book by
Tennekes and Lumley (1972) provides an excellent introduction to hydrodynamic
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Fig. 5.21 Images of a slice through round turbulent jets in liquids, illuminated by a laser
(Dimotakis 2005). (a) Re � 2500. (b) Re � 10,000

turbulence. They emphasize that such turbulence is a property of fluid flows and not
of the underlying fluid itself.

The basic notion behind descriptions of turbulence is that energy is intro-
duced to a system by some process, such as the RT or KH instability, that
this enables processes to occur which produce much smaller-scale fluctuations,
and that these fluctuations eventually lose their energy by viscous dissipation.
Because vorticity once generated spreads by viscous diffusion and is removed
only through viscous heating, swirling patterns of motion generally characterize
turbulent systems. Indeed, the presence of varying patterns of vorticity on a range
of spatial scales is considered to be an essential property of turbulent hydrodynamic
flows.

A simple example of turbulent flows are the jets shown in Fig. 5.21. The Reynolds
number Re increases from left to right in the figure. In all similar cases, the jet first
produces the KH instability. This sets the stage for further instabilities and for the
development of smaller scale structures. At low Re, the flow remains dominated by
large-scale structures. As Re increases, the flow develops finer-scale structures and
the distribution of these structures becomes more uniform.

As we shall see, turbulence is typically a property of flows with large Re. This
may seem paradoxical at first. In Chap. 2 we found that Re is the ratio of the
convective momentum transport to viscous momentum transport. We argued that
Re is nearly always large in high-energy-density flows, and correspondingly that
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the Euler equations are typically a good basis for analysis. In detail, however, this
argument works only for phenomena whose spatial scale is not too small. One can
construct a Reynolds number from any sensible length and velocity scales so that
different aspects of a system can have different Reynolds numbers. If we focus on
small-enough spatial scales, the corresponding phenomena do experience strong
dissipation and cannot be described by the Euler equations. This is what makes
it possible for a turbulent flow to dissipate energy.

Before we proceed with some discussion of incompressible hydrodynamic
turbulence, it is worthwhile to consider how this might apply to plasma systems. In
a sufficiently collisional plasma, the fluid motion is hydrodynamic and collisional
damping dominates the dissipation of energy. However, as the plasma becomes less
collisional, collective effects begin to occur and the compressive fluctuations in the
plasma begin to produce significant electric fields. These electric fields accelerate
particles, providing a source of energy dissipation that is distinct from viscous
effects. At this writing, the competition between these sources of dissipation is not
well understood. This competition could alter the structure of turbulence in plasmas
as compared to that in purely hydrodynamic fluids.

Returning to the point of view that turbulent flows are dominated by rotating
motions that we can call vortices, we can idealize these motions, using the
(oversimplified) model of rotating toroids. These donut-shaped structures rotate
about the axis of the donut. They can have any aspect ratio, being thin rings,
fat rings, or elongated and nearly cylindrical structures. The rotation is essential,
though, as this is what makes r � u nonzero so that there is vorticity. Such vortices
can have a range of sizes but the smallest possible vortex is one that is damped by
viscosity in of order one rotation. If we use w to represent the rotational velocity and
� to represent the diameter of the vortex, then the rotational timescale is �=w while
the timescale for viscous damping is �2=�, where � is again the kinematic viscosity.
Setting these timescales equal gives w�=� � 1 for the smallest vortex. Thus, the
Reynolds number constructed from the characteristic scales of the smallest vortex is
of order unity. The reader may recall from Chap. 2 that the typical Reynolds number
describing high-energy-density flows is at least several orders of magnitude larger
than 1. The consequence is that the smallest vortices are some orders of magnitude
smaller than the characteristic scale of the entire system.

A next step in this discussion is to consider the overall rate at which damping
must dissipate energy. The largest vortices produced in the system are known as the
eddies. The eddies typically span the turbulent zone. In simple cases such as KH
or RT they are created through the evolution of the large structures generated by
these instabilities. We will designate the characteristic speed of the material in the
eddy as we and the characteristic diameter of the eddy as `. An observed property
of turbulence, and an assumption in traditional turbulence theory, is that these large
eddies dissipate their energy on a timescale of order 1 circulation time. Their specific
energy is of order w2e , so the specific energy dissipation rate (a power per unit mass)
is of order w3e=`. We will designate this turbulent dissipated power by Pt. However,
the inherent viscous damping of these structures is small. To see this, one can note
that their viscous timescale is `2=�, so their viscous damping rate is w2e�=`

2. Thus,
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the ratio of the viscous damping rate to Pt is �=.we`/ D 1=Re. Taken together
with the previous paragraph, the implication is that dynamical processes must create
small-scale structures to dissipate the energy deposited in the eddies by the global
processes in the system (such as KH or RT).

The order-of-magnitude size of the smallest structures is one of the Kolmogorov
scales. These are the length scale, �k, the time scale, �k, and the velocity scale, uk,
that can be constructed from the specific energy dissipation rate and the viscosity.
One has

�k D .�3=Pt/
1=4; �k D .�=Pt/

1=2; and uk D .�Pt/
1=4: (5.157)

To see how small these scales are physically, one can substitute for Pt and obtain
results in terms of the Reynolds number corresponding to the eddies, we`=�. This
gives

�k D `=Re3=4; �k D .`=we/=Re1=2; and uk D we=Re1=4: (5.158)

Thus, for a Reynolds number of 105, the size of the smallest vortex will be of order
6000 times smaller than the size of the largest eddy. Note that the Reynolds number
corresponding to the Kolmogorov scales satisfies the condition we developed above,
having �kuk=� D 1.

We will explore how structures can form on such scales below. To prepare for
this, we first will compare them with some other characteristic dimensions and then
discuss the dynamics of the fluid in more detail. An eddy may initially form with
sharp edges, as during the roll-up produced by Kelvin–Helmholtz, as at the spike tips
in Fig. 5.1 and at the shear layer in Fig. 5.7. As the eddy evolves, viscous diffusion
smoothes the edge of the shear layer (see Sect. 5.6.4). This diffusion produces a
laminar boundary layer within which there is a finite transverse gradient of the
velocity. The scale length of this boundary layer is

p
�t. On the timescale of the

large eddy, `=we, this boundary layer scale length is thus `=
p

Re. Comparing this
with (5.158), one sees that the Kolmogorov scale length where the dissipation
occurs is smaller than the boundary-layer scale length, and that the difference
between them increases as Re increases. Externally driven instabilities do not readily
occur on the small scales that exist within such a boundary layer, where there
is a continuous gradient in flow velocity. KH, for example, is stabilized by this
gradient. Thus, the fluctuations within the boundary layer should evolve through
local fluid dynamics until they dissipate. The full thickness of the boundary layer,
throughout which the velocity gradients may limit the instabilities, is a few times
`=

p
Re.

To be able to go further in our description, we need to work with the fluid
equations. The relevant equations are (2.27) for momentum and the mechanical-
energy equation that can be constructed from it by taking the dot product with u,
keeping the terms involving viscosity but dropping all the terms involving radiation
or other forces. One also assumes incompressibility and for simplicity assumes
constant �, constant �, and that the second coefficient of viscosity is 0. Then one has
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@u
@t

C u � ru D �1
�

rp C 2�r � s; and (5.159)

1

2

@u2

@t
C u � r

�
u2

2

�
D �1

�
u � rp C 2�r � .u � s/ � 2�.s � �s/: (5.160)

in which one has used the incompressibility condition to simplify � � from (2.37),
and defined the strain rate tensor as s, given by

s D 1

2


ru C .ru/T
�
: (5.161)

With the elements of s given as sij, the expression s � �s is the sum over both indices
of sijsij.

Since fluid turbulence develops within a fluid flow, it is useful to analyze these
equations as the sum of terms describing the mean flow and terms describing the
(turbulent) fluctuations. Doing this is known as the Reynolds decomposition of
the fluid equations. We take u D U C w; p D P C ıp, and s D S C ıs, in
which the first, uppercase quantity is the mean value and the second term is the
fluctuating term. We substitute these definitions into (5.159) and (5.160) and average
over a time long compared with the dissipation time for any specific eddy. The
fluctuating terms average to zero individually. However, products of the fluctuating
quantities do not, in general, average to 0, but instead have values depending on the
degree of correlation of these quantities. Indicating such an average by an overbar,
and assuming the overall system to be in steady state for simplicity, we obtain
equations for the mean flow and for the turbulent fluctuations. The equations for
the momentum and energy of the mean flow are

�.U � r/U D �1
�

rP C 2�r � S � r � .�ww/ and (5.162)

U � r
�

U2

2

�
D r �

��P

�
U C 2�U � S � ww � U

�

�2�.S � �S/C ww � �S
; (5.163)

respectively, while the equation for the turbulent energy is

U � r
�

w2

2

�
D �r �

�
1

�
wıp � 2�w � ıs C 1

2
w2w

�

�ww � �S � 2�ıs � �ıs
: (5.164)

If one pursues the literature of fluid dynamics, one finds various intermediate
quantities that are given names and contribute to the jargon. These include, for
example, the general stress tensor, which includes both pressure and viscous stress
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terms. We are now prepared to discuss the dynamics of the turbulent flow in more
detail.

First consider the mean momentum. Applying the scaling analysis discussed in
Sect. 2.3 shows that the viscous term in (5.162) is of order 1=Re relative to the
convective term and so typically is negligible. The rightmost term in this equation is
the divergence of a tensor. This term describes the forcing of the mean flow by the
fluctuations. This tensor, having first been developed by Reynolds in 1895, is known
as the Reynolds stress tensor. It quantifies the effects of the turbulent fluctuations
on the mean flow. Unfortunately, the magnitude of this term is not obvious. The
turbulent velocity w should be smaller than U and the eddy diameter ` smaller than
the global scale length of the flow L. In actual turbulence it is common to see w=U �
`=L � a few percent. This has the implication that the final term in (5.162) is a few
percent of the term on the left-hand side. This is often much larger than the viscous
loss term but remains small enough that the flow changes gradually on the scale of L.

The story is similar with regard to the mean energy, as expressed by (5.163).
The viscous terms are of order 1=Re relative to the energy. The terms involving the
correlations of the turbulent velocities are typically much larger, but remain small
enough that the energy of the mean flow is only gradually reduced.

The equation for the turbulent energy (5.164) has more to tell us. The first line
can be rearranged as the divergence of a vector that contains energy fluxes, pdV
work, and energy transport by viscous stresses. These sum to zero over any volume
within which the fluctuating mechanical energy is unchanging, as will be the case
in steady turbulence. The second line of this equation includes the terms identified
with the production of turbulent energy (the first term) and with the dissipation of
turbulent energy (the second term). In a crude scaling sense S � U=L � we=`, so
the magnitude of the first term in the second line is w3e=`. This equals the specific
energy dissipated by turbulence that we obtained above from general arguments.

The final term in (5.164) represents the dissipation by the turbulence, and is the
significant new result we obtain from this analysis. Assuming the turbulence to be
isotropic, one can show with some algebra that

2�ıs � �ıs D 15�.@w1=@x1/2; (5.165)

in which the subscript 1 designates the first vector component. (For a detailed
development of the equations related to turbulence, see Hinze (1959).) Fluctuations
at all spatial scales contribute to ıs, so that ıs is not given by w=`. Instead, the
length-scale associated with ıs must be smaller than `. Defining this length scale as
�T , and balancing the production of turbulence with its dissipation, we have

w3=` D 15�w2=�2T ; so that (5.166)

�T=` D p
15=Re1=2: (5.167)

The length scale �T is known as the Taylor microscale, named after G.I. Taylor,
who first defined it. However, the curious aspect of the Taylor microscale is that it is
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not a physical distance that characterizes the turbulence. Rather, it is the maximum
size at which the energy from the large eddies can be dissipated by viscosity, if the
turbulent fluctuation velocity does not change as the scale decreases. Tennekes and
Lumley (1972) would prefer to see �T used only in combination with w to give a
dissipation rate. Vortices at this scale are able to dissipate all the energy from the
eddies. Thus, this is a reasonable estimate of the scale below which the behavior
is not influenced by the large-scale dynamics that drives the eddies. However, this
dissipation cannot occur within one vortex circulation timescale for eddies with
rotation speed w and size scale �T . Thus, such vortices fail to satisfy the assumption
that any turbulent vortex dissipates its energy in one turnover time. If this presumed
property of turbulence, which is experimentally supported, is valid, smaller vortices
will continue to form until the Kolmogorov scale is reached.

A notable feature of the Taylor microscale is that it is of the same order as the
laminar boundary layer thickness developed during one eddy timescale, discussed
above. Any structures that endure for an eddy timescale will develop such boundary
layers. This adds a physical basis to the notion that the global unstable dynamics
might have limited effects below this scale. To emphasize this correspondence,
Dimotakis calls this the Liepmann–Taylor microscale.

Thus, we have a picture in which the fluid dynamics causes the transfer of energy
to smaller-scale vortices, although we have yet to discuss the dynamics of this.
The result is that the global unstable dynamics produces eddies and also produces
vorticity, at least on surfaces. The vorticity spreads by viscous diffusion. The energy
created by the global dynamics is transferred to smaller and smaller vortices, which
become independent of the global processes once the vortex size drops below the
Taylor microscale. The energy is then eventually dissipated when it reaches the
Kolmogorov scale. As Re increases, the Taylor microscale and Kolmogorov scale
become increasingly separated.

In between the Taylor microscale and the Kolmogorov scale, only the dynamics
of the vortices governs the flow of energy to smaller scales. Since the equations do
not depend fundamentally on the scale, one might hope to find a fairly simple scaling
for the changes in the eddy properties as their diameter decreases. Working from
a fairly general set of limiting assumptions, reviewed, for example, in Chap. 8 of
Tennekes and Lumley (1972), Kolmogorov showed that the wavenumber spectrum
of the kinetic energy, E.k/, is proportional to k�5=3. The meaning of this statement is
that E.k/dk is the kinetic energy of the vortices whose characteristic wavenumber is
within dk=2 of k � 2=�, and that this is proportional to k�5=3. The corresponding
scaling of the fluctuating strain rate is ıs / k2=3, so the fluctuating strain rate
is largest at the smallest scales. The exponent of 5/3 is not a universal constant;
one will see other values in both theory and observations for systems that satisfy
assumptions different from those used by Kolmogorov.

Figure 5.22 illustrates the qualitative structure of the resulting spectrum of E.k/.
The spectrum at the lowest wavenumbers is determined by the processes that create
the turbulent energy, in addition to the processes that transfer it to smaller scales.
Thus, the structure of this part of the spectrum may vary with conditions. It is
shown as flat in the figure. As k increases so that the vortex size � drops below �T ,
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Fig. 5.22 Structure of the
turbulent spectrum of kinetic
energy

L
o

g
[E

(k
)]

Log[k]

Kolmogorov
cascade

Dissipation

k−5/3

Driving 
processes

1/λT

1/ k

the spectrum becomes a Kolmogorov spectrum, with a slope of �5=3. Then as the
vortex size approaches the Kolmogorov dissipation scale, the energy is dissipated
and E.k/ decreases more rapidly. On the basis of a review of data, Dimotakis
(2000) concludes that dissipative effects begin to alter the spectrum for vortex scales
� � 50�k. The region of the spectrum that has a power-law shape is known as the
inertial range. This reflects the point of view that the inertial dynamics of the fluid
are responsible for producing this part of the spectrum. Based on this discussion, an
inertial range should appear once Re becomes large enough that 50�k < �T . This
requires a value of Re above about 104.

An important feature of turbulent systems is the presence or absence of a mixing
transition. This is generally observed to occur at some value of Re which depends
on details. Once the mixing transition has occurred, the turbulence causes rapid
mixing of the two interacting fluids and rapid diffusion of each into the other.
This transition is of significant practical importance for systems such as chemical
processors, intended to generate copious interactions between the molecules in two
fluids. This may also be important for high-energy-density systems, as one may in
various contexts desire to encourage or to discourage such mixing. A conjecture
due to Dimotakis is that the mixing transition corresponds to the development of
an inertial range, and that achieving Re > 104 is a necessary condition for this
development.

We close this section with a brief discussion of the dynamics that produces the
flow of energy from larger to smaller vortices. To see these dynamics, it is useful
to recast the momentum equation, (5.159) in two ways. We keep all the same
assumptions including incompressibility. First, one can manipulate the convective
derivative and the viscous term to highlight the effect of the vorticity ! D r � u in
this equation. We obtain

@u
@t

D �r
�

p

�
C u2

2

�
C u � ! � �r � !: (5.168)

This equation illustrates one important effect of vorticity. The fluid velocity is
redirected in the direction of u � !. This is easy to understand if one returns to
our analogy that vortices are spinning donuts. Recall the behavior of topspin shots
in tennis, curve balls in baseball, or slice shots in golf. In all these cases, a spinning
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object creates lift by increasing the flow velocity on one side and decreasing it on
the other, which creates a pressure difference through the Bernoulli effect. Thus,
vortices redirect the flow in a direction perpendicular to the flow and to the vorticity
vector.

Second, we can take the curl of (5.159) to develop a dynamic equation for the
vorticity itself. This gives

@!

@t
D r � .u � !/C �r2!: (5.169)

This equation is identical to (10.37), describing the behavior of the magnetic
field. The analogy between vorticity and magnetic field is often exploited for both
physical explanations and mathematical analysis. Here we note that the vorticity will
diffuse if there is no net flow or if its spatial scales are small enough. Otherwise, the
first term on the right-hand side causes the vortices to move with the flow. Thus, in
the same sense that magnetic field in a plasma is frozen in, the vorticity in a fluid
is frozen in. In addition, this equation makes it clear that the role of viscosity with
regard to momentum is to create diffusion. This transfers momentum (and vorticity)
from the structure being damped into the surrounding fluid. The energy involved in
vortex motion can be dissipated by its conversion to thermal energy, described by
the viscous heating term in the energy equation.

The consequence of (5.168) and (5.169) together is that vortices do not allow a
fluid to flow through them undisturbed. They deflect the fluid, and stay with it to
deflect it further. However, it remains the case that changes in the flow can affect the
local value of !. This is due to the effects of the gradients in velocity. To see these
effects more clearly, it is helpful to recast (5.169) as follows:

@!

@t
C u � r! D ! � s C �r2! : (5.170)

Here we see that only if the strain rate is zero (and viscous damping remains
negligible) does the local vorticity move with the fluid without changing. To see
what kinds of changes may occur, we consider the effects of finite strain rate on the
vortices.

First, the off-diagonal elements of s act to rotate the vortices. This is simple
to understand. We discussed the lift generated by the interaction of ! and u. If u
changes along the vortex, then the lift varies along the vortex, which will produce a
torque and cause a rotation of it. Since vortices generally involve derivatives of u in
all three directions, the distribution of vorticity tends to become isotropic as vortices
come to dominate the dynamics. As a result, small-scale turbulence is typically
isotropic even when the driving instability at the global scale may not be.

Second, the diagonal elements of s produce changes along the direction of the
vortices. These act either to stretch or to compress the vortices. These effects are
illustrated in Fig. 5.23. As is illustrated, stretching or compressing changes the size
of a vortex. This is a simple consequence of the fluid flow. When, for example, fluid
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Fig. 5.23 Vortex stretching.
Changes in fluid velocity
cause vortices to stretch or
shrink
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in a pipe speeds up to pass through a narrower section, a cylindrical element of fluid
is stretched in length but shrinks in diameter. When this happens to a vortex, the
rotation speed also must change to conserve angular momentum. As a result, when
the fluid dynamics stretches a vortex, the vorticity increases. Furthermore, note that
the increase in vorticity is very rapid. For example, in the case of Fig. 5.23, the
vorticity is in the x1 direction, and the nonzero element of the strain rate tensor that
produces the vortex stretching is s11 D @u1=@x1. Through (5.170), this produces
exponential growth of the vorticity (for constant strain rate). This might potentially
produce a turbulent state, as exponential growth often leads to large amplitudes.
However, any fluctuations in the strain rate as the flow developed would tend to
prevent this outcome.

Even so, vorticity in turbulent systems often increases explosively, through the
combination of two effects. The first effect is the one we just discussed—the
amplification of vorticity through its interaction with the strain rate. The second
effect is the unstable growth of the strain rate through a “secondary instability.”
The simple instabilities, such as RT or KH, tend to produce very ordered two-
dimensional or three-dimensional flows. On the jets of Fig. 5.23, for example,
the KH instability produces curled structures that wrap around the column of the
jet to form loops. (These have vorticity on their surfaces, which soon diffuses
into the fluid near these surfaces.) The direction of this vorticity is azimuthal
(it wraps around the jet). Initially, the azimuthal strain rate is zero—the system
is cylindrically symmetric. However, many symmetric, two-dimensional systems
are unstable to fluctuations in the third dimension. In the case of the jets, these
fluctuations modulate the surfaces in the azimuthal direction, and these modulations
grow exponentially. The key consequence is that these growing modulations create
a finite azimuthal strain rate that also grows exponentially. At this point the vorticity
amplifies exponentially from the exponentially growing strain. A very turbulent flow
develops almost immediately.

The above discussion enables us to understand how the dynamics of the fluid
creates a distribution of vortices on all scales down to the Kolmogorov length.
The vortices larger than any given scale produce the strain rate that is experienced
by the smaller vortices. Thus, vortices at any given scale are both stretched and
rotated through the influence of the larger scales. Tennekes and Lumley (1972)
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show that any given scale is most strongly affected by slightly larger scales. As a
result, the flow of energy and vorticity to smaller scales can accurately be described
as a cascade. Kolmogorov first described these dynamics. For this reason, the
spectrum of E.k/ observed in turbulent systems is often described as a Kolmogorov
cascade.

We need to address a few more details in order to conclude this discussion. First,
note that vortices are inherently three-dimensional objects. They have structure in
all three directions. As a result, vorticity and its effects cannot be captured by
one-dimensional or two-dimensional calculations or simulations. This makes the
accurate modeling of turbulence a very challenging problem. Second, in the above
we have used the notion of fluctuating vorticity. This can be misleading, as we also
saw that the vorticity through a given surface is conserved unless viscous diffusion
matters. The vorticity in turbulence fluctuates because vortices move and change
their shape, not because there is a vorticity oscillation. Another way to put this
is that vortex motion is not wave motion and does not involve the oscillation of
physical quantities.

Finally, there is the question of how the vortices at small scales begin. We
have seen that vortices on a given scale can affect those on a smaller scale, but
this assumes that the smaller scale vortices are already present. There is certainly
some thermal level of vorticity, but growing this to large amplitude would be a
very long process. The global instabilities such as KH do deposit vorticity on
surfaces, and perhaps these or other more-complex processes are responsible for
the initial production of vorticity at small scales. One may hope and expect that
further research will clarify the details of the transition to turbulence.

This takes us to the end of our discussion of unstable hydrodynamic behavior.
Given that acceleration, deceleration, shear layers, and shock waves can each
produce such behavior, it is no surprise that hydrodynamic instabilities are common
in high-energy-density experiments. We proceed now to turn our attention to another
aspect of high-energy-density systems. They are often quite hot, and being hot they
tend to radiate profusely. We begin to cope with this in the next chapter.

Homework Problems

5.1 Consider a system with water above oil as described in Sect. 5.1.1. Suppose
there is an small, sinusoidal ripple on the surface. Find the vertical profile of the
force density between the lower and upper boundaries of the ripple for a region of
denser fluid and for a region of less-dense fluid. Discuss the comparison of the two
fluids and the shape of the force density profile.

5.2 The final relation in (5.37) is significant for our specific applications, in which
one needs to integrate, across an interface, equations that contain discontinuous
quantities along with derivatives of discontinuous quantities. By treating the delta
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function and the step function as limits of appropriate functions (see a mathematical
methods book), prove this relation.

5.3 Find the solution for the velocity profiles and the growth rate for the RT
instability for two uniform, constant density fluids that are confined by two planar
surfaces each a distance d from the interface, which is accelerated at constant g.

5.4 The discussion above (5.55) shows that Qn D .n=
p

kg/
pQk. This would suggest

that it might make more sense to separate the meaning of the axes more cleanly
by using Qı D .n=

p
kg/ and Qk D Œ.k2�/=

p
gk�2=3 as the two variables. Recast this

equation in terms of these new variables, solve it, and plot the real roots from Qk D 0

to 2. Discuss the results and compare them to n D p
Angk.

5.5 In the derivation of the dispersion relation for the Rayleigh-Taylor instability
with viscosity, some steps were skipped. Derive (5.56) and (5.57) from (5.50).
Comment on the nature of the terms that have been dropped.

5.6 Explore the global RT mode in arbitrary directions. Find the plane-wave
solutions in x; y and z to (5.60) and discuss their behavior.

5.7 Consider an exponential density profile that decreases in the direction of the
acceleration, g, as � D �oe�z=L, and thus is the opposite of the case analyzed in
Sect. 5.2.3. Apply the RT instability analysis to find n for this case. Discuss the
results.

5.8 Carry out the calculation described in Sect. 5.3 and find (5.78). Then find the
limits when (a) kp ! 0 and kxL 	 1 and (b) when An D 0 and Lp D 0. Compare
these with previous results in the chapter.

5.9 Work out the linear theory of the Rayleigh-Taylor instability to find an
expression for the growth rate for the case of an exponential density gradient that
extends for a finite distance between two layers of constant density.

5.10 This problem relates to the derivation of the mode-coupling results. By
operating on (5.95) and (5.97), create two scalar differential equations that can
be subtracted to eliminate terms involving p. Compare the resulting differential
equation to (5.21) and discuss.

5.11 If we take the point of view that the modulations of interest in Kelvin-
Helmholtz instabilities are proportional to eint, then we would insist on finding
negative imaginary n in order to have growth of the modulations, as opposed
to damping, in time. However, this should give us pause because the complex
representation is only a mathematical convenience while the physical quantities are
real. Considering the real, physical quantities, what is the significance of finding
positive or negative imaginary n? (The chapter in Jackson (1999) that introduces
waves may be of some help regarding the connection of real physical quantities and
a complex representation.)
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5.12 Suppose ˇ is small enough that terms involving ˇ in (5.140) can be dropped.
Determine whether the two boundaries seen in Fig. 5.11 ever meet, completely
eliminating the instability.

5.13 Analyze the shock conditions for a small-amplitude ripple and show that the
change in the Oz component of u due to the ripple, relative to the Oz component
of u produced by a planar shock, is second order in the ripple amplitude [i.e.,
generalize (5.143)].

5.14 Delve into the origins of the response to a rippled shock wave. Develop (5.159)
and (5.160) from the equations in Chap. 2.

5.15 Explore further the effects of a rippled shock wave. Solve (5.146)
through (5.148) to find the ratio of ˛; �, and � to ˇ. Plot the results for various
values of 	 and comment on what you observe.

5.16 Evaluate the small-angle limit of the equations for a shock at an oblique,
rippled interface with a density decrease, and produce a plot similar to Fig. 5.20
for this case.

5.17 Consider the qualitative behavior of the postshock interface when there is a
rarefaction but � < 0. Redraw Fig. 5.20 for this case. Discuss the evolution of the
interface.

5.18 Work out the steady state, mean flow equations from the Reynolds decompo-
sition. Derive (5.162) through (5.164). Comment on the meaning of each term.

5.19 To be more precise about the frozen-in property of vorticity, one should
recognize that what moves with the fluid is the vorticity passing through a surface S.
Prove this by taking the time derivative of the integral of ! � dS over a surface S that
moves with the fluid and may change its shape in time. Relate the result to (5.169).
Hint: The key here is the evaluation of the partial derivative in time of the surface as
a contour integral involving the edge of the surface.

5.20 Obtain the various equations describing the behavior of vorticity, (5.168)
through (5.170), from the momentum equation. Discuss the point of each one.
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Chapter 6
Radiation Transfer and Atomic Processes

Abstract This chapter begins by discussing the new concepts necessary to account
for the transfer of energy by radiation, and develops the equations for radiation
intensity, radiative energy density, radiative energy flux, and radiation pressure. It
then discusses the interaction of radiation and matter. This includes both the way
we account for the sum of all the effects that increase or reduce the radiation
intensity and the specific atomic processes that contribute. These elements provide
the basis of the radiation transfer equation, whose solutions are discussed. This
includes a discussion of simplifications that become possible when scattering is
isotropic and elastic, and when the behavior of the radiation becomes diffusive. The
chapter concludes with a discussion of some simple aspects of radiation transfer in
relativistic systems.

Thus far we have focused on systems that are purely hydrodynamic. In so doing,
we have ignored a major aspect of many high-energy-density systems: radiation. It
is easy to see why radiation often matters. At any given pressure, the temperature
increases as density decreases, and there is some density below which radiation
fluxes will exceed material fluxes. If we suppose that Z C 1 D A, for simplicity,
then the temperature is given by T D mpp=.�kB/. The characteristic radiation flux
is 
T4, which can be compared to a characteristic material energy flux ��cs. The
actual material energy flux may differ from this by some factor, but the threshold
density below which radiation fluxes exceed thermal fluxes depends only on the
one-fourth power of this factor. Figure 6.1 shows the density at which 
T4 equals
��cs, for pressures from 1 Mbar to 1000 Mbar. Radiative effects matter in gases and
foams toward the low end of this regime, and in solid-density materials toward the
high end. We consider some other comparisons based on temperature, and when
radiation pressures matter, at the beginning of Chap. 7.

To understand radiative effects one must first understand radiation transfer,
which is the transport of energy and momentum through a physical system by
radiation, including the interactions with matter. Radiation transfer is familiar to
us in everyday life. For example, suppose radiation from the sun, with its spectral
peak at frequencies we perceive as green, is transmitted through the atmosphere,
heating a black asphalt driveway. On a hot, bright day we can feel the radiation
emitted from this black surface, if we are smart enough to put our hand or foot near
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Fig. 6.1 Energy flux
regimes. For any given
density, the radiation energy
flux exceeds the material
energy flux at a high enough
material pressure
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Fig. 6.2 Luminosity
variations in several Cepheid
variable stars. Adapted from
the Michigan Math and
Science Scholars Summer
Program
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it before we step on it. We experience another aspect of radiation transfer, namely
scattering, when looking through a fog bank at a bright light.

The emission, absorption, and transfer of radiation are central to much of
astrophysics. Shu (1992), for example, devoted one entire volume of his two-volume
set, The Physics of Astrophysics, to radiation. Fusion generates heat in the core of a
star that in the end must be radiated from its surface. The stellar structure depends
strongly on the absorption and emission of radiative energy. In some variable stars,
structure in the absorption causes the luminosity of the star to oscillate. This occurs
for example in Cepheid variable stars, which are often used as distance indicators
because in order to oscillate their luminosity must remain in a narrow and well-
known range. Figure 6.2 shows an example of luminosity oscillations from four
Cepheid variable stars. The period of oscillation varies, and can be used to establish
their absolute luminosity based on the empirically established relation between
period and luminosity. The luminosity oscillations are a consequence of oscillations
in the temperature dependence of the absorption length for radiation within the star,
which leads the surface of the star to regularly become hotter and cooler. The inverse



6.1 Basic Concepts for Radiation 257

of the absorption length is known as the opacity, and is discussed at length below.
The period–luminosity relation for Cepheid variable stars is now understood, thanks
to more-sophisticated versions of the calculations described in this chapter, verified
by laboratory measurements of the opacity, some of which are shown in Sect. 6.2.3.

To develop an understanding of radiation transfer, we will first consider the
description of radiation in isolation, which is analogous to our discussion of matter
in isolation in Chap. 2. We will then discuss the atomic processes that occur in high-
energy-density systems, and how we summarize mathematically their net impact on
the radiation. These two discussions will have prepared us to take on the radiation
transfer problem: how radiation evolves as it interacts with matter. We will conclude
with some discussion of relativistic effects in radiation transfer.

6.1 Basic Concepts for Radiation

In order to work with radiation, its transport, and its effects on matter, one must first
face the task of describing the radiation itself. This is a task at least as complicated
as the description of the particles. Like particles, the radiation can fill space, vary
in time, and propagate in any direction. The radiation does have a unique velocity,
which is simpler than the situation with particles, but this is more than offset by
the fact that the radiation can have any frequency and can interact through several
mechanisms, some of which would be described in mechanics as “inelastic.” In
addition, since radiation does move at the speed of light, it is a bit easier for
relativistic effects to matter. Nonetheless, by proceeding step by step we can develop
useful descriptions. As we do so, we will use primarily a subset of the notation in
the book by Mihalas and Weibel-Mihalas (1984), where one can find a much longer
and much more complete discussion, especially in the area of relativistic effects.

6.1.1 Properties and Description of Radiation

Here we will build up our description from fundamentals. This corresponds to
the development of plasma theories beginning with the Boltzmann equation. The
analog of the distribution function, for radiation, is the spectral radiation intensity,
I� , which has units of energy per unit area per unit time per unit solid angle per
unit frequency, or ergs cm�2 s�1 sr�1 Hz�1 in cgs units. Thus, within differential
elements of area (perpendicular to the direction of propagation), time, solid angle,
and frequency are given by dA; dt; d˝, and d�, respectively, the increment of energy
delivered is

�energy D I�dAdtd˝d�: (6.1)
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It should be evident that the spectral intensity is fundamentally related to the
Poynting vector. Working out the relationship is an interesting problem, but not one
that we need to take up here. A fundamental and complete description of radiation
would have to describe the variations in I� as a function of all these variables and
distance of propagation. Fortunately, much can be understood by working with less-
complete models. We will identify the radiation intensity, IR, as the energy per unit
area per unit time per unit solid angle in the radiation. That is,

IR.x; t;˝/ D
Z 1

0

I�.x; t;˝ ; �/d�; (6.2)

with cgs units of ergs cm�2 s�1 sr�1. The total intensity emitted by a black body is
the thermal intensity, B.T/; given by

B.T/ D 
T4= ergs cm�2 s�1 sr�1: (6.3)

Useful values of 
 are 1:03�1012 ergs cm�2 s�1 eV�4 or 1:03�105 J cm�2 s�1 eV�4.
The radiation intensity is not necessarily uniform in direction, as hotter regions

generally emit more thermal radiation (though not necessarily more radiation in
atomic line emission, as we discuss below). It turns out that quantities known as
the mean spectral intensity, J� , and mean intensity, JR, are quite useful. These are
defined as

J�.x; t; �/ D 1

4

Z
4

I�.x; t;˝ ; �/d˝ (6.4)

and

JR.x; t/ D 1

4

Z
4

IR.x; t;˝/d˝: (6.5)

We will see how these quantities are important later in this chapter when we discuss
radiation energy transport.

No matter what the distribution of the radiation in angle may be, its energy
density is an important property that appears in some of the dynamic equations.
In general the density of something is a ratio of flux to velocity, but in particular
the mathematics depends upon the details. When material particles move in many
directions, as in a gas, their total energy density is much larger than the directed
energy of motion of the gas viewed as a fluid. Similarly, the energy density of the
radiation is not the net radiation flux divided by the propagation speed. Instead, the
radiation energy density, ER, is the integral over solid angle of the radiation intensity
divided by the group velocity. Thus,

ER.x; t/ D 1

c

Z
4

IR.x; t;˝/d˝ D 4

c
JR; (6.6)
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in which we have made the nearly-always-valid assumption that the group velocity
is isotropic and is equal to c: There is of course a corresponding spectral radiation
energy density, given by

E�.x; t; �/ D 1

c

Z
4

I�.x; t;˝ ; �/d˝ D 4

c
J�: (6.7)

The above quantities are similar to integrals of a particle distribution function to
find total density, distributions of speeds, and so on. There is a choice in both cases
regarding what variables to use to define the distribution. Particle distributions could
be defined by their energy density in a space of position, direction, and energy,
but it is generally more intuitive to use the number density in a space of position
and velocity. Similarly, one can treat photons in terms of their number density, by
dividing I� by ch�, and this is at times useful. But it is generally more intuitive to
work with their energy density in a space of position, direction, and energy.

Continuing the analogy with distributions of particles, we next discuss the
moments of the distribution of photons. By direct analogy, one would say that the
photon flux is

Z
4

I�.x; t;˝ ; �/

ch�
vd˝; (6.8)

in which v is the photon velocity vector. But the radiation energy flux, FR, is
generally more useful, and we know that the speed is c; so we write

FR.x; t/ D
Z
4

IR.x; t;˝/nd˝; (6.9)

in which n is a unit vector in the direction of propagation for any value of ˝.
Thus it varies as one integrates. The z-component of n; for example, is cos � in
a standard spherical coordinate system. The cgs units of radiation energy flux are
ergs s�1 cm�2. It will come as no surprise that the spectral radiation energy flux is

F�.x; t; �/ D
Z
4

I�.x; t;˝ ; �/nd˝; (6.10)

with units ergs s�1 cm�2 Hz�1. The radiation flux is a particularly important quan-
tity, because there is a large and important regime in which transport of energy by
radiation is crucial even though the energy density and pressure of the radiation are
negligible. The radiation flux is related to the radiation momentum density. The total
radiation momentum density is FR=c2, and the spectral radiation momentum density
is F�=c2. Thus, the total radiation momentum transport across an element of area,
dA; is FR � dA=c.
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As is the case with particle distributions, one can define further moments of the
radiation distribution function indefinitely. In practice, the second moment is as far
as one typically needs to go. The spectral radiation pressure tensor, P� , is defined
in dyadic notation by

P�.x; t; �/ D 1

c

Z
4

I�.x; t;˝ ; �/nnd˝: (6.11)

This is clearly a symmetric tensor since reversing the order of the components of
n does not change the integral. The integral of (6.11) over frequency is the total
radiation pressure tensor, PR. The transport of momentum by radiation, in the
absence of matter, is fundamentally described by

1

c2
@F�
@t

D �r � P�: (6.12)

This is again perfectly natural, as one can see by integrating over a finite volume
and using Gauss’ theorem. It is worth noting that the left-hand side of this equation
is nearly always negligible in systems involving both radiation and matter. The
radiative contribution to the energy flux in a system of radiation and matter is
often large, but the material momentum nearly always dominates over the radiation
momentum. Even so, the radiative momentum source (the right-hand side of this
equation) can be the dominant momentum source for the matter.

The radiation field often is symmetric in one of three ways that produce simpler
results for the radiation pressure. In general, the scalar spectral radiation pressure
p� is defined by

p�.x; t; �/ D 2

c

Z 

0

I�.x; t; �; �/ cos2.�/ sin.�/d�

D 2

c

Z 1

�1
I�.x; t; �; �/�2d�;

(6.13)

where � D cos � is a very convenient way to represent the variation with polar
angle.

Here we have evaluated the zz component of P� . If the radiation field is isotropic,
then P� is evidently diagonal with three equal, nonzero elements. One then has

p�.x; t; �/ D 2I�.x; t; �/
c

Z 1

�1
�2d� D 1

3
E�; (6.14)

which is the simplest example in which one can see this relation between pressure
and energy density. In the isotropic case the divergence of the pressure tensor in the
momentum equation becomes the gradient of the scalar pressure, r �P� D rp� , just
as occurs with material pressures. (One might protest that a truly isotropic radiation
field cannot have pressure gradients, because local isotropy cannot be maintained
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without having a spatially uniform radiation intensity. This is mathematically true.
However, in practice, significant pressure gradients can correspond to negligible
anisotropy.) Treating the radiation field as isotropic is for example justified in the
diffusion regime, which is of great importance and which we will discuss at length
below.

The integral of (6.13) over frequency gives the (total) scalar radiation pressure
pR. In the isotropic limit, one then has pR D ER=3.

A second useful, symmetric case is the planar case, in which I� varies only in
angle relative to one direction, and is isotropic in the two orthogonal directions.
In this case we choose the direction of variation as the z axis and write I� D
I�.z; t; �; �/. In this case the zz element of P� is again p� , and the xx element, Pxx, is

Pxx D 1

c

Z 2

0

Z 1

�1
I�.z; t; �; �/.1 � �2/d� cos2 �d�

D 1

2
E� � 1

2
p� D p� � 1

2
.3p� � E�/ ;

(6.15)

which is also equal to Pyy. Note that for an isotropic intensity or for any angular
distribution that yields E� D 3p� , the pressure again reduces to a scalar. In the
planar case, the only nonzero derivatives are in the z direction, so

r � P� D rp� D .@p�=@z/ Oz; (6.16)

where Oz is a unit vector in the z direction.
A third useful case is that of spherical symmetry. In this case the diagonal

components corresponding to the polar and azimuthal angles equal Pxx from (6.15),
and the radial component is again p� from (6.14). In this case the only nonzero
derivatives are in the radial direction, so

r � P� D Œ@p�=@r C .3p� � E�/=r� Or; (6.17)

in which Or is a unit vector in the radial direction.
Now consider in general terms the ratio of p� to E� . This ratio is known as

the Eddington factor, f� D p�=E� . The Eddington factor depends on the angular
variation of I� , as is clear in (6.13). In the limit of a plane wave at frequency
�, with energy flux (power per unit area) I; one would have E� D I=c and
p� D .I=c2/c D I=c so in this case p� D E� and f� D 1. A sufficiently
beam-like intensity distribution can have f� � 1. The limit where the radiation
propagates freely with little interaction is known as the free-streaming limit. In the
free-streaming limit, f� will approach 1 as the distance from the source increases.
It is also clear from (6.13) that f� decreases as the distribution spreads in angle,
reaching 1/3 when the distribution becomes isotropic. In natural systems, f� typically
varies between 1/3 and 1. A “pancake-like” distribution, in which most of the energy
is transverse to the symmetry axis, produces an Eddington factor below 1/3. This
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occurs in some radiative shocks, as is discussed in Chap. 8. It also might occur in
nature if an extended, hot, source region were sandwiched between two strongly
absorbing regions.

It should be evident that one can define a total radiation pressure tensor, PR, and
a scalar radiation pressure, pR, by integrating the relations above over frequency.
This permits one to define an overall Eddington factor, pR=ER. Some computational
approaches to radiation transport are formulated in terms of an Eddington factor,
which can be an effective way to improve the accuracy of a calculation without
always dealing explicitly with all the possible directions of radiation propagation.

6.1.2 Thermal Radiation

Thermal radiation is very important even in systems with very nonequilibrium
radiation. The reason is that the electrons are responsible for the emission of radi-
ation, and the electrons very often develop a Maxwellian or piecewise-Maxwellian
distribution. In such cases, the spectral intensity of the emitted radiation in some
frequency range is proportional to the equilibrium spectral radiation intensity at the
temperature of the electrons that are responsible for the emission. Nearly all texts on
modern physics or statistical mechanics derive the properties of thermal equilibrium
(or blackbody) radiation, so we need not repeat this here. By considering the relative
probability that a state will be occupied, the density of states in phase space, and
the two possible polarizations, one can show that the spectral thermal radiation
intensity, B�.T/, is,

B�.T/ D 2h�3

c2
1

eh�=.kBT/ � 1 ; (6.18)

in which h is Planck’s constant and the units are those of spectral intensity: energy
per unit area per unit time per unit solid angle per unit frequency. Here the subscript
indicates that B�.T/ is frequency dependent. Integrating over �, one finds that the
total thermal radiation intensity, B.T/; is

B.T/ D 
T4=; (6.19)

in which 
 is the Stefan–Boltzmann constant. The energy density of the radiation is

ER.T/ D 4

c
B.T/ D 4

c

T4: (6.20)

Thermal radiation must be isotropic, so the pressure is a scalar and p.T/ D ER.T/=3:
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6.2 Atomic Processes in High Energy Density Systems

Having defined the variables necessary to describe the radiation in isolation, we now
are ready to ask how radiation and matter interact. This will prepare us to consider
the combined problem, known as the radiation transfer problem. This will also lead
us to discuss the detailed processes that determine the relative populations of various
ionization states. Two books provide a next level of detail regarding the processes
discussed here. These are Salzman (1998), a very readable basic description, and
Griem (1997), which provides more detail on some issues but is much harder to
read. Sobel’man et al. (2013) is additional book with some helpful material.

6.2.1 Types of Interaction Between Radiation and Matter

The only significant processes involved in the absorption and emission of radiation
involve electrons, because they accelerate much more readily than nuclei. One
can identify three fundamental types of interaction between radiation and matter
involving electrons. We survey these here, before discussing some of them in more
detail in later sections.

The first of these involves bound–bound transitions, which one encounters in
elementary physics upon being introduced to the Bohr atom. The electron in a Bohr
atom is bound to the atom, but can transition among the energy levels of the atom,
known as “states.” The lowest energy state is the ground state and all bound, higher-
energy states are excited states. Radiation can be emitted when the electron “decays”
from a higher-energy state to a lower-energy one. This is bound–bound emission,
which is responsible for the familiar Lyman and Balmer spectral series. The inverse
process, compared to decay, is excitation, in which an electron is given energy and
moves from a lower-energy state to a higher-energy one. In general, both excitation
and decay require the involvement of at least one additional particle, other than the
electron and the atom or ion, to conserve energy and momentum. This additional
particle can be any type of particle including a photon. In practice, certain particles
tend to dominate the rate at which a specific decay or excitation occurs. In low-
density plasmas, a decay is nearly always radiative and an excitation nearly always is
produced by an electron collision. In high-energy-density plasmas, both collisional
and radiative decay often matter, collisions may move the electron from one excited
state to another, and radiative excitation will also be important if the radiation is
near equilibrium with the matter.

Bound–bound emission produces line radiation, whose frequency � is given by
E� D h�, where E� is the energy difference between the levels and h is Planck’s
constant. The spectral width is quite narrow. Energy emitted from one particle can
be absorbed by a second particle, but only if the frequency of the radiation as seen by
the second particle overlaps a bound–bound transition in the second particle. Since
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any Doppler shift changes the frequency seen by the second particle, the transfer of
energy by repeated absorption and emission involving bound–bound transitions can
become complex.

The second category of radiation–matter interaction involves free–free transi-
tions. These transitions move an electron from one continuum state to another.
The interaction of a free electron with any other particle (including a photon)
produces a free–free transition. Such transitions often produce photon emission
or absorption. Two of the most common and important free–free interaction
processes are bremsstrahlung emission and inverse bremsstrahlung absorption. In
bremsstrahlung, a particle (in practice, an electron) is accelerated by interaction with
another charged particle (in practice, a nucleus), and this results in the emission
of photons. This is the primary source of continuum emission from hot dense
matter. In inverse bremsstrahlung, a photon (or light wave) moves an electron
past a nucleus. The interaction with the nucleus randomizes the motion of the
electron, which has the effect of extracting energy from the light. The absorption
coefficient for inverse bremsstrahlung is discussed in Sect. 11.2. The high-energy
limit of inverse bremsstrahlung is Compton scattering, in which the photon–particle
energy exchange is quantized. Another free–free emission mechanism, important in
magnetized plasmas, is synchrotron emission.

The third fundamental type of radiation–matter interaction involves the bound–
free transition. The limiting energy of the bound states is the ionization energy, given
in the Bohr model in the limit that the principal quantum number goes to infinity.
In plasmas, ionization potential depression may reduce this, as was discussed in
Chap. 3. When an electron is given energy that moves it above the ionization energy,
it becomes a free electron. It is then said to be in the continuum, so called because
the energy of the allowed states can vary continuously. Just as in the case of bound–
bound transitions, an electron can decay from or be excited to a continuum state as
a result of an interaction with any particle including photons.

Thus, a photon can be absorbed by an atom or ion, releasing one of the electrons
through a transition from a bound state to a free state, a process known as photoion-
ization. This is a major contribution to the absorption of X-ray photons by materials.
Figure 6.3 shows the transmission of a thin layer of titanium. There is an abrupt
decrease in transmission at 4.7 keV, which is the lowest energy at which the X-ray

Fig. 6.3 The transmission of
a 5�m thick titanium slab to
X-rays
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photon can pull an electron from the bound state whose principal quantum number
is n D 1 (the K-shell) into the continuum. This absorption feature is known as the
K-edge. As the photon energy increases above the K-edge, any absorbed photon
will place the electron into a higher-energy continuum state. The cross section for
this process decreases as the energy of the continuum state increases, which leads
to the increase in transmission as energy increases above the K-edge. The energy
of the K-edge increases with increasing atomic number. The next edge, with lower
ionization energy, is the L-edge. It corresponds to the extraction of an electron from
the n D 2 shell. Higher-Z materials such as tin or rhodium have an L-edge in the 3–
4 keV energy range. All solid materials become strongly absorbing at X-ray energies
below 1 keV, where bremsstrahlung (free–free) absorption becomes large.

Alternatively, a photon can be emitted when an electron in the continuum
recombines with an ion, a process known as radiative recombination. This produces
an X-ray line just below the K-edge, as it is a much stronger process for electrons
in continuum states with near zero energy. On the low-energy side of this line, one
may observe structure resulting from electrons that recombine into an excited state
and then decay into the ground state. On the high-energy side of this line, one may
observe a continuous feature from electrons that make free–bound transitions from
higher-energy states in the continuum. The spectrum of free–bound radiation, at
energies just above the X-ray line, can in some cases be used as a temperature
diagnostic.

There are analogues of photoionization and radiative recombination involving
electrons rather than photons, known as electron-impact ionization and three-body
(or collisional) recombination. The bound–free transition is ionization of ions by
electron impact. In this type of transition, a free electron impacts the ion and ejects
a bound electron from the ion, losing the corresponding amount of energy in the
process. Electron-impact ionization is central to the determination of ionization state
distributions at all densities. The free-bound transition is three-body recombination,
in which an electron rejoins an ion, with the involvement of another electron that
enables conservation of momentum.

6.2.2 The Net Interaction of Radiation and Matter

We will further discuss most of the processes just mentioned below. But fortunately,
one often need not explicitly account for every distinct interaction of radiation
and matter. Instead, one can obtain an adequate description of many systems by
considering the net total emission, absorption, and scattering. We develop such a
description here. Plasmas emit radiation, both directly through the interactions of
the particles, such as bremsstrahlung, and indirectly by scattering radiation in angle
and/or energy. We will write the spectral emissivity, �� , as

��.x; t;n; �/ D ��th.x; t;n; �/C ��sc.x; t;n; �/; (6.21)
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which has (cgs) units ergs cm�3 s�1 sr�1 Hz�1. In some writings, the term spectral
emission coefficient is used rather than spectral emissivity. Here the spectral thermal
emissivity is ��th, which is an approximation assuming that the particles have a
single, Maxwellian energy distribution. A more general and complete expression
would explicitly include all the processes by which all the particles in the system can
emit radiation, including for example line emission following collisional excitation
and bremsstrahlung emission by high-energy tails on the electron distribution. Note
that the integral of this term over frequency and solid angle gives the power loss rate
of the matter in the plasma due to radiation. The spectral scattering emissivity is
��sc, which includes all processes that scatter radiation in angle or energy. We will
not pursue this in any depth here, but in general this emissivity at a given angle or
energy depends on an integral over the radiation intensity present at other angles or
energies. Unlike the quantities discussed previously in this section, this implies that
the integral of (6.21) over frequency or angle is not straightforward, unless one can
simply approximate the scattering term or ignore it for some reason.

The rate of attenuation of energy from radiation depends inherently on the
radiation intensity, so the energy attenuated must be an expression involving the
radiation intensity. We express the energy attenuation per unit volume per unit time
per unit solid angle per unit frequency as ��I� , in which �� is the spectral total
opacity in units of cm�1, also at times known as the spectral extinction coefficient.
In analogy with the case of emission, there is a spectral absorption opacity, �� , for
absorption by the particles, which contributes to heating of the matter, and there is
a spectral scattering opacity, 
� , for scattering by the particles, which changes the
direction of the radiation. Thus

��.x; t;n; �/ D ��.x; t;n; �/C 
�.x; t;n; �/: (6.22)

Here again, the general interaction of radiation and matter may be much more
complex. In principle it may involve dielectric tensors and powers of the electric
field of the light waves. But for nearly all problems in high-energy-density physics,
it is sufficient to take the energy absorption rate to be linearly proportional to the
radiation intensity, as we do here.

In the following we will not specifically treat the emission, absorption, and
scattering of radiation by spectral lines. In some contexts, these can be approximated
as an overall effective emissivity and opacity. In other contexts, they must be
treated explicitly. The methods will be similar to those discussed here, but it will
be necessary to treat each line discretely and to associate Doppler shifts with all
relative material motions.

A centrally important case for high-energy-density physics is that of thermal
emission. Kirchoff’s law states that emission and absorption of radiation must be
equal in equilibrium, which today we would view as an application of the principle
of detailed balance to radiation emission and absorption. Mathematically, we would
write this as
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��th.x; t/ D ��.x; t/B�.T/: (6.23)

Local thermodynamic equilibrium (LTE) is a state in which each species in the
plasma, including the radiation, has an equilibrium distribution of energies, and in
which the temperatures of these distributions are all equal. Plasmas are in LTE if the
photon mean free path for absorption (and the collisional mean free paths) are very
small compared to the gradient scale length of the temperature and if any variations
in time are slow compared to the time required for an equilibrium distribution of
ionization and excitation to be established. Thus, a system must be quite dense or
very large to establish LTE. Some high-energy-density systems can be accurately
described as LTE. In some experiments, for example, a low-Z envelope is used to
confine a higher-Z material of interest, and this entire sample is maintained within an
equilibrium radiation environment long enough to be uniformly heated. This places
the material of interest in LTE. In contrast, in most astrophysical systems outside of
stars, photons are not confined; such systems will nearly always be far from LTE.

Relation (6.23) is also useful even when the entire system is not in LTE.
Collisions are usually rapid enough that the distribution of electrons in a high-
energy-density system is nearly Maxwellian. The thermal radiation emitted by these
electrons is accurately described by (6.23). Also the emission from any excited
states whose populations are maintained at their equilibrium (Saha) values by
electron collisions will be described by (6.23). However, the excited states that
interact with the tail of the electron distribution, and with photons having long
mean free paths, typically are not in their equilibrium distributions. These states
are not in LTE, and (6.23) does not accurately describe their emission. A useful
side note is that the intensity produced by atomic line emission cannot rise above
B�.T/, assuming the electron distribution is Maxwellian at the relevant energies.
This is because the thermal intensity corresponds to the thermodynamically correct
occupation of energy states by the photon distribution at that temperature. No
emission process can rise above this value.

6.2.3 Opacities in Astrophysics and the Laboratory

Opacities are often tabulated as specific opacities, which can often be approximated
as power laws in density and temperature. The density dependence of the specific
opacity is typically weak at densities of interest for high-energy-density physics.
Figure 6.4 shows the Planck mean opacity of Aluminum from one standard set
of tables (this is LANL SESAME table 13710). The Planck mean is an average
over frequency, discussed in detail in Sect. 6.3. There are a number of interesting
features in this figure. Note the regions with relatively straight line segments, at low
and high temperature. In these regions free-free (inverse bremsstrahlung) absorption
dominates the behavior. In such regions the specific opacity becomes proportional
to density. The slope of these line segments steepens once the Al becomes fully
ionized at some fraction of a keV in temperature. Under most conditions shown,
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Fig. 6.4 The specific Planck
mean opacity of Al versus
electron temperature, with the
curves from bottom to top
showing densities in g/cm3 of
10�6, 10�4, 10�2, 1, 102, and
104 (based on LANL
SESAME table 13710)
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though, transitions involving bound states increase the opacity above that due only
to inverse bremsstrahlung. These effects are so strong that, in the range of density
(1–100 g/cm3) and temperature (10 eV to 1 keV) typically of interest in high-energy-
density experiments, the density dependence of the specific opacity is very weak.
This is the origin of the standard formula given below. The absorption peak near
30 eV in temperature, associated with the second ionization (producing neon-like
aluminum), is strong enough to keep the opacity large even at very low densities.

Here are some approximations to the specific Planck mean opacity, �m, based on
a standard set of tables (the SESAME tables):

�m � 2 � 105 T�1
eV cm2/g for CH

�m � 3 � 106 T�1
eV cm2/g for Al (6.24)

�m � 3 � 109 T�2
eV cm2/g for Xe:

The scaling of the opacity is different in low-density systems, where the absorption
and emission may be dominated by bound–bound transitions and line radiation.
The net emission from low-density astrophysical plasmas is often described using
a cooling function. The cooling function � is the power loss per unit volume per
unit electron density per unit ion density. Thus, the power loss per unit volume is
neni�, and one can see that � has units of ergs-cm3/s or equivalent. The discussion
in Sect. 7.2.2.2 shows that the relation of the absorption opacity to the cooling
function is � D neni�=



2
T4

�
. Using typical numbers of ne � ni � 10 cm�3,

� � 10�22 ergs cm3/s, and T D 10 eV, one finds � � 5 � 10�37 cm�1, or about
10�19 parsec�1. Figure 6.5 shows typical astrophysical cooling functions, based
on results in Sutherland and Dopita (1993). These particular results correspond
to a model assuming that the distribution of ionization states is in an equilibrium
determined by collisions and radiative recombination.

It often proves useful to have a calculation of the contribution to the opacity and
emissivity by inverse bremsstrahlung, working from (6.23). The relevant thermal
energies correspond to X-ray photons, for which the densities present are always
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Fig. 6.5 Typical astrophysical cooling functions. The overall shape does not vary, but the location
of the minimum depends upon the density of elements above He. The primordial case has only H
and He while the other two cases have solar or 10% solar concentrations of such heavier elements,
as indicated. Adapted from Sutherland and Dopita (1993)

a small fraction of their critical density. In this limit the absorption rate, (9.15)
[discussed in Chap. 9]. simplifies to

�EM D �ei!
2
pe

82c�2
D �eie2ne

2c�2
; (6.25)

in which � is the frequency of the photon, the rightmost term is in Gaussian cgs
units, and the other quantities are as discussed in Sect. 9.1.3. Using the expressions
for �ei in (2.59), we can write this as

�EM D 1

3.2/5=2

e2Z!4pe

c�2v3e
ln� D 4:03 � 10�9 ln�

n2eZ

�2T3=2eV

; (6.26)

in Gaussian cgs units and with TeV as the electron temperature in eV.
One can do two useful calculations using (6.26). The first is to integrate �EMB�

over a Planckian thermal photon distribution to find the total thermal emissivity.
One obtains

�th D 5:68 � 10�27 ln� n2e
p

TeVZ ergs cm�3 s�1; (6.27)

with ne in cm�3. The other is to find the absorption mean free path, �x D 1=�EM for
frequency corresponding to the mean photon energy in a thermal distribution, which
is � D 2:7kBTe=h. One finds from (6.26), still with � in cgs units,

�x D 1:05 � 1038T7=2eV

n2eZ ln�
D 2:95 � 10�10A2T7=2eV

�2Z3 ln�
� 10�9A2T2eV

�2
cm; (6.28)
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where the final term is under the approximations that Z � 0:63
p

TeV and ln� � 1.
Laboratory measurements can determine opacities under material conditions

that are the same as those present in some astrophysical systems. Indeed, they
are essential for this. We saw in the case of EOS that such measurements under
identical conditions were all one might hope for. The situation with regard to
opacity is somewhat better, because opacities depend fundamentally upon quantum-
mechanical processes within atoms. (In contrast, the EOS depends in part upon
chemical interactions among groups of atoms.) The quantum-mechanical processes
can be reliably scaled from one atom to another in computations. This is especially
true along isoelectronic sequences, for which the number of electrons attached to
the nucleus is the same. Such scalings may break down when the difference in
nuclear charge becomes too large, introducing new issues such as relativistic effects
into the calculation. The net effect is that laboratory measurements are essential
in determining those opacities that can be measured. In addition, these results can
validate computational approaches to calculating opacity of other elements, when
such calculations can be scaled to the experiment.

The radiative transfer of energy through a star or a supernova is an example of
a process that is complicated and three-dimensional, that is difficult to model, and
that cannot be evaluated in a static experiment. Exploding stars create a homologous
expansion, with velocity, v, radial distance, r; and time, t; related by v D r=t.
As a result, each radiating region resides in a velocity gradient and sees plasma
receding from it in all directions. In other words, the absorbing regions are always
red shifted relative to the emitting regions. The relative motion of any two locations
creates Doppler shifts that move any specific emission line out of resonance with
itself and (perhaps) into resonance with other lines. For photons emitted in one
region to escape the star, they have to pass through “windows” in opacity, where
the absorption probability is low. An adequate radiation transfer calculation must
include the effects of the Doppler shifts in the opacity line and edge locations, due
to the expansion. In due course, laboratory observations may prove to be of great
value because of the near-impossibility of incorporating a fully correct treatment
of radiation transfer into a computer simulation of an entire system. Experimental
examples will be needed to validate (or invalidate) various possible approaches.

At this writing a number of experiments have been conducted to measure the
LTE opacities of a variety of materials (e.g., Fe, Ge, Na, Al) at temperatures in
the range of 10–200 eV and electron densities of 1018 to 1022 cm�3, using either
lasers or Z-pinches as the energy source. We discussed above the difficulty of
obtaining LTE conditions and this is a key issue for all of these experiments. The
most common approach uses hohlraums (see Sect. 9.3) to provide an equilibrium
radiation environment free of energetic electrons or strong nonthermal emission,
either of which could alter the conditions of the sample. Measurement of this
temperature is an essential detail. The sample is “tamped” by surrounding it with a
low-Z material. This prevents rarefactions from reaching the sample and constrains
it so that its density remains uniform and changes slowly. At a chosen moment, one
produces a source of high-energy radiation that enters the hohlraum through a small
hole, irradiates the sample, and exits the hohlraum through another hole. By making
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Fig. 6.6 Iron transmission
spectra. Comparison of data
(gray line) and calculations
for a plasma of 80.2% Fe plus
NaF, of density
0.0113 g cm�3 and areal
density 339�g cm�2 at a
temperature of 59 eV. The
various models are described
in Springer et al. (1992).
Reproduced with permission

spectral measurements of this radiation, both through the sample and around the
hohlraum, one can determine the spectral transmission through the sample and thus
the total spectral opacity.

As an example we show in Fig. 6.6 results, from Springer et al. (1992), of this
type of measurement of the opacity of Fe at Te D 59 eV and � D 11mg/cm3. The
electron temperature was measured using the spectrum from a Na dopant. The 1D
radiographic spatial imaging gave the sample density of the thin Fe foil (sandwiched
between tamping layers). Hence, the opacity of Fe was measured for known
conditions of Te and �. The experimental results shown in Fig. 6.6 were compared
with several different opacity calculations employing different approximations. The
conclusion of this work was an unambiguous demonstration of the need to include
quantum-mechanical term splitting in the opacity calculations. Models that neglect
this, such as DCA (panel e), significantly underpredict the opacity.
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6.2.4 Non-LTE Models and Atomic Processes

At lower densities, typical of the plasmas penetrated by laser light (or produced in
Z pinches away from any wires or imploded cores), neither the excited-state nor the
ionization-state populations will be in their LTE distribution. In this case one must
evaluate numerically the effect of all the relevant atomic processes to determine
the populations. Such calculations are known as collisional-radiative calculations,
and models performing such calculations are often described as non-LTE (NLTE)
models. Here we discuss how such models work and then discuss the processes
involved.

In a complete collisional-radiative model, one would account for all the processes
through which electrons and photons interact with ions. The calculation of rates for
the various processes makes extensive use of statistical detailed-balance arguments,
since in equilibrium the rate of any process and its inverse must be equal. Table 6.1
lists the sets of inverse processes, now described. The first two lines of the table show
collisional mechanisms that change the state of one electron, with the participation
of another electron that is free. The simplest is electron-impact ionization, in which a
free electron strikes an ion and knocks out one of the bound electrons. The inverse of
this process is three-body recombination, in which a free electron becomes attached
to an ion, reducing its ionization state, with the participation of another free electron
to enable conservation of momentum and energy. The second line of the table shows
the corresponding pair of processes for excitation and de-excitation, in which a
bound electron changes its state, and a free electron either gives or takes energy
equal to the change in the binding energy of the bound electron.

The third and fourth lines in Table 6.1 show the analogous processes in which
the third particle is a photon, and the quantum state of one electron is changed. In
photoionization, a photon knocks a bound electron out of an ion, changing its energy
and making it free. At energies relevant here, the process is photo-electric, so that
the photon is fully absorbed and the freed electron carries the energy of the photon
less the ionization energy. (At some tens of keV photon energy, Compton scattering
becomes dominant over photo-electric absorption.) In radiative recombination, an
initially free electron becomes attached to an ion, with the emission of a photon to
conserve momentum and energy. The left image in Fig. 6.7 illustrates this process.
Similarly, in photoexcitation and radiative de-excitation, a bound electron changes
its state, with absorption or emission of a photon.

Table 6.1 Table of inverse
atomic processes

Process Inverse process

Electron-impact ionization Three-body recombination

Electron-impact excitation Electron-impact de-excitation

Photoionization Radiative recombination

Photoexcitation Radiative de-excitation

Autoionization Di-electronic capture
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Fig. 6.7 Processes and sub-processes related to radiative and dielectronic recombination of
singly ionized carbon. The energy levels are distributed vertically, with the gray representing the
continuum of free electronic states. The solid dots show the electrons in neutral or singly ionized
carbon, including the two, deeply trapped 1s electrons, the two 2s electrons, and one or two 2p
electrons. Dielectronic recombination occurs in the fraction of cases where di-electronic capture is
followed by radiative decay rather than by autoionization

The above four sets of processes all involve a single bound electron. But
there is no rule of physics that says that only one bound electron can be in an
excited state. And there is one process involving a doubly excited ion that is
of practical importance, found on the fifth line of Table 6.1 and shown in the
second image of Fig. 6.7. Autoionization begins with a doubly excited ion, in which
the ionization energy of the electron in a higher quantum state is smaller than
the de-excitation energy of the electron in a lower quantum state. Such doubly
excited states can be described as autoionizing states. They can then decay by
autoionization: the emission of the higher electron and the de-excitation of the lower
one. Autoionization competes with the radiative decay of the lower electron, so that
statistically some fraction of autoionizing states become singly-excited ions and the
remainder become ionized.
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The inverse process associated with autoionization is di-electronic capture. In
di-electronic capture, a free electron joins an ion with the excitation of one of the
bound electrons. This is one way to create an autoionizing state. In the fraction of
cases where the autoionizing state relaxes by radiative decay, the two-step sequence
has the net effect of attaching a free electron to an ion, reducing the ionization
state. This process is known as dielectronic recombination, and is of substantial
practical importance. The third and fourth images in Fig. 6.7 show this case. The
outer electron then decays into its ground state to produce, in the case shown in the
fifth image, a neutral C atom.

We ignore another process in which a given ion acquires an electron, known as
charge exchange. In charge exchange, one particle gives an electron to a charged
particle and becomes more ionized in turn. The rates for this process are relatively
high only for the interaction of neutral atoms with ions, for which the Coulomb
forces are small. But for charge exchange to be important, there must be a substantial
density of neutral atoms available. This is typically not the case in high-energy-
density systems.

To construct a collisional-radiative model, one solves simultaneously a set of rate
equations that incorporate all the processes that change the population of any given
state. The rate equation describing the evolution in time of the density of ionization
state j is

dnj

dt
D n.j�1/cN	 N
.j�1/ � njcN	 N
j C n.j�1/neh
eivi.j�1/

�njneh
eivi.j/ C n.jC1/neR.jC1/ � njneRj; (6.29)

in which the subscripts involving j; .j � 1/; and.j C 1/ designate the ionization
state, the next-lower, the next-upper states, respectively, the photon density is N	
and the appropriately averaged photoionization or photo-excitation cross section
is N
 , discussed further below. The electron density is ne, and the rate coefficient
for electron-impact ionization is h
eivi. The total rate coefficient for lowering the
ionization state by recombination is shown as R, having in principle contributions
from collisional (three-body) recombination, radiative recombination, and dielec-
tronic recombination, all discussed below.

One can write a similar equation for the population of a given excited state within
some ionization state. However, one will need in principle to consider transitions to
all other accessible excited states. In most cases these will be negligible, but decay
into the ground state, when possible, is a strong process, and excitation from the
ground state may be large if the ground-state population is large. One figures out
which states matter by looking at the distribution of population and at the specific
rates. Codes that do calculations of state distributions, such as FLYCHK or FAC,
typically include all the interactions among some range of excited states, such as
those up to some principal quantum number. Codes that evaluate opacities, typically
assuming equilibrium conditions, evaluate the contributions of many more states (at
times millions). We proceed now to consider the processes that enter into (6.29).
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The fundamental approach will be to show standard fits to the rate coefficients, using
actual ionization energies for the ionization states and, when needed, a hydrogenic
model for the excited states. This is a common practice in both models and codes.

6.2.4.1 Collisional Rate Coefficients

Here we discuss two sets of inverse processes for changes created by collisions. The
first set is collisional ionization (by electron impact) and collisional recombination.
The second set is collisional excitation and collisional de-excitation, in which the
state of the electron (described by its quantum numbers) is changed without a
change of ionization level.

Electron collisions are rapid, and so electrons typically thermalize quite rapidly
in dense, laboratory plasmas. Here we assume that the electron distribution has
become Maxwellian. In the case of electron-impact ionization by Maxwellian
distributions of electrons, the relevant basic parameter is the rate coefficient, which
is an average of the cross-section 
ei times the electron velocity v, denoted here by
h
eivi. The contribution to the rate of ionization from state j to j C 1 by this process
is then neh
eivij, in which ne is the electron density. The number of ionizations per
unit volume per unit time is nenjh
eivij.

Early historic formulae had h
eivi proportional to e�U=U, where U D
Eth=.kBTe/, where Eth is again the ionization energy. In his iconic formula
for electron-impact ionization, Lotz (1967) replaced the exponential with an
exponential integral function, obtaining:

h
eivi D 3 � 10�6 �Znl

T3=2eV

ExpIntegralEŒ1;U�

U
cm3/s; (6.30)

in which the number of electrons in the shell being ionized is �Znl and ExpInte-
gralE[1, U� D R1

U .e�t=t/dt. This formula remains reasonably accurate. For the
excited states, a hydrogenic model is reasonably accurate. The Lotz formula then
applies to these states by replacing Eth with Eth;n D Eth=n2 in (6.30).

Figure 6.8 shows the rate coefficients for ionization of carbon, and Table 6.2
shows the values of Eth for its ionization states. Note that the four, p-shell electrons
ionize more readily than one would expect from a hydrogenic model, while the two
1s electrons have Eth near the value given by the hydrogenic model. In principle,
there is a finite rate of ionization at any finite temperature, because the electron
distribution includes some particles above the ionization threshold. In practice, the
rate coefficient becomes significant once Te reaches about Eth=3. (More precisely, it
reaches 1% and 10% of its maximum value at 0.23 Eth and 0.45 Eth, respectively.)
It then continues to rise with Te until eventually reaching a peak when Te �
10Eth, above which it slowly decreases. The behavior at higher temperature is
often unimportant, because the rate coefficient for the next higher ionization state
becomes significant as Te reaches � 1=3 the ionization energy of this next state.
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Fig. 6.8 Rate coefficients for electron-impact ionization from the ground states of C ions, for
Maxwellian electrons, based on Lotz (1967). The leftmost curve is neutral C, and the rightmost
curve is C 5C. Note the large gap between the curves for Li-like C 3C and He-like C 4C, reflecting
the large increase in ionization energy

Table 6.2 Table of threshold ionization energies for carbon

C ionization state 0C 1C 2C 3C 4C 5C

Ionization threshold (eV) 11.3 24.4 47.9 64.5 392 490

Note that the ionization rates can be very fast. For a density near 1021 cm�3 and
h
eivi � 10�9 cm3/s, the ionization timescale is 1 ps. As a result, a given species
often ionizes rapidly up to its steady-state value. If the system is dense enough, this
will be the equilibrium value. Our crude estimate of the equilibrium value in Chap. 3
corresponds to Eth � 5Te. When radiative effects and dielectronic recombination are
negligible, one tends to find a value more like 3Te.

Turning to collisional, three-body recombination, one obtains rate coefficients
by detailed-balance arguments relative to collisional ionization. Defining the three-
body recombination rate coefficient into state n by ˛n, the detailed balance relation
is expressed as

nen.j;n/h
eivi.j;n/ D ˛nn2enjC1: (6.31)

One applies the Saha equation to express the relation between the level populations
in detailed balance. The numerical result is often expressed in effective two-body
form, so that

˛TBR D .˛nne/ D 1:65 � 10�22h
eivij;n
nen2

T3=2eV

exp

�
Eth;n

TeV

�
: (6.32)

One can substitute the Lotz formula into this equation. Then the factor of U in
the denominator of h
eivij;n implies that the fundamental scaling of .˛nne/ is as n4.
One obtains
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Fig. 6.9 Rate coefficients for
three-body recombination
into the ground (n D 1) states
of C ions, for
ne D 1021 cm�3. These
coefficients are proportional
to ne and to n4. The
uppermost curve is neutral C,
and the bottom curve is C 5C.
Note the large gap between
the curves for Li-like C 3C

and He-like C 4C, reflecting
the large increase in
ionization energy
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�
; (6.33)

where ne20 D ne.cm�3/=1020. Figure 6.9 shows results for carbon ions in the ground
state. These appear low in comparison to the ionization rate coefficients of Fig. 6.8,
but note that at low enough temperatures they exceed the ionization rate coefficients.
Whenever the recombination rate into a given state exceeds the ionization rate
for that state, the state above it will depopulate and the average ionization will
decrease. Because ˛TBR increases with ne while h
eivi does not, increasing ne can
make three-body recombination dominant and lead to a decrease in ionization. In
contrast, decreasing ne makes three-body recombination unimportant in comparison
with radiative and dielectronic recombination (discussed below). In the next section,
we discuss the implications of the fact that all the collisional rates increase rapidly
with n.

Collisional excitation and de-excitation describe collisionally induced transitions
of electrons between specific excited states n` ! n0`0. The overall behavior of these
rates is similar to those of ionization. Salzman (1998) attributes to van Regemorter
a commonly used formula,

1:6 � 10�6 1

T3=2eV

e�U

U
G.U/f.n`!n0`0/ cm3/s; (6.34)

for the rate coefficient. Here U D �E=.kBTe/, where�E is the energy difference of
the transition. As a result, U becomes rapidly smaller for transitions among highly
excited states. In addition, G.U/ is a Gaunt factor, accounting for some quantum
mechanical corrections and having a maximum value below 1, and f.n`!n0`0/ is
the quantum-mechanical oscillator strength, whose maximum value approaches
unity but which is often much smaller. The author is not aware of a simple
parameterization of the oscillator strength, and engaging the quantum mechanical
calculations is beyond the scope of this book. The reader can begin with the other
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books mentioned, if there is a need to explore these issues. Comparing (6.34)
with (6.30), one can see that small values of f.n`!n0`0/ will tend to make this
coefficient smaller than that for ionization while small values of U will have the
reverse effect.

All the collisional processes just discussed become much more rapid as n
increases, reflecting the decreasing value of the transition energies. This drives
the upper excited states toward Saha equilibrium with the ions in the next-higher
ionization state, as we discuss in the next section. In dense plasmas, though, these
effects are limited as continuum lowering eliminates many of the most-excited
states.

6.2.4.2 States in Saha Equilibrium

For excited states, radiative decay rates decline rapidly with increasing principal
quantum number, n, while those for ionization into the ground state of the next-
higher ionization state increase, as do three-body recombination rates from it. As
a result, states above some principal quantum number no come into collisional
equilibrium with the population of the ground state of the next higher ionization
state. In effect, the ground state population of any given ionization state is shared
with some range of excited states of the next lower ionization state.

One can estimate no as follows, for the excited states of an ion of charge Zu � 1.
Sobel’man et al. (2013) give a formula for the Einstein A coefficient,

A D 7:89 � 109 Z4u
n5
�.n/; (6.35)

in which, for the range of n that is relevant here, their tabulated values of �.n/ are
reasonably fit by �.n/ D 4

p
n=2 � 2. For collisional, electron-impact ionization,

use the formula of Lotz (6.30). Use the actual ionization energies along with the
hydrogenic model discussed above for the excited states, and note that �Znl D 2n2

if one does not discriminate by orbital angular momentum. Thus we replace U by
U=n2 in (6.30). We denote the rate coefficient for ionization state j and principal
quantum number n by h
eivij;n. One sets neh
eivij;n D A from (6.35) and solves for
no, finding the value above which the states will be in Saha equilibrium, obtaining
the results shown in Fig. 6.10 for C at selected densities.

The consequence is that, for most conditions of interest at high energy density,
only recombination into the ground state or perhaps the n D 2 state contributes
meaningfully to the determination of the ionization state distribution under typical
conditions of interest. The other states, all of which are within Eth=4 of the ground
state energy of the next ionization state, are in Saha equilibrium.
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Fig. 6.10 Value of principal quantum number above which states are in Saha equilibrium, no, for
carbon for three ion densities as labeled. This figure shows three sets of three curves, one for each
density as indicated. For each density the lower curve is for Te D 100 eV, the middle curve is for
Te D 50 eV, and the upper curve is for Te D 20 eV

6.2.4.3 Photoionization

The inverse processes that involve radiation and changes of ionization state are
photoionization and radiative recombination. The principle of detailed balance is
used to relate the cross sections for these two processes. In practice, however,
researchers have developed fitting formulae that independently capture the behavior
of each process. We will consider them in turn.

Photoionization cross sections for the outer shells of atoms and ions turn out to
be fit well as 
.E/ D 
oG.E/, where 
o is in Mb and

G.E/ D
��
.x � 1/2 C y2w

�
y.0:5P�5:5/ h1C

p
y=ya

i�P
�
H.E � Eth/; (6.36)

where Eth is a threshold energy, H is the Heaviside step function, y D
q

x2 C y21, and
x D .E=Eo/�yo. Here the tabulated fit parameters are 
o;Eth;Eo;P; yw; ya; yo and y1.
For the specific cases of C, N, and O, this gives the total cross section for ionization
from the 2p and 2s shells. There is an additional tabulated parameter Emax that gives
the energy where photoionization of the first inner shell reaches threshold, at which
point this becomes the dominant mechanism and the formula described next must be
used. These fits are discussed in Verner et al. (1996) and the parameters are available
at http://www.pa.uky.edu/~verner/atom.html.

The inner shell photoionization cross sections are fit by a similar but different
formula, described in Verner and Yakovlev (1995), with fit parameters available at
the same website. One has 
.E; n; `/ D 
oK.E; n; `/, where 
o is in Mb and

http://www.pa.uky.edu/~verner/atom.html
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Fig. 6.11 Total cross sections for photoionization of the ionization states of carbon. The lower
ionization states have progressively higher cross sections and lower thresholds

K.E; n; `/ D
��
.y � 1/2 C y2w

�
y�Q

h
1C

p
y=ya

i�P
�
H.E � Eth/; (6.37)

where Eth is a threshold energy, H is the Heaviside step function, y D .E=Eo/,
and Q D 5:5 C ` � 0:5P, with ` being the quantum number for orbital angular
momentum. Here the tabulated fit parameters are 
o;Eth;Eo;P; yw; and ya and fits
are given for each available set of quantum numbers n; `. Figure 6.11 shows the total
photoionization cross sections for carbon.

For the rate equation above, it is the spectral average of the photoionization cross
section over the source spectrum that is important. One defines this cross section, N
 ,
by means of the following equation, denoting the total photon density as a function
of photon energy E	 as N	 D R1

0
NE.E	 /dE	 ,

N	 N
 D
Z 1

Eth


.E	 /NE.E	 /dE	 ; (6.38)

in which 
.E	 / is the sum of the value from Eq. (6.36) for energies up to Emax and
the value from Eq. (6.37) for the 1s shell above Emax. If needed, one can define
averaged subshell cross sections for subshells using the same equation, replacing

.E/ by 
.E; n; `/ in the integral. As a result, the subshell values add to equal N
 .

6.2.4.4 Radiative and Dielectronic Recombination

Here we must discuss radiative recombination and dielectronic recombination. In
both cases the recombination rate is ne˛, where the rate coefficient is ˛, usually
given in cm3 per second. Dielectronic recombination is not possible for recombina-
tion producing H-like species. As Verner and Ferland (1996) summarize, radiative
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recombination also dominates at low temperature for recombination producing He-
like and Li-like species, since the only possible dielectronic recombination pathways
involve excitation of the tightly bound 1s electrons. It also turns out that radiative
recombination is dominant for recombination to Na-like species, creating one 3s
electron outside the closed n D 2 shell. Dielectronic recombination dominates
otherwise.

The radiative recombination coefficients are fit to find

˛R.T/ D a

�p
T=To

�
1C

p
T=To

	.1�b/ �
1C

p
T=T1

	.1Cb/
��1

; (6.39)

where tabulated fitting parameters are To;T1; a, and b. Table 6.3 shows these
parameters for some materials. Note that Si IV is Na-like, and has only one 3s
electron outside a closed 2p shell.

Turning to dielectronic recombination, the total rate coefficient is the sum over
the rates for each allowed pathway. As a result, the dielectronic recombination rate
coefficients are something of a mess. We tabulate the relevant formulae in Table 6.4.
The formulae are also shown in Salzman (1998). Here N is the number of electrons
on the target ion before the capture increases this number, and Zc is the nuclear
charge. Thus the ionization state before capture is Z D Zc � N.

Table 6.3 Examples of fitting parameters for radiative recombination, from Verner and Ferland
(1996)

State Z NV a (cm3/s) b To (eV) T1 (eV)

C IV 6 3 8.540 �10�11 0.525 0.043 1275

C V 6 2 2.765 �10�10 0.686 0.013 2200

C VI 6 1 6.556 �10�10 0.757 0.006 2109

N V 7 3 1.169 �10�10 0.547 0.059 1420

N VI 7 2 3.910 �10�10 0.699 0.014 2820

N VII 7 1 7.586 �10�10 0.756 0.008 2880

O VI 8 3 2.053 �10�10 0.602 0.041 1480

O VII 8 2 4.897 �10�10 0.705 0.016 3530

O VIII 8 1 8.616 �10�10 0.756 0.010 3750

Ne VIII 10 3 3.200 �10�10 0.620 0.055 2260

Ne IX 10 2 6.161 �10�10 0.703 0.028 5380

Ne X 10 1 1.085 �10�09 0.757 0.016 5840

Si IV 14 11 5.942 �10�11 0.393 0.077 1050

Si XII 14 3 5.373 �10�10 0.634 0.100 4030

Si XIII 14 2 8.722 �10�10 0.700 0.061 9960

Si XIV 14 1 1.517 �10�09 0.757 0.031 11,500

The state shown is that after the recombination, and NV is the number of bound electrons after
the recombination. The states are labeled using the spectroscopic convention, in which the neutral
state is I, the 1+ state is II, and etc.
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Table 6.4 Fitting formulae for dielectronic recombination rate coefficients, in units of
10�13 cm3/s, with T in keV

Excited

electron Formulae

1s ˛R D �
A1e�A2=T T�3=2

�
exp

��A3.N � 2/2
�
Œ6=.4C N/�0:9

A1 D 1230 exp Œ�44=.Zc C 2:86/� Z�0:14
c

A2 D 0:0075.Zc C 1=N/2

A3 D 0:0222Zc

2s ˛R D �
B1e�B2=T T�3=2

�
.N � 2/.10� N/.N C B3/�2:5.1C 0:3=T0:21/

B1 D 52 exp Œ�18=.Zc � 1/�
�
Zc.10C 0:011Z2c /

�1
�0:65

B2 D 0:0023.Zc � 2/.1C 0:0015.Zc � 2/2/�1 and B3 D 0:8

2p ˛R D C1.FcT�3=2/ exp Œ�C2 .1C 0:0001=.N C 1// =T�

C1 D 2:15 exp
��0:004.Zc � 37/2

�
.Zc � 2/1:8

C2 D 0:00115.Zc � 2/2.1� 0:003.Zc � 2// and C3 D 0:17

Fc D .10=.N C 1//
1=2 exp Œ�C3 jN � 9:6j�

3s ˛R D .D1T�3=2/ exp
��.D2=T/.1� 0:15.N � 10/�1:5/

��
.N � 10/.Zc � N/.N � D3/

�1

D1 D 0:16Z2m exp Œ�0:11Zm�

D2 D 0:0024Zm.1� 0:01Zm/ and D3 D 6

Zm D Zc � 10

3p ˛R D .E1T�3=2/ exp Œ�E2=T� exp
��E3.N � 12/2

�
.N � 10/.Zc � 10/=8

E1 D .0:45=Zm/ exp ŒZm=.4C 0:02Zm/�

E2 D 0:0003.Zc � 7/2.1� 0:003.Zc � 7// and E3 D 0:02

Fig. 6.12 Comparison of radiative plus dielectronic recombination rate coefficients for C. The
curves are labeled by the ionization state following recombination. The medium-dashed curve
shows the result for the 1C state, which lies between those for 0C and 2C. The text discusses the
details

Figure 6.12 shows the sum of the rate coefficients for radiative and dielectronic
recombination of C ions. These rates are independent of density. The gray curve
labeled 5C shows the purely radiative recombination of the bare nucleus, for
which dielectronic recombination is impossible. Radiative recombination becomes
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slower as the charge of the ion decreases, which accounts for the low-temperature
behavior of the solid black curves labeled 3C and 4C. At higher temperatures, the
recombination rate for these states increases due to the emergence of dielectronic
recombination involving the 1s electron. At low temperatures, the recombination
rate into the 0C, 1C and 2C states is dominated by dielectronic recombination
involving the 2s and/or 2p electrons. The latter two of these also show some impact
of the 1s state at higher temperatures.

At sufficiently high densities, the rates of dielectronic recombination decrease
because continuum lowering progressively removes the excited states that can
participate. This effect is roughly co-incident with the emergence of three-body
recombination to become the dominant process. We will leave the question of
whether there is a zone in parameter space where the total rate of recombination
is reduced to the atomic physicists.

For the dominant ionization states, the magnitude of the total recombination rate
coefficient will be in the range of 1 to a few �10�12 cm3/s, so the timescale for
radiative and dielectronic recombination at ion densities � 1021 cm�3 will be within
a factor of a few of 1 ns.

6.3 Radiation Transfer

To account for radiation transfer, we return to the notation introduced at the
beginning of the previous section. We will assume that someone has evaluated
(or could evaluate) all the detailed mechanisms that produce, absorb, and scatter
radiation, and has produced values of emissivity � and total opacity � as functions
of the plasma parameters. This enables us to consider the absorption and emission
of radiation along a ray as it propagates. Since we are concerned with thermal
radiation at energies of tens of eV or more, we develop the corresponding equations
in the geometric-optics limit, assuming that the rays move in straight lines. This is
generally a good assumption except when it matters that rays propagate along a path
nearly orthogonal to a density gradient, as in some soft-X-ray-laser designs.

6.3.1 The Radiation Transfer Equation

The radiation transfer equation is no more than an accounting of the change in
radiation intensity due to sources and losses of radiation in a specific element of
phase space. In this case the phase space includes an element of solid angle, d˝,
about a direction, n; an element of frequency, d�, about a frequency, �, and an
element of volume of length ds and cross-sectional area dA ? n beginning at
position x: The net rate that energy from this element of phase space adds to the
radiation intensity in some direction is the difference between the rate that energy
enters the element at x and t and the rate that energy leaves it at x C nds; t C �t,
where �t D ds=c. Mathematically, we can write this as
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�
I�

�
x C nds; t C ds

c
;n; �

�
� I�.x; t;n; �/

�
dAd˝d�

!
�
1

c

@I�
@t

C @I�
@s

�
dsdAd˝d�; (6.40)

which has units of energy per unit time. What causes this increase in intensity is
the difference between the total rate of energy emission from the medium into the
element of phase space, which includes scattering from other elements of phase
space, and the total rate of energy removal from the radiation by absorption or
by scattering into other elements of phase space. In terms of the total spectral
emissivity, �� , and the total opacity, �� , we can express this conceptual description
mathematically as

�
1

c

@

@t
C @

@s

�
I�.x; t;n; �/ D ��.x; t;n; �/ � ��.x; t;n; �/I�.x; t;n; �/: (6.41)

This is the “classical” equation of radiation transfer. It is perhaps most accu-
rately thought of as an equation for photons treated as particles, which is an
excellent approximation for the X-ray photons that carry the thermal energy
in high-temperature plasmas. Wave effects, including diffraction, refraction, and
polarization are ignored. Note that, unlike most of the equations above, one cannot
obtain an equation for the total intensity by integrating this equation without making
a severe simplifying assumption about the frequency dependence of �� . Also note
that this form of the equation will be most useful when scattering, including
absorption and reemission, is not a central feature of the radiation dynamics. If,
for example, the emissivity includes significant scattering from other angles (or
other frequencies), then the emissivity involves an integral over I� times a scattering
coefficient and (6.41) becomes an integro-differential equation. For example, the
problem of radiation transport through an expanding envelope, as in a supernova,
introduces just this sort of complexity.

It is worthwhile for ease of applications to elaborate on @=@s. From the chain rule
we can write

@I�
@s

D @I�
@x

� @x
@s

D n � rI� C @n
@s

� @I�
@n
; (6.42)

in which @=@x is equivalent to the gradient operator. The second equality follows
because the jth component of the position vector, xj, along n is xj D s cos˛j, where
the direction cosine for the jth component of x is cos˛j. Of course, n is the unit
vector composed of these direction cosines. In a Cartesian coordinate system, ˛j

is fixed and only the first term on the right is nonzero. In curvilinear coordinate
systems, ˛j varies along s: This can lead to very complicated expressions in general
cases. In a standard spherical coordinate system, for example, one needs three
variables (r; �; �) to specify the location of a point on the ray and in addition two
variables (a polar angle � and an azimuthal angle ˚) to specify the direction of
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the ray with respect to the local radial direction. In a spherically symmetric system,
such as a star treated as a symmetric object, the location is fully specified by r. At
any specific point, the radiation intensity varies with direction, but it is symmetric
about the local radius vector. As a result, one needs a single angle, �, to specify the
local direction of the ray. Defining � D cos�, one can show that

�
1

c

@

@t
C @

@s

�
I�.x; t;n; �/ D

�
1

c

@

@t
C �

@

@r
C .1 � �2/

r

@

@�

�
I�.r; t; �; �/:

(6.43)

6.3.2 Radiation Transfer Calculations

We have at last come to the end of our first task relating to radiation transfer. We
have defined the properties of radiation and have developed an Eq. (6.41) accounting
for its interactions with matter. We now face the problem of actually describing this
interaction, and of developing applied equations that will prove useful in various
limits. In many circumstances, the time derivative in (6.41) can be neglected, as
the motion of the radiation is effectively instantaneous in comparison with that of
the matter. We now develop a sequence of models that we will use in the next two
chapters to describe radiation transfer under various conditions.

6.3.2.1 Direct Solutions of the Radiation Transfer Equation

To solve (6.41), it is often useful to normalize (6.41) by the opacity. To do so,
we introduce a new variable known as the optical depth, �� , which is inherently
a function of frequency. We define an infinitesimal increment of optical depth as

d�� D ��ds: (6.44)

Thus, the optical depth, at frequency �, between point s and point so, is

�� D
Z so

s
��.s

0/ds0: (6.45)

In applications, sign conventions are usually chosen so that the optical depth is
a positive quantity. This often takes care of itself. For example, if radiation is
propagating in the �z direction then ds D �dz and �� becomes the integral of the
opacity from smaller to larger z: A layer of material is said to be optically thick (at
some frequency) if �� 	 1, and optically thin if �� � 1. All materials are optically
thick at long enough wavelengths and optically thin at short enough wavelengths.
(We should also mention that the use of optical depth and related terms is not always
consistent in the literature and can be misleading. In some experimental work, the
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transmission of a layer may be given as its “optical depth.” In contrast, the optical
depth of (6.45) is the natural logarithm of the transmission. In optics, one encounters
filters designated by “O.D.” However, these initials stand for “optical density”, not
optical depth. Optical density is consistently defined as the logarithm to the base 10
of the transmission.)

To complete the normalization of (6.41), we define the source function, S� , as

S� D ��=��: (6.46)

As an application of Kirchoff’s law, discussed above, the source function due to a
Maxwellian distribution of electrons is

S� D B�.T/: (6.47)

The resulting simplified version of (6.41), for steady radiation, is

@I�
@��

D I� � S�: (6.48)

One can see by normalizing (6.41) that the spectral intensity will be driven toward S�
as optical depth becomes large. We will frequently constrain the electron distribution
to be Maxwellian, as opposed to specifying that the system be in equilibrium.
For (6.47) to describe the emission, it is a necessary and sufficient condition that the
electron distribution be Maxwellian. This often occurs, and (6.47) often describes
the source function, even in systems that are far from complete equilibrium.

Solutions to the time-independent radiation transfer equation are often useful.
First, note that (6.48) has an integrating factor, which is just exp.���/. With this
realization, integrating and simplifying this equation gives

I�.xo C ns/ D e���.0;s/I�.xo/C
Z s

0

S�.xo C ns0/e���.s0;s/ds0; (6.49)

where the optical depth ��.a; b/ is the integral of �� along n from s D a to s D b.
This shows how the intensity at some propagation distance s from an initial point xo

(where s D 0) is the transmitted intensity from xo plus the attenuated contribution
from the emission at each intervening point.

For planar systems, or systems that otherwise have a preferred z axis, the
definition of �� in (6.45) becomes impractical, because it gives a different value of
�� for each direction of propagation through a layer of some thickness. In this case,
it is practical to define d�� D ���dz, so that d�� D ����ds, where � D cos � , with
� being the polar angle relative to the z axis. Then (6.41) becomes

�
@I�
@��

D I� � S�: (6.50)
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In this case, the more oblique a ray is the smaller � is, and the more quickly I� is
driven to S� as z increases.

The solution of (6.50), with ds D dz and d�� D ��dz, and �� D 0 at a specified
value of z; is

I�.��/ D e�.j����oj=�/I�.�o/C
Z �o

��

S�.�
0/e�.j� 0��� j=�/ d� 0

�
: (6.51)

This solution is essentially identical to the previous one, except that it accounts for
the variation in optical depth with angle through the introduction of � D cos � . For
applications in which an approximate treatment of the total intensity is relevant, one
can define d� D �dz and integrate (6.57) to find

IR.�/ D e�j���oj=�IR.�o/C
Z �

�o

B.� 0/e�j��� 0j=� d� 0

�
: (6.52)

We will use this in the next chapter.

6.3.2.2 The Radiation Transport Regime

The behavior of the matter does not generally depend directly on the radiation
intensity, but rather on the divergence of the net radiation flux. In order to use the
radiation transfer equation to find the net radiation flux, one must solve for the rays
in all directions and do the integral as shown in (6.9). This is complex.

Simpler results can often be obtained by making some assumptions that are
often correct. Suppose that the thermal emission is given by (6.23), and that the
scattering is isotropic and elastic (or “coherent”), so that it does not change the
photon energies. Then we have

�� D ��B� C 
�J� (6.53)

so

S� D .��B� C 
�J�/=.�� C 
�/: (6.54)

Using this definition of �� , one can find from (6.41),

1

c

@I�
@t

C @I�
@s

D ��.B� � I�/C 
�.J� � I�/: (6.55)

Integrating this equation in frequency one obtains

1

c

@IR

@t
C @IR

@s
D
Z
��.B� � I�/d� C

Z

�.J� � I�/d�: (6.56)



288 6 Radiation Transfer and Atomic Processes

It is often sensible to approximate the second term on the right-hand side in this
equation as negligible, either because the intensity distribution is nearly isotropic,
so I� D J� , or because the system is optically thin so that it changes IR primarily
by emission, or because the scattering is small relative to the absorption. (However,
in some astrophysical systems scattering is large relative to absorption, especially
when the radiation is dominantly line radiation.) In the static limit, and with this
approximation, we have

@IR

@s
D � ŒB.T/ � IR� ; (6.57)

in which � is a nonlinearly averaged absorption coefficient, approximately equal
to the Planck mean opacity, defined and discussed just below. Equation (6.57)
may be needed to determine the angular variation in (and integral of) the radiation
intensity reaching some surface of interest in an application. One important example
is the calculation of the radiation intensity emerging from an optically thin layer of
material.

If instead one integrates (6.56) over all solid angle, then the second term on the
right vanishes identically. Note that this is equivalent to taking the zeroth moment
over angle of (6.41). In Cartesian coordinates, we find

@ER

@t
C r � FR D 4

Z 1

0

�� .B� � J�/ d� � 4� .B � JR/ ; (6.58)

which relates the overall absorption of radiation to changes in the radiation flux and
energy density. Note that r � FR D R

.@IR=@s/ d˝. Equation (6.58) is an equation
for the radiation energy-density, although conceptually it is the analogue of the
continuity equation for mass, in which the rate of change of a density is related to
the divergence of a flux and to sources. It is convenient, but also intuitively sensible,
that the scattering terms cancel out of this result. The energy density is very often
negligible, in which case this becomes a fairly simple equation for r � FR. The
regime where this model applies is described as the “transport regime”. It is also
important to note that (6.58) is only valid for a static medium. In a moving medium,
there are both a convective energy flux and pdV work associated with the radiation,
as discussed in Chap. 7.

Equation (6.58) also defines an absorption opacity, �. One sees that � is again
a nonlinear average over frequency of �� . This is one of several similar averages
that one encounters in simple calculations. The average in (6.57) is also labeled �,
even though it represents a nonlinear average over B� � I� rather than B� � J� . The
reason we make no distinction here is that in practice one seldom calculates either
average. Unfortunately, one cannot evaluate � as defined unless one has already
solved the problem of the radiation transport and knows I� and J� . So to obtain
practical solutions one must somehow approximate �. It turns out that, for systems
to which it makes sense to apply (6.57) or (6.58),
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� � �P � 1

B.T/

Z 1

0

��B�d�: (6.59)

Here �P is the Planck mean opacity, which depends only on the equilibrium
properties of a material, is often tabulated, and may be available in an approximate
functional form. Of course, one could develop iterative solutions to either (6.57)
or (6.58), in which one determined � from an initial solution assuming � D �P. But
if one actually needed to do this, one might be better advised to employ a more-
sophisticated radiation transport calculation from the start.

6.3.2.3 Radiation Diffusion Models

An even simpler model for r � FR can be found from the first moment in angle
of (6.41). This gives

1

c2
@F�
@t

C r � P� D 1

c

Z
4

.�� � ��I�/nd˝: (6.60)

This equation greatly simplifies in most situations, as the first term on the left is only
significant for relativistic motions and as the emission nearly always is isotropic and
averages to zero. One then has

r � P� D ���
c

Z
4

I�nd˝d� D ���
c

F�: (6.61)

In planar systems, with only one direction of inhomogeneity, and using the
Eddington approximation, this becomes

rp� D r .f�E�/ D ���
c

F�; (6.62)

providing a diffusive model connecting F� and E� :

F� D � c

��
r .f�E�/ : (6.63)

For near-equilibrium conditions, one has f� D 1=3 and E� ! 4B�=c. If we
recognize that B� is a function of T only and that T varies with position, then

F� D � 4

3��

@B�
@T

rT: (6.64)

Note that the spectral radiation flux is the first derivative of B� , which is small
compared to B� . Even so, the radiation flux can become important at much lower
temperatures than those at which the radiation pressure does.
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Integrating over frequency, we obtain for FR

FR D �
Z 1

0

4

3��

@B�
@T

d�rT D 4

3�R

@B

@T
rT; (6.65)

in which the Rosseland mean opacity �R is defined by

1

�R
D
Z 1

0

1

��

@B�
@T

d�

�Z 1

0

@B�
@T

d�: (6.66)

We can rewrite the expression for FR as

FR D �4
3

1

�R

@B

@T
rT D �16
T3

3�R
rT � ��radrT: (6.67)

We will call this the Rosseland heat flux. This equation defines the coefficient of
radiative heat transport, �rad, valid only in the equilibrium diffusion limit. It is worth
noting that the Rosseland heat flux is the equilibrium heat flux, 
T4, multiplied by
a small quantity. The small quantity is the fractional change in temperature per unit
optical depth, times (16/3). We can write this as 16 / (3 �RLT ), where LT is the
temperature scale length.

Some characteristic values of �R=�, in cm2/g, for near-solid densities, are

�R=� � 2 � 106�1=7T�2
eV for CH

�R=� � 3 � 106T�4=3
eV for Al

�R=� � 2 � 108T�2
eV for Xe

�R=� � 6 � 106�0:3T�3=2
eV for Au:

(6.68)

Again these are from the SESAME tables (but from Lindl (1995) for Au). Note that
with these values �rad scales as T4 to T5. In astrophysical regimes where the cooling
function has a negative slope, �rad scales somewhat more rapidly, as T6 to T7.

The thermal diffusive limit is actually more restrictive than it would appear from
the above derivation. We can evaluate r � FR from (6.58), which assumes only
that the scattering is isotropic, given an expression for J� . We find this as follows.
Consider the radiation properties to be a function of optical depth. Take the point of
view that the temperature can vary slowly, but only so slowly that the temperature
change is negligible over a distance of one radiation mean free path (i.e., ��1

� ). In
LTE, as in other cases with Maxwellian electron distributions, the radiation source
is the thermal source, S�.��/ D B�.��/. If the temperature were constant, then the
solution to (6.50) would be that I�.��/ D B�.��/. As a result J�.��/ D B�.��/
and (6.55) would imply that there is no radiation flux. But suppose instead that
there is a temperature gradient, small in the sense described above so that S� can be
described by a Taylor expansion relative to some initial location, �� , as
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S�.�
0
�/ D

1X
nD0

@nB�.��/

@�n
�

.� 0
� � ��/n

nŠ
: (6.69)

Equation (6.51) can then be integrated with �o ! 1 to find I�.�; �/, again with
� D cos � , giving

I�.��; �/ D B�.��/ � �@B�.��/

@��
C �2

@2B�.��/

@�2�
C � � � . (6.70)

Note that for forward-going radiation (� > 0), if @B�=@�� > 0 then I� is smaller
than the local value of B� . This is as it should be. One can average this in solid angle
to obtain

J�.��/ D B�.��/C 1

3

@2B�.��/

@�2�
C � � � ; (6.71)

If we substitute from (6.71) for J� into (6.58), and if we further assume that the
variation in the opacities on the scale of the temperature gradient is negligible, and
convert to a more general vector notation, we find

r � FR D �4
3

r �
�Z 1

0

d�
��

�2�

@B�
@T

�
rT: (6.72)

This result is only consistent with (6.65) if the scattering opacity is much smaller
than the absorption opacity, so that ��=�� � 1.

Pause a moment here. This is truly a bizarre result, because the derivation
of (6.65) seems completely general. Yet the calculation leading to (6.72) is more
fundamental, and only produces the same result in the case of small scattering.
The solution to this dilemma lies in the assumption that E� ! 4B�=c. Near-LTE
conditions can only exist, in the presence of a temperature gradient, if scattering is
much smaller than absorption. Otherwise the photons are transported down the den-
sity gradient much faster than the material is heated, which will drive the radiation
“temperature” out of equilibrium with the material temperature. Absorption may be
larger than scattering if free–free transitions, notably bremsstrahlung and inverse
bremsstrahlung, dominate the radiation–matter interactions. This is often the case
in high-energy-density plasmas. But when bound–bound transitions dominate the
radiation–matter interactions then scattering will dominate and LTE will be much
less likely to occur.
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6.4 Relativistic Considerations for Radiation Transfer

While there are some systems in the universe, such as pulsar envelopes or exper-
iments with lasers at 1021 W/cm2, that are manifestly relativistic, most laboratory
and astrophysical systems seem at first glance manifestly nonrelativistic. This,
however, is often not true in at least two senses. First, because spectral lines are
very narrow, often having a normalized line width of order 10�4, Doppler shifts can
complicate the transport of energy by line radiation at velocities as small as 10�4c:
Second, the Lorentz transformation between an observer and a fluid, or between
different parts of a fluid, introduces terms in all orders of v=c, where v is a velocity
difference between frames of reference. But the moments of the nonrelativistic
transfer equations already contain terms that differ from one another by v=c; and
the terms that are first order in v=c at times become the dominant ones (for example
if FR=ER < v=c). As a result the leading relativistic terms, which are of order v=c;
may contribute as much to the radiation transfer as the nonrelativistic terms in the
equations. It turns out that the terms which matter, to this order, are just those one
would find from Galilean relativity.

We will not attempt a derivation of all the relations among relativistic radiation
transfer equations here. This is a large project, carried out for example in Mihalas
and Weibel-Mihalas (1984) and references therein. Our goal, instead, is to introduce
the relativistic effects, discuss their origin, and discuss the equations that result.

In discussing relativistic effects, we will write equations that relate quantities in
two frames of reference. The first frame, designated by the subscript o; is the frame
that is at rest locally within the fluid. This is the frame in which the microscopic
interactions of radiation and matter are correctly described by nonrelativistic
equations, sometimes known as the proper frame. For example, emission from
random processes is isotropic only in this frame. The second frame, designated
by no special subscript, is in motion with velocity v relative to the first frame.
Recalling that the phase space of radiation intensity involves radiation (or photons)
of frequency � and direction n; the Doppler shift and aberration are given by

�o D 	r�.1 � n � v=c/ (6.73)

and

no D �

�o

�
n � 	r

v

c

�
1 � 	rn � v=c

	r C 1

��
(6.74)

in which 	r is the relativistic contraction factor, 	r D 1=
p
1 � v2=c2. The inverse

transformations of these quantities are

� D 	r�o.1C n � v=c/ (6.75)
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and

n D �o

�

�
no C 	r

v

c

�
1C 	rno �v =c

	r C 1

��
: (6.76)

There are some aspects of these equations worth noting from the standpoint
of radiation transport. First, the Doppler shift depends on direction, so that local
emission in some frequency band appears distributed into a range of frequencies
when viewed in a moving frame of reference. Second, the measured direction
depends on the frame of reference, so that isotropic emission in the local frame
of reference does not appear isotropic in another frame of reference. The well-
known “beaming effect” is present in (6.76)—as 	r becomes large, the radiation
is all observed to lie near the direction of v in the moving frame.

It is very helpful in working with relativistic systems to identify which quantities
are Lorentz invariant, as this greatly facilitates the conversion between frames of
reference. From the above equations, one can show that

�d�d˝ D �od�od˝o: (6.77)

In addition, photon number in a given volume must be independent of frame of
reference, from which one can obtain several relations of use in radiation transfer.
Specifically,

I�.�; �/=�
3 D I�o.�o; �o/=�

3
o ; (6.78)

�.�; �/=�2 D �o.�o; �o/=�
2
o ; (6.79)

and

��.�; �/ D �o�o.�o; �o/: (6.80)

It may also be worthwhile for reference to provide here the result of the Lorentz
transformation from the frame moving with the material to the frame of an observer
moving at velocity v relative to the material, in planar geometry, for the moments
of IR. These are

ER D 	2r

�
ERo C 2

v

c

FRo

c
C v2

c2
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�
� ERo C 2
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c
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c
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c2
ERo

�
� pRo C 2

v

c

FRo

c
;

(6.81)

in which the second approximate equality gives the result to order v=c:
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In the context discussed above, our interest here is in the relativistic effects that
are first-order in v=c: Dealing with strong relativistic effects is beyond our scope.
The fact that the radiation transfer equation is relativistically invariant has less utility
than we might wish for, because the emission and opacity are very inconvenient in
frames of reference in which they are not isotropic in angle and frequency. This leads
us to always want to evaluate these quantities as functions in the local frame. So our
first task is to obtain a relation between the spectral intensity in an arbitrary inertial
frame and the plasma properties in a local frame, to first order in v=c: Accordingly,
we take

� D �o.1C n � v=c/; (6.82)

from which one can relate the emission or opacity in the moving frame to the
corresponding quantity in the local frame, evaluated at the same frequency, as

�.n; �/ D �o.�/ � .n � v=c/ Œ�o.�/C �o.@�o=@�/� (6.83)

and

�.n; �/ D �o.�/C .n � v=c/ Œ2�o.�/ � �o.@�o=@�/� : (6.84)

From these, one can obtain the radiation transfer equation, in Cartesian coordinates,
for an inertial frame, as

1
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�
:

(6.85)

In (6.85) we have achieved our goal of relating the spectral intensity in a moving,
inertial frame to the plasma properties in a local frame where they are angularly
symmetric. By taking moments of this equation, as above, one can obtain the
following equations for the radiation energy and momentum:

@ER

@t
C r � FR D

Z 1
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(6.86)

and
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Cv

c
�
Z 1

0
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�o.�/C �

@�o

@�

�
P�d�: (6.87)

In the first of these equations, for example, the second term on the right-hand side
is new by comparison with (6.58). It can be essential. In the diffusion regime, for
example the two components of the integral in the first term on the right-hand side
are nearly in balance, differing only because of the relativistic shift of E� between
the reference frame and the local frame. The net remaining value of the first term is
of the same order as the second term.

The ability to work with radiation in an inertial frame of reference moving at a
fixed velocity relative to a specific volume of plasma may be of use, but is in fact
insufficient for typical radiation hydrodynamic problems. What one actually needs
is the ability to always treat the radiation in the local frame of reference, so the
emission and opacity are isotropic, even as the plasma velocity changes from place
to place. An analysis in which one continuously transforms the frame of reference as
the radiation moves through the plasma is described as an analysis in the comoving
frame. This name is rather misleading however, as it represents no fixed frame of
reference and as any given frame of reference may be accelerating and therefore
not an inertial frame. Instead, the “comoving frame” represents a continuously
varying sequence of frames of reference that are always at rest in the local plasma.
This has the effect of introducing terms into the radiation transfer equation that
depend upon the local fluid velocity, u; derivatives of the local fluid velocity, and
the local acceleration, a:We will not work through this derivation here (see Mihalas
and Weibel-Mihalas 1984) but will provide the resulting first two moments of the
radiation transfer equation, which are

�
D

Dt

�
ERo

�

�
C r � FRo C PRo W ru C 2

c2
a � FRo

D
Z 1

0

Œ4�o.�o/ � c�o.�o/E�o� d�o (6.88)
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FRo �ru C 1
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.ERoa C a � PRo/

D �1
c

�
Z 1

0

�o.�o/F�od�o: (6.89)

In these equations the velocity terms mentioned above have been compactly
expressed through the division by � in the convective derivative and the terms
involving the tensor ru. Also, PRo W ru is dyadic notation and could also be written
as .PRo � r/ � u. Recall that these equations are only accurate to order u=c: Mihalas
and Weibel-Mihalas (1984) give more general results in the nonaccelerating limit of
special relativity.



296 6 Radiation Transfer and Atomic Processes

Comparing (6.88) with (6.58) and its derivation, one can see that one would
recover the latter from the former for a stationary medium with isotropic scattering.
The terms involving � and u in these equations arise from the flux of radiative energy
due to fluid motion and from adiabatic work done by the radiation and the fluid upon
one another. We could have obtained these terms from a nonrelativistic derivation,
but would have been unsure of their correctness. The good news is that Galilean
intuition suffices for systems in which u � c. As mentioned above, these effects
may not be negligible. In particular uERo can exceed FRo under some circumstances.
To properly treat radiation in higher-velocity systems would require that one revisit
the derivation of radiation transfer under the conditions of interest.

Homework Problems

6.1 Integrate the thermal intensity B� over 2 steradians to find the total radiation
power per unit area from a surface at temperature T:

6.2 Using the particle treatment of the radiation, derive an expression for the total
radiation momentum density, and show that it equals FR=c2.

6.3 Derive the relation between radiation pressure and energy, (6.14).

6.4 Graduate students frequently struggle with units, and in particular with the
problem posed here. First, integrate B� , (6.18), symbolically, over frequency to
obtain (6.19). Second, evaluate the coefficients in the integral independently for cgs
and mks units, and show that you obtain equivalent results. Third, convert (6.18) to
have units of energy per unit area per unit time per unit solid angle per unit photon
energy. Integrate this new expression over photon energy and show that you obtain
the same result. You would be well-advised to do all of this within a computational
mathematics program, either with excellent comments your work file, or with an
independent document (in LaTeX at the time of writing this) that describes the
calculations and their results.

6.5 From the uncertainty principle, the spectral width in frequency, ��, of an
emission line is roughly the inverse of the decay time. For a typical decay time
of 1 ns, find the normalized spectral width ��=�, for emission lines in the visible
and in the soft X-ray with a photon energy of 100 eV. Discuss the significance of
this result.

6.6 Derive the radiative transfer equation for a spherically symmetric sys-
tem, (6.43).

6.7 Take moments of the radiation transfer equation to derive the equations for
radiation energy density and radiation pressure, (6.58) and (6.61).

6.8 Demonstrate that �d�d˝ is Lorentz invariant, i.e. (6.77).
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6.9 Given relations (6.78) through (6.80), show that the radiation transfer equation
is relativistically invariant.

6.10 Derive the relativistic transformations of opacity and emissivity (6.83)
and (6.84), and the implied radiative transfer equation, (6.85). Discuss the limits on
v=c for this specific description if the emission and absorption are dominated by (a)
continuum emission or (b) line emission.

6.11 Rework the relativistic equation for radiative energy density (6.88) into the
form of a conservation equation. Discuss the meaning of the terms that result.
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Chapter 7
Radiation Hydrodynamics

Abstract This chapter is concerned with the basic description of dynamic systems
in which radiation transport and hydrodynamics both may matter. It first presents
the fundamental equations of radiation hydrodynamics and some related thermody-
namic considerations. The next topic is radiation and fluctuations, including acoustic
waves with radiation in systems of various optical depth and the radiative thermal
cooling instability. It then discusses radiation diffusion waves, notably including
Marshak waves

It is fair to say that we never directly experience radiation hydrodynamic
phenomena—that is, phenomena in which the radiation directly participates in the
hydrodynamic evolution of a system. We do experience consequences of radiative
heat transport, as for example when heating by solar irradiation produces wisps
of fog above a wet road. And we are aware of some systems, such as solar sails,
in which radiation directly causes material motion. But as we shall see, radiation
hydrodynamic phenomena require temperatures of millions of degrees, more or
less, so they are outside the realm of our direct experience.

One would like to know when radiation affects hydrodynamics in important
ways. This requires either that the radiation flux becomes comparable with the
material energy flux or that the radiation pressure becomes comparable with the
material pressure. Thus our first goal is to see when radiation hydrodynamics
matters.

To find the conditions under which radiation affects hydrodynamics by a
simple calculation, one must make some assumptions. Assume that the electron
temperature and the radiation temperature are comparable and equal to T . If the
ion temperature matters, which it often does not, we also assume it to be not too far
from T . Further assume that the systems of interest are optically thick, which matters
in determining the radiation flux but also in keeping the temperatures comparable.
Under these conditions, the maximum radiation flux is 
T4. We can evaluate the
material energy flux by examining (2.4), finding it to be �uŒ� C .u2=2/ C .p=�/�,
where u is some characteristic velocity. Here we take u to equal the sound speed
cs—any other reasonable number will be within a small enough multiple of cs that
the results will not be affected. For the specific energy of the material, �, we use the
hydrogenic model discussed in Chap. 3. For specific conditions, we can then identify
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Fig. 7.1 Radiation
hydrodynamic regimes.
Dashed curves show where
PR equals the material
pressure, and solid curves
show where FR equals the
material energy flux. The
gray curves are for Xe and the
black curves are for CH
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the boundary in temperature above which the radiation flux dominates. Similarly,
taking the radiation pressure from (6.20) and the material pressure from (3.1),
we can identify the boundary in temperature above which the radiation pressure
dominates.

Figure 7.1 shows the results of such a calculation for C1H1, assumed to be fully
ionized, and for Xe, assumed to be ionizing with Z D 0:63

p
T . In the region to

the right of a solid line, the radiation flux exceeds the material energy flux. In
the region to the right of a dashed line, the radiation pressure exceeds the material
pressure. This is the radiation-dominated regime discussed briefly in Chap. 3. One
sees that Xe is more radiative than C1H1; the Xe curves are displaced to lower
temperature. This is no surprise. Xe has A D 131:3 and Znuc D 54. Over this
range of temperatures it still has electrons in s; p; d, and f shells, allowing very
many X-ray transitions, while the C has only six electrons. The C1H1 is assumed to
be fully ionized; accounting for the internal energy of the C properly would move
the solid black curve slightly to the right. Leaving aside the fine details, one can
see that radiation fluxes become important at temperatures of tens of eV, and that
the exact value depends on details and especially density. The plasma becomes
radiation-dominated at temperatures of hundreds of eV, again with exact values
depending on details. In the important case of plasmas near 1 g/cm3 in density, it
takes temperatures of about 2 keV to make the plasma radiation-dominated.

Stellar interiors include regions in which radiation affects the hydrodynamics.
This is not surprising as the essential behavior of stars is to release energy in
their cores and then to radiate it away from their surfaces. As a result, radiative
fluxes must exceed material energy fluxes, and they do, for example, in the sun.
Figure 7.2 shows results of a simulation of the sun. A convective zone exists because
diffusion of the radiation is not fast enough to transport the energy generated by
nuclear fusion to the solar surface. Larger, hotter, stars include regions in which the
radiation pressure exceeds the material pressure. In addition, all supernovae heat
the stellar interior into the radiation-dominated regime, where it stays until it cools
sufficiently through volumetric expansion. Some dense astrophysical environments,
such as neutron stars and black hole regions, can be strongly radiation-dominated,
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Fig. 7.2 Cut-away view of the Sun. Energy is released by fusion in the core, propagates by
radiative transfer in the radiative zone, and drives radiation-hydrodynamic convection in the
convection zone. From the entry “Sun”, in the Encyclopedia of Planetary Sciences, published by
Chapman & Hall in 1997, used with permission

and even relativistic. Here we will not consider the relativistic cases, as laboratory
experiments are a long way from accessing them.

Interstellar astrophysical systems, including the interstellar medium, interstellar
shocks, and molecular clouds, have densities more than 15 orders of magnitude
below those shown in Fig. 7.1. The curves there make it appear that such systems
would be in a radiative regime. However, such interstellar astrophysical systems the
radiative flux never approaches 
T4, because they are optically thin. The radiative
flux from an optically thin system, for thermal emission, equals �d
T4, where � is
the absorption opacity of the system and d is its size. However, many optically thin
systems, especially in astrophysics, produce primarily line emission, in which case
�d would be an appropriate average over the spectral variation of the optical depth
and thermal spectrum. (The relation of � and the cooling function, �, is discussed
in Sect. 6.2.3.) Moreover, at low density the opacity decreases as density squared
while the material energy fluxes decrease linearly with density. In this regime,
the temperature required to enter the radiative regime must increase as density
decreases. Curiously, this increases the shock velocity required for radiation fluxes
to be significant into the range of >100 km/s, which is just where it is for laboratory
experiments with foams or dense gas. The small optical depth and lack of sources
or boundaries also implies that the radiation “temperature” remains decoupled from
and much smaller than the electron temperature. As a result, the radiation pressure
never exceeds the material pressure in interstellar astrophysical systems and the
radiation-dominated regime is genuinely difficult to reach in experiments.
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However, the radiation flux may at times be essential to the dynamics of such
systems even at densities below 10�20 g/cm3. This can occur when the energy
input from the interactions of matter, such as pdV work, becomes smaller than
the radiative cooling. An astrophysical shock wave compresses and heats the
material it shocks, but after that there is often no further energy input. The material
cools by radiation, however long this may take. The shocked layer of material
produced by a supernova is driven for a long time, gaining energy from the
pressure of the hot “bubble” created by the explosion. But eventually this ends,
and the layer subsequently cools by radiation, eventually decreasing in temperature
and increasing in density by orders of magnitude. We discuss the dynamics of
these astrophysical phenomena in the next chapter, when we discuss optically thin
radiative shocks.

7.1 Radiation Hydrodynamic Equations

Our first task is to develop the equations we will need to account for radiation
hydrodynamic phenomena in the high-energy-density regime. The simple equations
of Chap. 2 ((2.27) and (2.28)) are useful for considering the relative contributions
of the various processes that may occur in an energetic fluid or plasma, all of which
are included, for example, in many simulation codes. However, these equations are
rarely practical for simple calculations. In the context of the present chapter we will
ignore viscous effects and usually heat conduction—these play a very limited role
in most systems hot enough for radiative effects to matter. We will also necessarily
work with only the simplest models of radiation transport. However, there certainly
are cases in which more-complicated models are needed to obtain an accurate
description. A wider range of such models is discussed in Mihalas and Weibel-
Mihalas (1984).

7.1.1 The Fundamental Equations of Radiation
Hydrodynamics

We need equations to describe the evolution of the system when radiation is
important. In the simplest cases, which we discuss first, it is productive to work
with equations for the combined, total energy density and momentum density.
These equations simplify easily when the energy density of either the matter or
the radiation is dominant. This transition is fairly abrupt, since the material energy
density scales as T while the radiation energy density scales as T4. When the
energy density of both the matter and the radiation is important, these equations
are most useful near LTE, when the radiation intensity is Planckian and has the
same temperature as the matter. Yet often in applications the system is not optically
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thick enough for the radiation and matter to come into equilibrium. In this case it
can be helpful to treat the radiation and the matter as distinct fluid species, coupled
to one another. Nearly all codes employ such nonequilibrium models. We discuss
them second.

7.1.1.1 The Equations for Total Energy and Momentum

Here we focus on nonrelativistic systems with isotropic radiation fields. In this case,
the momentum equation remains quite simple. The momentum of the radiation is
negligible compared to that of the fluid in this limit. It will prove useful to define
variables relating total pressure and internal energy, as follows:

ep D p C pR; �e� D �� C ER; and �e� D ep
e	 � 1 ; soep C �e� De	�e� D e	

e	 � 1ep:
(7.1)

The effect of the isotropic radiation field on the matter can be expressed as a gradient
in the scalar radiation pressure, pR. The momentum equation and mechanical-energy
equations then become

�
D

Dt
u D �rep and �

D

Dt

u2

2
D �u � rep or � u � r Œ.e	 � 1/�e� � ; (7.2)

respectively, in which pR is the scalar radiation pressure. There are usually no other
significant forces in laboratory systems, but there might be other forces such as
gravitation in an astrophysical problem. In this case the right-hand side will have
additional terms. The total-energy equation, found from Eq. (2.28), dropping the
terms involving viscosity and heat conduction, and using our combined variables, is

@

@t

�
�u2

2
C �e�

�
C r �

�
�u
�

u2

2
Ce	 e�

��
D �r � FR: (7.3)

If there are additional forces such as gravitation, they will introduce terms relating
to both potential energy and work into these equations. Note that these equations
involve fundamentally a Galilean treatment of the radiation energy density. In
particular, it convects with velocity u. This is certainly not valid for strongly
relativistic fluid velocities (or frames of reference), but is accurate to order u=c,
as we found in Sect. 6.4. We also note that formally the radiation quantities in these
equations should be evaluated in a frame of reference moving with the fluid—the
comoving frame discussed in Sect. 6.4. For problems that can be addressed with the
above equations, one can generally ignore this distinction at least until it is necessary
to consider what will be detected by an external observer.
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The most useful energy equations are gas-energy equations, like (2.31). To obtain
such equations, we rewrite (7.3) as

�
D

Dt

u2

2
C @

@t
.�e�/C r � Œue	�e�� D �r � FR: (7.4)

We then subtract the mechanical-energy equation above to find

D

Dt
.�e�/Ce	�e�r � u D �r � FR: (7.5)

One can replace r � u from the continuity equation to find other useful forms,

�
De�
Dt

� ep
�

D�

Dt
D �r � FR and (7.6)

Dep
Dt

� e	ep
�

D�

Dt
D �.e	 � 1/r � FR; (7.7)

in whiche	 is the value appropriate to heat conduction.
Equation (7.6) can be expressed more simply when there is a simple relation

between pressure and energy density. Let us explore this. On the one hand, if the
radiation pressure is negligible and the matter is a polytropic gas, then �e� D p=.	 �
1/ and the left-hand side of (7.6) reduces to that of (2.31) with an appropriate value
of 	 . On the other hand, if the material pressure is negligible and the radiation
pressure is dominant, then we showed in Chap. 3 that the same relation applies,
so one also recovers the left-hand side of (2.31) with 	 D 4=3. One can also see
from (7.2) and (7.3) that, when radiation is dominant, the momentum and energy
equations can be placed in the form of the Euler equations, with radiation pressure
replacing the material pressure.

Note that up to this point, we have assumed only that the system is not relativistic.
We have made no assumptions about the equation of state (e	 could have any
arbitrary dependence on other parameters). We can find a form of the gas-energy
equation that will prove useful below for systems in which ER and pR are negligible,
for a polytropic gas with constant cV and R. (Recall also that R D .	 � 1/cV .)
Then, using the polytropic equation of state and the continuity equation, one can
rework (7.6) to obtain

�cV
D

Dt
T C �.	 � 1/cVTr � u D �r � FR: (7.8)

This form of the gas-energy equation is particularly useful when one can express FR

as a function of T .
It is important to observe that the primary way in which radiation transfer enters

into these equations is through the term r � FR. In the previous chapter we identified
three approaches to evaluating r �FR. One can solve for IR and integrate as in (6.10).
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This is often necessary in optically thin systems. Alternatively, when the scattering is
elastic and one can evaluate JR, one can use (6.58) to obtainr �FR D 4�p .B � JR/,
a model known as the “transport regime”. Here the absorption coefficient will only
be close to the Planck mean opacity when JR is either negligible or close enough to a
Planckian of the same temperature as B. The third approach is valid when the system
is optically thick and near equilibrium and a radiation diffusion model describes the
radiation transport. In these cases on most often uses r � FR D �r � .�radrT/, as we
will later in the chapter. In addition, when one finds the cooling rate by one of these
methods, it often can be expressed as a rate �c times some heat content. It can then
be convenient to take �r � FR D ��c�cVTc, in which Tc might be a temperature or
a temperature deviation, depending on the context.

7.1.1.2 Equations for Radiation and Matter Out of Equilibrium

It very often is necessary to treat the matter and radiation separately, and to explicitly
include the coupling between the two fluids. To obtain an equation for the radiation
in this case, we extract the terms for the radiation energy, use the continuity
equation, and add terms describing the emission and absorption of radiation to (7.5),
obtaining

DER

Dt
� 4ER

3

1

�

D�

Dt
D �r � FR � c�EER C 4�p
T4e ; (7.9)

in which the electron temperature is Te, the Planck opacity remains �p, and the
absorption opacity is another averaged value, in this case being

�E D
R1
0
��E�d�R1

0
E�d�

� �p: (7.10)

The second term on the left hand side of (7.9) is the change in radiation energy
density due to changes of volume. The corresponding gas-energy equation for the
matter is

�
D�

Dt
� p

�

D�

Dt
D c�EER � 4�p
T4e : (7.11)

Note that if we add (7.9) and (7.11), the coupling terms cancel and we regain an
equation equivalent to the gas-energy equations above. Also note that if ER � 0

then r � FR D �c�EER C 4�p
T4e and we recover (7.6) in the same limit.
One most straightforwardly creates a nonequilibrium diffusion model by writing

r � FR D �r � .crER=.3 N�// in (7.9), so that with an equation of state for the matter
one has a closed set of equations. Simple diffusion models like the one written here
fail in optically thin regions, and fail so as to transport too much energy too rapidly.
The computational implementation of such models generally involves a radiation
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flux limiter, which limits the radiation fluxes when the medium becomes optically
thin. Such flux-limiters are beyond the scope of our discussion here, but will become
important to you if you engage in modeling of radiation hydrodynamic systems. A
nonequilibrium-diffusion model in which the radiation is treated as a single fluid is
also known as a “gray” or “gray diffusion” model, because it does not distinguish in
any way the spectral behavior of the radiation. This failure is the largest source of
inaccuracy in such models, because in fact the more energetic photons have much
smaller opacities and so penetrate and heat the matter much more deeply. A very
common way to address this is to split the radiation spectrum into energy groups
(typically some tens of groups), evaluate the absorption opacities for each group,
and solve an equation like (7.9) for each energy group. Then one modifies (7.11)
so that the radiation absorption and emission terms are sums over all groups. Such
models are known as multigroup diffusion models. These are the most commonly
used models in codes that model laboratory experiments.

7.1.2 Thermodynamic Relations

As discussed above, one can often use the EOS for either the matter or the radiation,
as any given system tends to be in one regime or the other. It is of some interest to
see what the transition looks like, which we seek to do here. Our approach is to take
the results from the simplest EOS of Chap. 3 and to add the quantities describing
the contributions of the radiation. Here we assume that the plasmas in question are
near equilibrium, to that the matter and radiation can be described using a common
temperature. The total pressure,ep, is the sum of the plasma pressure from (3.88) and
the radiation pressure, giving

ep D ni.1C Z/kBT � 3

10

niZ2e2

Ro
C 4


3c
T4: (7.12)

The total specific energy density,e�, is the sum of the contributions from thermal
particles, radiation, and internal energy, again designated as R.T/.

�e� D 3

2
ni.1C Z/kBT � 9

10

niZ2e2

Ro
C ni

EH

6
Z.1C Z/.1C 2Z/C 4


c
T4: (7.13)

Here the third term on the right-hand side is the energy density of ionization,
evaluated using a hydrogenic model, and could be replaced with some other, more-
accurate evaluation.

One then can proceed to evaluate the various types of 	 , in the generalization of
polytropic indices introduced in Sect. 3.6. One has for the shock gamma

e	 D 1C ep
�e� ; (7.14)
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as above. To find the value of 	h, required for heat transport calculations, we need
the specific heat at constant volume,

cV D
�
@e�
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�
�

D 3kB

2Amp
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1C Z C T

�
@Z
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�
�

#
C (7.15)
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C 16
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The partial derivative ofep with respect to T at constant density, is
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This then gives

1

.	h � 1/ D �cV

@epı@T

�
�

(7.17)

D .3=2/
�
1C Z C T.@Z=@T/�

�
�
1C Z C T.@Z=@T/�

� � Œ6Ze2=.RokB/�.@Z=@T/� C 16
T3=.3nikBc/

C .EH=kB/.1C 4Z C 6Z2/.@Z=@T/� C 16
T3=.nikBc/�
1C Z C T.@Z=@T/�

� � Œ6Ze2=.RokB/�.@Z=@T/� C 16
T3=.3nikBc/

for 	h. Note that 	h depends on .@Z=@T/�, which drops abruptly to 0 when the
plasma is fully ionized. Note also that for Z / p

T;T.@Z=@T/� D Z=2. One can
rearrange this last equation to have

cV D 1

.	h � 1/
1

�

�
@ep
@T

�
�

; (7.18)

a form that is useful for applications when one already has a sufficiently accurate
value for 	h.

We also need the sound speed, from (3.140), for calculations involving acoustic
waves. To evaluate this, we need

�
@ep
@�
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D .1C Z/kBT

.Amp/
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and
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: (7.20)
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Fig. 7.3 Values of 	 (solid curve), 	s (dashed curve), and 	h (thick gray curve) for carbon (left),
aluminum (middle), and xenon (right), all evaluated at � D 2 g/cm3

The expression for 	s is even messier than the one for 	h, and so not shown here. It
is easily evaluated by computer.

Figure 7.3 shows values of 	 , 	s, and 	h for near-equilibrium radiating plasmas
composed of three different elements. Here we have assumed Z D 0:63

p
T with

T in eV until T D 2:5Z2nuc, above which we have taken Z D Znuc, the nuclear
charge. One can see in the figure the abrupt change in 	s and 	h, but not 	 , when
the plasma becomes fully ionized. Note that all three indices remain in the range
of 1.25–1.75 throughout, which is less than a 50% variation. It is not a terrible
assumption to take 	s D 	h D 	 , except for temperatures within a factor of several
above the temperature corresponding to full ionization. We ignore this regime in the
applications. It is worth noting, though, that using a single value of 	 does not permit
one to use the simple equations of Sect. 3.1.1. One still must evaluate quantities such
as the specific heat properly for the radiative regime.

To go beyond equilibrium models, one has the same sorts of choices we explored
in Chap. 2 (and Sect. 6.3.2) regarding how to treat the entire physical system. Just
as we saw there that there is a choice between a single-fluid and a multiple-fluid
treatment of the particles, there is a similar choice regarding the radiation, especially
with regard to the energy equation. A common type of model in simulations is the
single-fluid, three-temperature model discussed in Chap. 2. Such models use a single
continuity equation and a single momentum equation, but make the pressure the
sum of the electron, ion, and radiation pressures. Then one works with separate
energy equations for the electrons, the ions, and the (often multigroup) radiation,
keeping track of the energy exchange between these species. Such models often
employ a generalized nonequilibrium diffusion treatment of the radiative energy
transport, along the lines discussed in Sect. 7.1.1.2. Alternatively, they may employ
more-sophisticated radiation transport methods in connection with a single-fluid,
two-temperature (electron and ion) treatment of the matter. Such models, even with
a diffusive treatment of radiation heat transport, are comparatively tractable and
often give qualitatively correct results.
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7.2 Radiation and Fluctuations

Strong radiation, when present, affects every hydrodynamic process that occurs
in a medium. Much of the material in this chapter and the next involves the
examination of how radiation can alter the behavior of phenomena we have
already explored, such as acoustic waves and shocks. Some additional phenomena,
including thermal instabilities and diffusive heat waves, have analogues in systems
with heat conduction.

7.2.1 Radiative Acoustic Waves: Optically Thick Case

To see the effect of radiation on acoustic waves, we will begin by examining what
would happen deep within an optically thick, near-equilibrium, radiating medium
such as a stellar interior or an experimental volume that is hot enough and dense
enough. We begin with the limit in which the system is so near equilibrium and so
optically thick to the radiation that B � JR. In this limit the radiative flux is given
by (6.67). In this case, (7.7) becomes

Dep
Dt

� 	sep
�

D�

Dt
D .	h � 1/r � .e�rT/ ; (7.21)

in whiche� D �th C �rad, the sum of the thermal and radiative coefficients of heat
conduction, and (formally) we take 	s and 	h from Sect. 7.1.2. We linearize this
equation, taking ep D epo C ep1; � D �o C �1; and T D To C T1, working in
the comoving frame and assuming that the zeroth-order gradients of temperature,
velocity, and density are zero, to obtain

@ep1
@t

� 	sepo

�o

@�1

@t
D .	h � 1/e�r2T1: (7.22)

We then need to eliminate one variable by linearizing the equation of state (7.12).
We choose to eliminate T1, but to do so we have to evaluate the variation in Z. Here
we choose Z / p

T in the ionizing regime. Then we find

ep1 � po
�1

�o
D ˛

T1
To
; where (7.23)

˛ D 16
T4o
3c

C �o.1C ˇZo/kBTo

Amp
; (7.24)
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with ˇ D 1 in a fully ionized plasma or 3/2 in an ionizing plasma. We note that po

in (7.23) is the particle pressure and that ˛ has units of pressure. Substituting for T1
in (7.22), we have

@ep1
@t

� .	h � 1/e�To

˛
r2ep1 D 	sepo

�o

@�1

@t
� .	h � 1/e�To

˛

po

�o
r2�1: (7.25)

Note that the coefficient in the second term on the left-hand side has units
of cm2=s, making it some sort of generalized kinematic diffusion coefficient (see
Chap. 2). We can arrive at an equation that includes acoustic waves by noting that
the linearized versions of the momentum equation (7.2) and the continuity equation
imply that @2�1=@t2 D r2ep1, which enables us to differentiate (7.25) twice with
respect to t to find
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r2ep1: (7.26)

This is a fourth-order wave equation describing radiation-modified acoustic waves
and related waves. We perform a plane-wave analysis as in Chap. 2 to find the
dispersion relation, which is
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One can simplify this by defining � D 4
T4=.3cpo/ to capture the relative
importance of radiation and 	sv

2
n D .!=k/2.�o=po/ giving vn D 1 when the phase

velocity equals the usual, isentropic sound speed, so that (7.27) can be written
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1 � .1C �/
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D �i
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1 � 1

	sv2n

�
; (7.28)

in which the normalized frequency, !n, is given, assuminge� D �rad, by

!n D
0
@ .	h � 1/h
1C 1

4�

�
1CˇZo
1CZo

	i !

�e.c2s=c2/

1
A ; (7.29)

where we have introduced an extinction rate �e D c�R to clarify the normalization.
It is evident that as radiation becomes negligible so � ! 0, !n ! 0 and the phase
velocity assumes its usual value .vn D 1/. When � is not small, the behavior depends
on !n. At any given �, !n defines a frequency scale, so that “low” frequencies
make this term small and “high” frequencies make it large. The high-frequency
regime is the one in which thermal conductivity is very effective on the scale of the
wavelength, smoothing the temperature fluctuations that acoustic waves otherwise
produce. The waves in this regime have phase velocity (cs=

p
	 ). Such waves are
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Fig. 7.4 Acoustic waves in
the radiation diffusion limit.
(a) The phase velocity
normalized by the
nonradiative, isentropic sound
speed. (b) The spatial
damping length normalized
by the wavenumber.
Parameters were 	h � 	s �
1:3; ˇ D 1; and � D 0:01
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known as isothermal acoustic waves, as this is the phase velocity found from the
Euler equations by assuming the plasma to be isothermal.

In general, (7.28) has four roots, corresponding to two pairs of oppositely
propagating waves. The roots are complex, giving the phase velocity and the
damping, both normalized to the nonradiative, isentropic sound speed. [The spatial
damping rate, normalized by the wavenumber, is the ratio of the imaginary root
of (7.28) to the real root.] Figure 7.4 shows the normalized phase velocity and
spatial damping rate, as a function of !n, for values of the parameters shown in
the caption. The weakly damped root with a normalized phase velocity near 1
is the acoustic wave. The other root, often described as a thermal wave, is very
strongly damped except at very low frequency, where its phase velocity becomes
negligible. It corresponds to a strongly damped perturbation in temperature and the
other quantities.

For typical laboratory values (at approximately 1 g/cm3) of �R � 104 cm�1,
cs � 30 km/s, and 	h � 	s � 1:3; !n D 1 when ! � .3=�/ � 106 rad/s, which
corresponds to wavelengths of order 2� cm. Thus, once � decreases below about
10�5 (at approximately 100 eV), so the wavelength becomes shorter than 1=�R, the
acoustic waves will be in the “high-frequency regime.” For stellar interiors, one
might have �R � 10 cm�1, cs � 100 km/s, and 	h � 	s � 1:3, so !n D 1 when
! � .3=�/ � 104 rad/s, which corresponds to wavelengths of order 600 � cm. Thus,
only very short wavelengths, by comparison to the stellar radius, will be in the “high-
frequency” regime.
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7.2.2 Cooling When Transport Matters

We next turn to systems that are not quite so optically thick, so that B ¤ JR and
radiation transport is significant. It is not immediately clear what may happen in
this case. The question is where the radiation goes, how is it absorbed, and what are
the consequences. We assume that the radiation is in steady state, as it equilibrates
rapidly on the timescale of material motion. We further assume that the plasma
particles are in near-equilibrium distributions, so they emit at the equilibrium rate.
Under these assumptions, the divergence of the radiative flux is 4�.B � JR/ as
given by (6.58) for steady state, and in applications we will approximate � � �p,
the Planck mean opacity. Before we consider the dynamics of fluctuations in this
context, we need to know the rate of cooling produced by a plane-wave fluctuation
in temperature and thus thermal emission. In the next section, we calculate this.

7.2.2.1 Cooling of Temperature Fluctuations

We consider a system with no zeroth-order gradients. Such a system will be in
a steady-state (or an equilibrium) in which the sources and losses of thermal
radiation are in balance. Our goal is to determine the radiative cooling produced
by a plane-wave fluctuation in the emission. Formally we write B D Bo C B1 and
B1 D OB expŒik.z � z1/�, which defines the z-axis to lie along the wave vector k
of the fluctuation. Our convention will be that the physical quantity represented
by any variable, a, is .a C a�/=2. We then seek the radiation intensity due to B1,
ignoring the steady-state contribution due to Bo. Equation (6.44) then describes the
incremental radiation intensity, I1. We assume the medium is uniform and refraction
is negligible, and we evaluate the intensity by integrating in the +z direction along
some ray, so we have

I1.z/ D
Z z

zo

dz0

�
� OBeik.z0�z1/e��.z�z0/=� C I.zo/e

��.z�zo/=�; (7.30)

where � is the cosine of the angle of the ray relative to the z-axis. It is consistent
with our context to take zo to be a large negative number, so that j�zoj 	 10. Then,
after integrating, (7.30) becomes

I1.z; �/ D � OB
.i�k C �/

eik.z�z1/ D
�
.� � i�k/

.�2k2 C �2/

�
� OBeik.z�z1/: (7.31)

When we integrate I1 to find J1 the imaginary term, which is odd in �, integrates
to zero, and we are left with
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: (7.32)
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This is the result we need to evaluate the heat input to the matter in the plasma, from
the steady-state limit of (6.58), as the negative of the input to the radiation.

For systems in which the radiation pressure is negligible, the impact of the
radiation is through the heat it transports. It is then useful to express this result in
terms of the fluctuation of the temperature, T1. We treat the incremental energy loss
rate, which is �r � FR, as a damping rate on the incremental local energy density,
�cVT1. Thus we have, again in the comoving frame of a uniform medium,

@T1
@t

D ��1T1 D 4�

�cV
.JR � B/ : (7.33)

Just as we have expanded the other physical parameters, we expand JR as JR D
JoCJ1, where J1 is the deviation in JR due to the temperature fluctuation from (7.32).
Since Jo D Bo the first-order expression for the right-hand side is �.J1 � B1/, where
� is the zeroth-order value of �. In addition, it is clear from (7.33) that T1 must have
the same plane-wave dependence as J1 and B1, so we have

�1 D 4� OB1
�cV OT1

h
1 � �

k
Cot�1

��
k

	i
D 16
�T3o

�cV

h
1 � �

k
Cot�1

��
k

	i
: (7.34)

This result is plotted in Fig. 7.5. At small �=k, �1 becomes independent of k and
can be designated as

� D 16
�T3o
�cV

D 11:5
A

.Z C 1/
T3�m; (7.35)

in which the second equality gives � in s�1 for T in eV and �m in cm2/g. As �=k
increases, the damping is smaller. Consider this further. At small �=k, which is
the optically thin limit for the perturbation, the radiation travels many wavelengths
before it is absorbed. The emission is small and the absorption is spatially uniform.
(Thus, if one writes the equation for To, it will have a higher-order heating term.) As
�=k becomes larger, the absorption becomes increasingly local so the energy from

Fig. 7.5 Radiative cooling of
optically thin fluctuations
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any given temperature maximum stays increasingly near that maximum, slowing
the cooling. At very large �=k, there is a net flow of energy from hot regions to
cool regions within each wavelength. However, in this limit JR also approaches B
and the transition to a diffusive regime. The frequency of a fluctuating perturbation
also must be considered. At high enough frequency, ignoring the first term in (6.58)
is no longer justified. One can estimate when this might be important by taking
ER � FR=c, r ! k, and @=@t ! ! in the two terms on the left-hand side of (6.58).
They become comparable when !=k � c. This is not a surprising result. We are
now ready to apply the cooling rate of (7.34) to two cases of interest.

7.2.2.2 Cooling of Thin Layers

We have seen that faster shock waves produce higher postshock temperatures, and
also that the opacity decreases as the temperature increases. As a result, experiments
may produce optically thin shocked layers that endure for some time. The shocked
layers produced by interstellar shocks in astrophysics are optically thin as well. Such
layers may radiate so strongly that they cool substantially, their density profiles
change, and more complicated dynamics also become possible. We will explore
the profiles of the resulting cooling layers in our discussion of radiative shocks.
It is often helpful, though, to evaluate the cooling rate of a hot, thin layer. If the
corresponding cooling time is long compared to the duration of the system, then
changes in layer structure due to the radiation will be minimal.

The cooling of a thin, planar layer of infinite lateral extent also provides a nice
application of the radiative transfer equation. For a planar layer of thickness d, we
use (6.52), writing

IR D
Z d

0

��mBe�.z��m=�/
dz

�
D B



1 � e�.d��m=�/

�
: (7.36)

We use this to find the radiation flux emerging from one surface of the layer, as
it was defined in (6.9), but integrating over only the one hemisphere of outgoing
radiation. This gives

FR D 2

Z 1

0

IR�d� D B
�
1C e�� .� � 1/ � �2E1.�/

�
; (7.37)

in which � D d��m is the optical depth of the shocked layer based on its thickness
and E1.�/ is the exponential integral function with n D 1. The total energy flux
removed from the layer is twice this value, as radiation leaves from both sides.
Figure 7.6 shows the radiative flux, normalized to 
T4, as a function of optical
depth. One sees that the flux increases linearly from zero with optical depth at small
optical depth but soon saturates and approaches 
T4.
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Fig. 7.6 Radiative flux from
optically thin layer. The
ordinate shows the radiative
flux leaving one surface of
the layer, normalized by
B D 
T4. The flux
increases as the optical depth
increases

0 1 2 3 4

Optical Depth, 

0

0.2

0.4

0.6

0.8

1

R
ad

ia
ti

ve
 f

lu
x/

(
T

4
) 

0 2 4 6 8 10
0.00

0.05

0.10

0.15

0.20

Optical depth

C
o

o
lin

g
R

at
e

ra
d

Fig. 7.7 The normalized cooling rate, �rad=� decreases as the optical depth increases

From Fig. 7.6, one might expect cooling to be fastest when a layer is of order one
optical depth thick, because one then extracts radiation from the entire volume but
at a fairly high rate. This expectation would be false, however, because the amount
of material to be cooled increases faster than the radiation flux. We can see this as
follows. The radiation cooling rate �rad is the ratio of twice the radiative flux from a
single surface to the energy content per unit area of the layer

�rad D 2FR

�dcVT
D �

�
1C e�� .� � 1/ � �2E1.�/

�
8�

; (7.38)

in which the normalizing factor � is that of the previous section. Figure 7.7 shows
the corresponding normalized cooling rate. Its limiting value as the optical depth
becomes very small is 0.25. It decreases as optical depth increases, approaching 0.01
for an optical depth of 10. Beyond that point the normalized cooling rate changes
slowly, scaling as 1/ � at large � . Thus, if T � 10 eV and �m � 106 cm2 g�1, one has
� � 3 � 1010 s�1 giving sub-ns cooling times for � . 4. The cooling times will be
shorter for smaller optical depth, and longer for larger optical depth.
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It may be useful to develop a comparison of the cooling rate just found and the
standard expression for the astrophysical cooling function, �. The cooling function
� is the power loss per unit volume per unit electron density per unit ion density,
in ergs-cm3=s or equivalent. Thus, the power loss per unit volume is neni�. The
corresponding cooling rate, �astro, is neni�=.�cVT/. Setting this equal to ��

rad, we
find the opacity �astro D ��m corresponding to the optically thin astrophysical case,
as �astro D neni�=.2
T4/. Note also that one can identify the emissivity of the thin
layer as �astrod.

7.2.3 Optically Thin Acoustic Waves

The diffusive, near-equilibrium regime of Sect. 7.2.1 is not easily achieved in the
laboratory or often encountered in astrophysics except within stars. Much more
common are systems hot enough that radiative cooling matters, but optically thin, or
at least not very thick, so that (7.33) and (7.34) describe the cooling. These systems
also have negligible radiation pressure and energy density. Let us consider how
acoustic waves behave in this regime, in the limit that the system is so optically thin
that �1 D � from (7.35). Then, informed by the discussion relating to (3.141), (7.7)
becomes

Dp

Dt
� 	sp

�

D�

Dt
D �.	h � 1/��cVT1; (7.39)

We once again linearize for an initially uniform plasma, using (7.23) and (7.24) for
negligible radiation, to find

T1
To

D .1C Z/

.1C ˇZ/

�
p1
po

� �1

�o

�
; (7.40)

in which, as in (7.24), ˇ D 1 for an ionized plasma, 3/2 for an ionizing plasma
with Z / p

T , and some other value or function in more general cases. From this
we obtain, from (7.39) in the comoving frame, after linearizing and redefining � to
absorb the factor of .	h � 1/, the equation

@p1
@t

� 	spo

�o

@�1

@t
D ��

�
p1 � po

�o
�1

�
: (7.41)

Here we again use the result from the continuity and fluid momentum equations that
@2�1=@t2 D r2p1, to find

�
@2

@t2
� 	spo

�o
r2

�
@p1
@t

D ��
�
@2

@t2
� po

�o
r2

�
p1: (7.42)
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Fig. 7.8 Acoustic waves in
the optically thin limit. The
phase velocity, normalized to
the isentropic sound speed,
cs, and the spatial damping
rate, normalized to the
wavenumber k vs. normalized
frequency
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The corresponding dispersion relation is

� i!

�
�!2 C 	spo

�o
k2
�

D ��
�
�!2 C po

�o
k2
�
; (7.43)

which can be solved for the normalized inverse phase velocity, csk=!, to obtain

c2s k2

!2
D 1

1C �2=.	2s !
2/

"
1C 	s

�
�

	s!

�2
C i.	s � 1/ �

	s!

#
: (7.44)

One sees in (7.44) that one recovers ordinary isentropic acoustic waves as the
cooling rate goes to zero, and damped, isothermal acoustic waves as the cooling rate
becomes large. Figure 7.8 shows how the phase velocity and damping rate implied
by this dispersion relation depends on the natural normalized frequency for (7.44),
	s!=�. The phase velocity increases from the isothermal sound speed at low
normalized frequency to the isentropic sound speed at high normalized frequency.
In both these limits, the spatial damping rate is small. The spatial damping rate
increases somewhat during the transition.

Returning to (7.44), the limiting behavior in this regime is easy to recover and
merits discussion. In the limit of very high frequency or very small damping, we
evidently recover ordinary acoustic waves. For a high frequency with �=! � 1, we
find

k D !

cs

�
1C i

1

2

�

!

.	s � 1/
	s

�
; (7.45)
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corresponding to damped sound waves with a characteristic, very-long damping
length of .2	scs=�/=.	s � 1/. The opposite limit, in which �=! 	 1, is more
complicated because at a low enough frequency the waves will experience an
optically thick medium and the present calculation will not apply. Assuming that
over some range of frequencies this limit does make sense, one can see that k will be

k D
p
	s!

cs

�
1C i

1

2

!

�
.	s � 1/

�
; (7.46)

and that the damping length is Œ2cs=.�
p
	s/�.�

2=!2/=.	s � 1/. This damping length
is also quite long, compared to the wavelength of the fluctuations. In this limit
we have weakly damped, isothermal acoustic waves with phase velocity (cs=

p
	).

Physically, in this case the radiation damps out the temperature fluctuations at a rate
much faster than the wave frequency.

To see the implications of this, consider acoustic waves in a CH plasma at
T D 100 eV. With �P D 2 � 105�=TeV ; � D 1 g/cm3, the radiative damping rate
from (7.35) is just over 109 s�1. If the sound speed is about 106 cm/s (10 km/s),
then acoustic waves with wavenumbers of 0.001 cm�1 will be the most damped.
The corresponding wavelength of order 100 m is large compared to experiments,
so this result is most relevant to the gradual damping of large-scale structures in the
plasma. The waves inside the plasma, having larger wavenumbers, will be isentropic
acoustic waves.

Our two treatments of radiative acoustic waves, in this section and Sect. 7.2.1,
show rather different behavior, because they apply to different regimes. The lowest
frequencies, in any medium, are optically thick, in the sense that the absorption will
occur in a very small fraction of a wavelength, so the description of Sect. 7.2.1
will apply. The highest frequencies are optically thin, so the description of the
present section will apply. As a result, Fig. 7.8 connects naturally to Fig. 7.4, because
increasing the frequency also takes one from an optically thick to an optically thin
regime. Overall, acoustic waves progress from isentropic to isothermal and back
to isentropic as frequency increases. The transition between the two regimes of
optical depth, and the even-more-complicated case of frequencies so high that the
propagation time of the radiation matters, are discussed in detail in Mihalas and
Weibel-Mihalas (1984).

7.2.4 Radiative Thermal Cooling Instability

An important application of cooling by radiation is the radiative thermal cooling
instability. This regulates the pulsations of Cepheid variable stars and creates
structures within high-energy-density plasmas.
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As we shall see, this instability occurs when a finite region of material cools
by radiating, and when the derivative of the opacity with temperature is sufficiently
negative. Consider a system with spatially constant initial density � and temperature
T.t/, gradually cooling. For this problem we want to consider the interplay
of density and temperature fluctuations. The key equations are the gas-energy
equation (7.6) and the basic momentum equation, which can be written as

�cV
@

@t
T C �cVu � rT C �RTr � u D �r � FR; and (7.47)

�
@

@t
u C �u � ru D �rp D �RTr� � �RrT: (7.48)

Linearizing with non-subscripted zeroth order quantities and first-order u, keeping
zeroth order and first order terms, gives

�cV
@

@t
.T C T1/C �RTr � u D �r � FR; (7.49)

and

�
@

@t
u D �RTr�1 � �RrT1; (7.50)

with the continuity equation adding

@

@t
�1 D ��r � u: (7.51)

Eliminating u gives

�cV
@

@t
.T C T1/ � RT

@

@t
�1 D �r � FR; (7.52)

and

@2

@t2
�1 D RTr2�1 C �Rr2T1: (7.53)

Suppose our system has an initial temperature fluctuation, so that T1 D OTeikx and to
first order BŒT C T1� D Bo.1C 4T1=T/ so B1 D OBeikx with OB D 4Bo OT=T . Suppose
also that the system is optically thin enough that J � 0. Then we have

� r � FR D 4�.J � B/ D �4
�
� C @�

@T
T1

�
.Bo C B1/: (7.54)
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Keeping zeroth and first order terms gives

�r � FR D �4
�
�Bo C �B1 C Bo

@�

@T
T1

�

D �4�Bo � 4Bo

�
4�

T1
T

C @�

@T
T1

�
(7.55)

Now we can drop the first order terms in Eq. (7.49) to see that the zeroth order
equation is

�cV
@

@t
T D �4�Bo (7.56)

Since Bo / T4 and � is more or less some power of T , this corresponds to cooling of
the system as a power law in time. This can be relatively slow or rapid, depending
on the temperature dependence of �. In contrast, the first-order behavior offers the
possibility of having exponentially growing fluctuations, as follows. Keeping only
the first order terms, Eq. (7.49) becomes

�cV
@

@t
T1 � RT

@

@t
�1 D �4Bo

�
4�

T1
T

C @�

@T
T1

�
; (7.57)

Now look for growing modulations proportional to expŒikx C nt�. Then Eq. (7.50)
gives

.n2 C RTk2/
�1

�
D �RTk2

T1
T
: (7.58)

Substituting in Eq. (7.57) then yields

n�cVT
T1
T

C n�RT
RTk2

.n2 C RTk2/
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�
; (7.59)

which can be written

n�RT

�
1

.	 � 1/ C RTk2

.n2 C RTk2/

�
D �4Bo

�
4� C @�

@T
T

�
: (7.60)

Note that every symbol in this equation is positive except possibly @�=@T and n. As
a result n is negative and the modulations decay unless

@�

@T
< �4 �

T
; (7.61)
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in which case they grow exponentially. For � / T�m this requires m > 4. When
this occurs, it is an example of a radiative cooling instability. Such steep cooling
behavior does occur. For example, consider the cooling curves shown in Chap. 6.
These are proportional to the product �B, and so any cooling curve with a negative
slope corresponds to m > 4. The large-scale structure of �B is to decrease with
T out to some small number of keV, and then to increase as bremsstrahlung and
perhaps synchrotron radiation become significant. The cooling instability will thus
be active across a broad range of temperatures. Structure in the long-term evolution
of conductively heated, radiatively cooled high-Z plasmas has been attributed to this
instability. Also, one can sometimes see a variant of it in the simulated evolution of
initially uniform plasmas that are cooling after being heated by radiation. Since the
radiative damping is smallest at the largest k, this will tend to create fluctuations on
the scale of the zones in a simulation.

Beyond the thermal instability, structure in � can lead to other effects in the
plasma evolution. For example, nonlinear oscillations in temperature can arise in a
system that is steadily heated. This occurs in the visible layers in Cepheid-variable
stars, steadily heated from within, which operate in a range of temperatures where
the opacity of Fe has maxima and minima. When the visible layer of the star is
at a temperature where @�=@T > 0, the stronger radiative cooling can cause the
temperature to decrease, overshooting the minimum in �, so that @�=@T < 0,
in response to which the temperature increases, again causing �o to overshoot
the minimum. The result is a steady oscillation in temperature and luminosity.
Figure 7.9 shows the experimentally measured transmission through a sample of
Fe at a temperature near 100 eV. High transmission corresponds to low opacity. One
can see that the opacity fluctuates with temperature.

As another example, the presence of a region where @�o=@T > 0 over some
narrow range of temperatures in the plasma expanding from a laser-heated surface
can lead to a local density maximum. The pressure of the adjacent regions
compresses the region where the radiation losses are larger. In the context of laser
fusion, such structures have been designated (Hazak et al. 1999) radiative plasma
structures.

Fig. 7.9 Opacity of Fe. The
plot shows transmission
through an Fe sample, as
reported by DaSilva et al.
(1992)
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7.3 Radiation Diffusion and Marshak Waves

When a cool region warms by the transport of radiative heat from a hot region,
this transport is often diffusive. The mean-free path of the radiation in the cool
material can be quite short. However, the mean-free path often increases rapidly
with temperature, so that diffusive heat transport is more complicated than simple
diffusion. Diffusion in the presence of a variable diffusion coefficient is often
referred to as nonlinear diffusion. Nonlinear diffusion is fundamental to high-
energy-density plasmas, because they are ionizing. The opacity of each ionization
state is different. In general, as material ionizes the spectral regions of largest
opacity shift to higher energy, because more energy is needed to access the bound-
free and bound–bound transitions of the more highly ionized state. In addition,
even ordinary bremsstrahlung absorption is nonlinear. Its opacity decreases with
increasing temperature as 1=T3=2e for otherwise fixed conditions. Two kinds of
nonlinear-diffusion problems merit our attention here. In the first, a constant-
temperature source drives a radiative heat wave, known as a Marshak wave, into
a cooler material. In the second, a finite amount of energy is spread through the
material by radiative diffusion. We consider these in turn.

7.3.1 Marshak Waves

The Marshak wave describes the solution to a simple problem that nonetheless has
great relevance to many real situations. The simple problem is the near-equilibrium
diffusion of radiative energy into an initially cold material, through an initially
sharp boundary, from a constant-temperature energy source. Marshak was the first
to show that this problem admits self-similar solutions. The medium is assumed to
be at rest and to remain at rest. We will revisit this assumption later, but note here
that it would be a poor assumption if the temperature were high enough that the
radiation pressure was the dominant pressure. Thus, Marshak waves are relevant to
the common situation that the radiative heat transport is essential but the radiative
pressure is small.

An essential example of this is the heating of a high-Z material wall by a
sustained radiation source, such as the emission of thermal X-rays from laser-
heated regions on the wall. An enclosed structure within which this occurs is known
as a hohlraum. We will discuss hohlraums further in Chap. 9. They are of real
importance for inertial fusion and for other experiments that require a sustained
radiation environment.

To obtain a solvable description of the Marshak-wave problem, we assume that
the radiative coefficient of heat conductivity scales as �rad / Tn. This is reasonable,
with n � 4 to 5 for typical materials in high-energy-density systems (in contrast,
n � 6 to 7 in typical astrophysical systems). We further assume constant density and
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specific heat. Given these assumptions, the gas-energy equation (7.5) describing the
temperature structure becomes

�
@�

@t
D �cV

@T

@t
D r � �radrT D To

n C 1



�rad

�
To

r2

�
T

To

�nC1
: (7.62)

With f D T=To and W D .�rad/To=Œ�cV.n C 1/�, this can be written as

@f

@t
D Wr2f nC1: (7.63)

This equation has only the one, dimensional parameter, W, so recalling Chap. 4 we
can expect to find a planar similarity solution with similarity variable � D x=

p
Wt.

This gives

� �

2

df

d�
D d2f nC1

d�2
: (7.64)

Note that f D 1 at � D 0. One can show that the second derivative of f remains
negative so that f eventually reaches zero at some � D �o. This makes possible a
simple, approximate calculation. One can assume that the radiative heat flux must
be constant from the source location to the end of the heat wave. This must be
approximately true; otherwise, the temperature somewhere would increase above
the source temperature or decrease below that of its surroundings. The radiative
flux, in terms of the variables just defined, is

FR D ��rad
@T

@x
D � To

n C 1
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df nC1
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: (7.65)

Even though f .�/ retains the same shape, the flux decreases with time as the
physical temperature gradient at the boundary decreases. If we assume that the flux
at any given time is constant throughout the wave, then recalling that f D 0 at � D �o

we find

f .�/nC1 D C .�o � �/ D .1 � �=�o/ ; (7.66)

with C a constant equal to 1=�o because f D 1 at � D 0. This is equivalent to

T D To .1 � �=�o/
1=.nC1/ : (7.67)

Figure 7.10 shows the temperature profile from the constant-flux model and from
the solution of the more exact Eq. (7.64), for some values of n. The constant-flux
model is sufficiently accurate for nearly all purposes, as the other assumptions in
the Marshak-wave model are certainly not exact (e.g., see the next section for a
discussion of ionization).
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Fig. 7.10 Marshak-wave
temperature profiles. The
normalized temperature,
f D T=To, decreases
nonlinearly as �=�o

approaches 1. The gray
curves give the temperature
profiles from the
constant-flux model for
n D 3, 4.5, and 7 from
bottom to top. The black
curves give the corresponding
numerical solutions 0 0.2 0.4 0.6 0.8 1
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Fig. 7.11 The lines show the
value of �o from the
constant-flux model (grey
curve) or a numerical solution
(black curve) for traditional
Marshak waves. The dashed
line shows the result for an
ionizing radiation wave

Index n of rad

W
av

ef
ro

n
t 

lo
ca

ti
o

n
, 

o

2 4 6 8
1.4

1.6

1.8

2.0

Continuing with the constant-flux calculation, we can find �o by realizing that the
flux through the initial boundary must equal the rate of increase of energy, Ew, in
the wave, or
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�o: (7.68)

Setting this equal to the flux at x D 0, and knowing from (7.66) that @f .nC1/=@� D
�1=�o, we find

�o D p
2
p
.n C 2/=.n C 1/: (7.69)

Figure 7.11 compares this value of �o with a more exact solution. One sees that the
constant-flux model underestimates the extent of the heat front by roughly 10%.
Here again, this is a small effect compared with other probable differences between
a real situation and a Marshak-wave model.

The position of the radiation wavefront, xo, from the constant flux model, is

xo D
p
.n C 2/

.n C 1/

s

�rad

�
To

�cV

p
2t; (7.70)
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and the front velocity uo is

uo D
p
.n C 2/

.n C 1/

s

�rad

�
To

�cV

1p
2t
: (7.71)

Note that this velocity decreases from infinity to very small values as time increases.
Of course, the physical velocity is never infinite, because the assumptions of the
model break down as t approaches zero.

Equation (7.64) can be solved numerically but to do so one must find workable
boundary conditions. One knows that f D 1 at � D 0 and that f D 0 at � D �o,
but one does not know �o, the value of � corresponding to the head of the wave.
One does know that the flux through � D 0, from (7.65) evaluated at � D 0, must
equal the time rate of increase in the energy content of the radiation wave, Ew.
Generalizing (7.68) and using (7.65), one has

�
df

du

�
uD0

D ��2o
2.n C 1/

Z 1

0

f .u/du; (7.72)

in which u D �=�o. One can then solve (7.64) and (7.72), with independent variable
u, iteratively for �o and for the value of the integral in (7.72), by seeking conditions
such that f D 0 at � D �o. This procedure produced the numerical curves shown in
Figs. 7.10 and 7.11.

The decrease with time of the velocity of the radiation wave has important
consequences for real systems. At first, the velocity of the radiation front far exceeds
any other velocity in the system. In this regime, the wave is known as a supersonic
radiation wave. During this period, the radiation wave reaches any location in the
medium first and is affected only by changes in the radiation source.

Two competing effects, not included in the simple Marshak model, alter the
structure of any real radiation wave as it slows. The first effect is the launching of
a shock by the radiation-heated matter. The important parameter is the downstream
Mach number of the radiation wave, which is the ratio of its speed to the sound
speed in the heated matter. The higher-pressure, heated matter would have launched
a shock wave, except that at early times the radiation wave is faster. It turns out that
the shock is launched once the wave speed decreases to Mach 2. We discuss this
effect further in Sect. 8.2.1. Once this shock is launched, the radiation-heated region
expands behind it, which will tend to reduce the pressure and to weaken and slow
the shock.

The second effect is the overtaking of the radiation wave by an ablatively driven
shock wave. In a real system, the advent of a radiation flux is rarely if ever the
only process to occur at the boundary. Whether one considers the birth of a star or
any other release of energy within an optically thick environment, or the initiation
of an X-ray source within a high-Z container, the inner boundary of the affected
material is also disturbed. Very often, the absorption of radiation produces ablation
at this boundary, launching a shock wave into the material. The downstream Mach
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number of this shock wave varies from just below 2 to several, depending on 	 . The
location of the shock wave is initially proportional to t, and it slows very gradually.
Eventually it must overtake the radiation wave. The timing of the ablatively driven
shock relative to that of the shock launched by the radiation wave depends on details.
The velocity of the radiation wave eventually drops below the sound speed in the
radiation-heated medium, at which time it becomes a subsonic radiation wave.

The shock waves alter the density structure in the system. The extent to which
this alters the shape of the radiation wave will depend on the density dependence of
the opacity. The shock heating, in contrast, is typically not significant in real cases
where there is enough radiation to sustain a radiation wave.

7.3.2 Ionizing Radiation Wave

The largest error in the Marshak-wave model, especially in a laboratory environ-
ment, is the assumption that the specific heat at constant volume, cV , is constant.
This is very much not true, as cV depends on Z, through both the thermal energy and
the ionization energy, and Z is not constant. We can describe a wave in which cV

and Z change through ionization as an ionizing radiation wave. (This should not be
confused with an ionization front, discussed Sect. 8.2.3.) To obtain an evaluation of
the difference between such a wave and a Marshak wave, we can revisit the analysis
of the previous section. Assuming Z / p

T and a hydrogenic model of the ion, we
have

cV D 3

2

.1C .3=2/Z/kB

Amp
C kBEH

12T

.Z C 6Z2 C 12Z3/

Amp
: (7.73)

This would not admit a self-similar solution if all the terms in cV were important.
However, for Te > 10 eV, the terms of highest order in Z dominate. In this regime
we can take cV D cVo

p
T=To, where cVo is the value of cV when T D To. One then

can show, just as in (7.62)–(7.64), that

��
2

df

d�
D 1p

f

d2f nC1

d�2
; (7.74)

with the same definitions of f and � . Once again, this can be integrated numerically.
Alternatively, one can develop a constant-flux description of this system. The

flux becomes

FR D ��cVoTo

r
W

t

p
f

df nC1

d�
: (7.75)
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Holding this constant and integrating with f D 1 at � D 0 gives

T D To .1 � �=�o/
2=.2nC3/ ; (7.76)

from which we integrate to get the increase in energy
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�o: (7.77)

Setting this equal to the flux, we find

�o D 2
p
.2n C 6/.n C 1/

2n C 3
and (7.78)

xo D 2
p
.2n C 6/

.2n C 3/

s

�rad

�
To

�cVo

p
t: (7.79)

Figure 7.11 shows the value of �o at the front from (7.78). The Marshak wave
will be shorter in an ionizing system than in a system with constant specific heat.
Figure 7.12 compares the shape of this wave (from 7.76) with the shape of a
traditional Marshak wave. One sees no dramatic differences.

7.3.3 Constant-Energy Radiation Diffusion Wave

Now we turn to the second case of common interest. A finite event, such as a
laser pulse, a Z-pinch implosion, or an astrophysical burst, may produce a definite
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Fig. 7.12 Ionizing radiation wave profiles. The normalized temperature f D T=To is somewhat
flatter in an ionizing medium than it is in the fixed-Z case of the traditional Marshak wave. Here
the gray curves give the temperature profiles from the ionizing model for n D 3, 4.5, and 7 from
bottom to top. The thin black curves give the corresponding numerical solutions for the traditional
Marshak wave
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amount of radiation. If the radiation is released into a uniform near-equilibrium
medium in which the radiation pressure is negligible and the radiation transport
is diffusive, then the same fundamental equations apply as in the Marshak-wave
case. We consider the planar case here. (Zel’dovich and Razier (1966) discuss the
spherical case.) One still has, from (7.62),

@T

@t
D



�rad=Tn

�
�cV.n C 1/

r2TnC1 D Yr2TnC1; (7.80)

thus defining Y where, if T is in energy units, then Y has units of cm2 s�1
energy�n. As �rad=Tn does not depend on T , Y is independent of T . In contrast
to the Marshak-wave case, we need a time-dependent normalization for T since
the maximum temperature must decrease with time as energy is carried outward.
This normalization is found below. Note also that �cVT is the energy per unit
volume so T is the energy per unit volume per unit �cV . However, the total energy
per unit area is also fixed so this is a problem with two independent dimensional
parameters. Defining the energy per unit area per unit �cV as Q D R

Tdx, which
has units of cm1 energy1, the quantity QnYt has units of cm.nC2/. Thus, an effective
dimensionless similarity variable is

� D x= .QnYt/1=.nC2/ : (7.81)

As a result, we expect that the position of any point on the heat wave, where
for example the temperature is some fraction of the maximum temperature, will
be / t1=.nC2/. Since n is typically 4 or 5, such diffusion waves propagate much
more slowly than Marshak waves. The normalization of T need not be spatially
dependent, as all the spatial dependence can be in the evolution with � . To see
what normalization makes sense, we consider the spatial derivative of a normalized
function, f , finding

@f

@x
D 1

.QnYt/1=.nC2/
df

d�
: (7.82)

We can also see that the right-hand side (RHS) of (7.80), in terms of � , becomes

RHS D Y

.QnYt/2=.nC2/
d2

d�2
TnC1: (7.83)

Since the time derivative on the left-hand side of (7.80) will introduce a factor
of 1=t, it makes sense to multiply (7.83) by t, from which we can find that an
effective normalization for T , with consistent units, is ŒQ2=.Yt/�1=.nC2/, so f D
T=ŒQ2=.Yt/�1=.nC2/. It is important to note that the denominator in the definition
of f is not the central temperature T.0/. Rather, one obtains T.0/ by multiplying
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ŒQ2=.Yt/�1=.nC2/ times the value of f that we will find at � D 0. Because f is not time-
dependent but depends only on � , to develop the equation for f we must observe that

1

ŒQ2=.Yt/�1=.nC2/
@T

@t
D @f

@t
� f

.n C 2/t
: (7.84)

We also have the usual type of relation between derivatives in t and � ,
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�

t

df
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; (7.85)

so (7.80) becomes

f C �
df

d�
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d�2
f nC1 D 0: (7.86)

The solution to this equation is

f .�/ D
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2.n C 2/.n C 1/
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: (7.87)

This has a fixed shape in � , as expected. The time dependence is entirely included
in the normalization of T , as it should be, so

T.0/ D
�

n�2o
2.n C 2/.n C 1/

�1=n �
Q

Y

�1=.nC2/
t�1=.nC2/: (7.88)

Figure 7.13 shows the shape of the constant-energy, radiation-diffusion wave and
compares it to that of the Marshak wave. The constant-energy wave produces a much
flatter temperature profile. Both waves have the very steep front that is characteristic
of nonlinear diffusion waves.

Fig. 7.13 Radiation diffusion
wave profiles. The shape
function, f .�/, is shown
against the normalized
similarity variable, �=�o, for
both constant-energy
radiation diffusion waves
(gray) and Marshak waves
(black). In each case, from
bottom to top, the curves
correspond to n D 3, 4.5,
and 7
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Fig. 7.14 Wavefront location
for a constant-energy
diffusion wave
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Figure 7.14 shows the value of �o as a function of n. One sees that �o � 1

to within 10% over the range of interest for radiation waves in high-energy-
density plasmas. We can use this value to evaluate the location of the heat front,
obtaining (7.90). Note that in a real problem one probably knows Q and does not
know To, but does know



�rad/To=Tn

o . The heat front location is

xo D �o .Q
nYt/1=.nC2/ �

"�
Q

To

�n


�rad

�
To

�cV.n C 1/

# 1
.nC2/

t1=.nC2/: (7.90)

The constant-energy radiation wave slows very rapidly. Its speed is /
t�.nC1/=.nC2/ as compared to 1=

p
t for the Marshak wave. Yet the same phenomena

occur as it slows as do with the Marshak wave. It will launch a shock when it slows
enough and it will be overtaken by ablative shocks, if they exist. Because its speed
decreases more rapidly, these effects will occur sooner. One may be challenged in
any experiment at high energy density to discern the period when a constant-energy
radiation wave is the dominant feature. Even so, this problem is a good example of
a type of self-similar system, where the scale of the shape function evolves in time,
and it can be a good test problem for simulation codes.

This concludes our discussion of radiation diffusion waves. We discuss the
related topic of ionization fronts in the next chapter.
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Homework Problems

7.1 Carry out the calculations of radiation and material energy fluxes and pressures
and compare the behavior of pure hydrogen as opposed to C1H1 (used in Fig. 7.1).

7.2 Derive the dispersion relation for isothermal acoustic waves from the Euler
equations. That is, demand constant temperature and see what happens.

7.3 Figure 7.4 shows the wave properties as ! varies for fixed �. Consider how the
wave properties vary with � for ˇ D 1 and fixed !=.�ec2s=c2/. Plot the normalized
phase velocity and damping length for 0:01 � � � 10 and discuss the results.

7.4 There should be a sensible connection between the present calculation and the
optically thick one as the system becomes optically thick. For the limit in which
� >> k, seek to reconcile (7.21) and (7.33).

7.5 We did not explore the angular variation in the contributions to (7.37). One
might imagine that the largest contributions could come at grazing angles, where �
is very small and the optical depth along a line of sight becomes large. The model
used here would be less realistic if most of the emission came at grazing angles,
because real systems will have layers that are not truly planar and certainly are not
infinite in extent. Use a computational mathematics program to derive (7.37). Then
modify the calculation to explore how large the contribution is from such grazing
angles. Conclude whether or not the results above might be reasonable estimates for
real layers.

7.6 It is curious that (7.41) and (7.43) do not depend on ˇ, so that these waves seem
not to care whether the system is fully ionized. Beginning with (7.39), derive (7.43)
and discuss why there is no ˇ dependence.

7.7 Beginning with �.@�=@t/ D r � .�radrT/ derive (7.64).

7.8 Work through the constant-flux model for Marshak waves, providing all the
missing mathematical steps. Then plot the positions vs. time of the radiation wave
and of a disturbance (in the radiation-heated material) moving at Mach 1 or Mach
5, for a wave in Au foam with To D 200 eV, � D 0:1 g/cm�3, and Z D 40. Discuss
the results.

7.9 For the constant-energy, radiation-diffusion wave, show that (7.87) is a solution
to (7.86). Clearly annotated work with a computational mathematics program is
preferred.

7.10 Consider a gold container shaped so that a planar approximation is reasonable,
having planar walls spaced 1 mm apart in vacuum. Assume � D 20 g/cm3 and
treat cV D 1012 ergs/(g eV) as constant. Use other parameters from Chap. 6 as
appropriate. Suppose 100 kJ/cm2 is the initial energy content of the vacuum between
the walls and that the initial wall temperature is negligible. Assume that the
gold material does not move. Apply the self-similar model of the constant-energy
radiation diffusion wave to this system, on the assumption that the two walls
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are touching but contain the specified energy. In doing so, approximate �o from
Fig. 7.14. From zero to 10 ns, find the position of the heat front and the temperature
of the surface as a function of time. Realizing that the walls are in equilibrium
with the temperature of the radiation in the vacuum, plot the ratio of the energy
content of the walls to the energy content of the vacuum. Discuss the meaning of
this result from the standpoint of the accuracy of an intermediate asymptotic model
(see Chap. 4).

7.11 Develop the equivalent of (7.90) describing the radius of a spherically
symmetric, constant-energy, radiation-diffusion wave.
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Chapter 8
Radiative Shocks and Heat Waves

Abstract This chapter is concerned with radiative shocks and heat waves. There
are several types of radiative shocks, depending primarily on the optical depth of
upstream and downstream regions. Despite this multiplicity, the fluid dynamics
sharply constrains the possible structures of such systems. The discussion covers
the behavior of radiative shocks in optically thin systems, optically thick systems,
and some mixed systems relevant to experiments. The chapter then turns to radiative
heat fronts, in which incoming radiation is deposited in a relatively narrow zone
across which the plasma parameters change. The detailed behavior depends upon
the boundary conditions imposed by the adjacent regions. Specifically considered
are Marshak-like heat fronts, expansion heat fronts, and photoionization fronts.

8.1 Radiative Shocks

A radiative shock is one in which the structure of the density and temperature is
affected by radiation from the shock-heated matter. This simple definition covers
an enormous range of phenomena, all at a high enough temperature that we are
fortunate not to encounter them in ordinary life. Yet radiative shocks can readily be
produced in high-energy-density experiments, and they are frequently encountered
in astrophysics. An astrophysical example is found in the supernova remnant
developing from SN 1987A, shown in Fig. 8.1. The bright spots in this image are
produced by the collision between the ejecta from the star and matter at the edges
of the inner ring that encircled the star. Analysis of spectra has shown that the shock
waves being driven into the ring are radiative, at least in places. The presence of
bright spots, rather than a continuous ring of emission, indicates that there are
spikes of dense material at the inner edge of the ring. These might be a result of
the Rayleigh–Taylor instability during ring formation.

8.1.1 Regimes of Radiative Shocks

Here we discuss the conditions under which a radiative shock occurs, and the
physical conditions that determine its structure. In the introduction to the previous
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Fig. 8.1 An image of the
supernova remnant SNR
1987A, taken in November
2003. Credit: NASA, P.
Challis, R. Kirshner
(Harvard-Smithsonian Center
for Astrophysics) and B.
Sugerman (STScl)

chapter (see Fig. 7.1) we found, depending in detail on density and material, that
the radiative flux and pressure became important at temperatures of tens of eV and
hundreds of eV, respectively. Shock waves can provide the heating that pushes a
plasma into a radiative regime, or they can occur within a plasma that is already in
a radiative regime. In order for a shock to push a plasma into a radiative regime, it
must at minimum be fast enough that the radiative fluxes, which scale as the fourth
power of the temperature and thus the eighth power of shock velocity, exceed the
material energy fluxes, which scale as the third power of shock velocity.

In the nonradiative regime, the immediate postshock temperature Ts is given by
(4.20), which we rewrite here as

RTs D 2.	 � 1/
.	 C 1/2

u2s ; (8.1)

in which us is the shock velocity and it will be useful at times below to work with the
gas “constant” R D kB.Z C 1/=.Amp/, which in general is temperature dependent.
Note that RTs has units of energy per unit mass. For 	 D 4=3 and Z C 1 D A=2,
Ts is 6.4 eV at us D 100 km/s, which is one reason why radiative effects are rarely
important for shock velocities much below 100 km/s.

The average number of electrons that share energy with each ion is Z, but this
can be a source of difficulty in shock waves. We have already discussed how Z
can vary with temperature, in Chap. 3. In addition, the shock heats the ions and
then the electrons and ions equilibrate, so that in sufficiently low-density matter Z
would be zero immediately following the density jump. Thus, in general, one may
need to allow separate temperatures for ions and electrons, a point we return to
in Sect. 8.1.8 (which was also discussed previously in Sect. 2.3.2 with reference to
Fig. 2.2). It is the electrons, though, that couple significantly to the radiation. Here
for simplicity we assume immediate equilibration of ions and electrons. In practice,
this means that the equilibration zone just behind the shock (the jump in density and
ion temperature) where ions and electrons equilibrate is ignored. The radiation from
this equilibration zone increases as the fourth power of the electron temperature, so
that most of the equilibration zone is not a significant contributor to the radiation
dynamics. In addition, as we will see in Sect. 8.1.8, the equilibration zone is quite
small.
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Fig. 8.2 Postshock
temperatures, for xenon
(dashed) and C1H1 (gray).
This figure ignores the role of
radiation pressure at high
velocity
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Figure 8.2 shows the temperature implied by (8.1), for xenon and C1H1. For a
plasma of C and H, one replaces A by .1C 12/ D 13 and takes Z D 1C ZC, where
H is assumed to be ionized and ZC is the average ionization of the carbon. This
modifies the result at low temperature, but makes little difference on a log–log plot.
This equation only applies while the radiation pressure remains negligible. When
radiation pressure matters, a more careful calculation based on the fundamental
equations would be needed. But the figure suffices to indicate the conditions
required to reach the radiative regime. In round numbers, one needs shock velocities
of tens of km/s to reach temperatures of tens of eV where radiative fluxes matter,
and of hundreds of km/s to reach temperatures of hundreds of eV where radiative
pressure matters. The velocities required with xenon are smaller than those required
with CH, by a factor of a few.

By the time that radiative fluxes exceed material energy fluxes, the radiation will
have affected the medium ahead of the density increase produced by the shock. The
affected region is a radiative precursor, which we will discuss in more detail in later
sections. To connect our discussion with other usage, we should begin by identifying
two possible types of “radiative precursors.” The first we will call a transmissive
precursor. The most familiar example is lightning. One sees a precursor—the
lightning flash—before the resulting thunder, which has evolved from the shock
wave, arrives. In this case the precursor is created by the explosion that drives the
shock and not by the shock itself. A second example would be an explosion in
the atmosphere strong enough to drive a radiative shock. In this case, some of the
radiation from the shock itself could be seen far beyond the volume directly affected
by the radiative shock. Thus, one would say that a transmissive precursor is radiation
from a shock front or its source that is weakly absorbed while propagating. Thus, it
can be seen at a long distance. This type of precursor is not of much interest to us,
although we will discuss it briefly below.

The second type of precursor is of much more interest to us and we call
it an absorptive precursor. In this type of precursor, the radiation is absorbed
and is intense enough to affect the upstream medium, principally by increasing
its temperature. Unless we specify otherwise, when we write of a “precursor”
or “radiative precursor” in the following, we refer to this type of precursor. An
important issue for precursors is that of geometry. In order for the precursor to
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remain planar, a real experiment would need a radiation source whose lateral size
substantially exceeded the steady-state precursor length. This is a very demanding
constraint. Spherical experiments can avoid this constraint but suffer severely from
the dilution of their energy in the three-dimensional expansion.

The concept of a shock inherently involves some separation of physical scales,
as we discussed in Chap. 4. In ordinary hydrodynamic shocks, the scale on which
viscous diffusion matters must be much smaller than the global scale of the flow.
Radiation introduces another scale into the problem, fundamentally related to opti-
cal depth. (Likewise, electron-ion energy exchange (Sect. 8.1.8), heat conduction,
or magnetohydrodynamic effects also introduce additional scales under various
circumstances.) Yet the physical scale over which the radiation matters is much
larger than the scale of any viscous effects. As a result, there are two ways to
think about the entire system including the effects of radiation both upstream and
downstream of the density increase associated with the shock.

On the one hand, if one views the medium as infinite (measured in optical
depths), then one may take the point of view that the radiation alters the structure
of the shock transition, extending it in space over a (potentially large) number
of radiation mean-free paths. In this case one will speak of the “shock” as the
entire region between a distant, undisturbed upstream region and a distant, steady-
state downstream region. One would then speak of the comparatively localized
density increase as the “density jump” or the “viscous shock transition.” This is the
viewpoint taken in much prior literature, including Zel’dovich and Razier (1966)
and Mihalas and Weibel-Mihalas (1984).

On the other hand, and as is discussed in the Introduction to this chapter,
the system may be optically thin. It may be thin in the upstream direction, the
downstream direction, or both. What specifically this means is that the sum of
radiation from distant sources and radiation returning to the shock from any matter
it has heated is negligible. Whenever the entire region affected by radiation from the
shock is not well isolated from other influences, it seems more natural to speak of the
“shock” as the region across which the rapid density increase takes place. This use
of “shock” is more common in discussions of optically thin astrophysical shocks,
as for example in Shu (1992). In this case, the interactions of the radiation and the
surrounding medium may affect both the upstream and the downstream conditions.

Optical depth provides an effective way to classify radiative shocks. We saw
in Chap. 6 that the treatment of radiation transport depends on the structure of the
medium within which the transport occurs, and in particular on optical depth. The
different regimes of radiation transport correspond to major differences in shock
behavior. In one limit—that of very small optical depth, where the radiation serves
only to cool the shocked layer—the shocked layer can evolve to become orders of
magnitude denser than the preshock medium. In another limit—that of an optically
thick and radiation-dominated plasma—the increase in density is limited to a total
of a factor of 7. (Recall from Chap. 3 that the radiation-dominated plasma behaves
like a polytropic gas with 	 D 4=3.) An effective way to categorize radiative shocks
and their behavior is to plot them in a space defined by the optical depth of the
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Fig. 8.3 Radiative shock
regimes, identified in a space
based on optical depth. The
four regimes corresponding to
the corners of this plot are
discussed in the text. The
curve shows the qualitative
trajectory of a supernova blast
wave
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upstream and downstream regions. Figure 8.3 shows a qualitative depiction of this
space. We next briefly discuss each of the four labeled regions.

8.1.1.1 Thick-Thick Shocks

In regime A, both the downstream and the upstream regions are optically thick.
This is the realm in which it makes the most sense to treat the viscous density
increase and all the radiative effects as part of a single, extended, shock structure.
Many of the features of this structure can be found from a theory that assumes the
medium to be in LTE everywhere. We discuss this regime in Sect. 8.1.6. For typical
ideal gases with 	 
 4=3, the density ratio never exceeds 7. In addition, under
some circumstances the density transition is continuous, with no localized jump.
Astrophysical environments in which such shocks exist are necessarily both hot
and dense. Shocks in stellar interiors are of this type, as is the blast wave within the
exploding star in a supernova. Such shocks may also exist within some astrophysical
“compact objects,” such as pulsars, but their treatment would have to be relativistic.
It is difficult, however, to imagine planar laboratory experiments in this regime
other than transiently and in special cases. One difficulty is that the precursor length
increases so strongly with shock velocity (see Sect. 8.1.4) that one could not produce
a measurable precursor of finite length for realistic variations of the experimental
parameters. There may be more potential for experiments in spherical geometry,
but the challenge of producing a system many optical depths in scale will remain
substantial.

8.1.1.2 Thick-Thin Shocks

In regime B the downstream region is optically thick but the upstream region is
thin. We discuss this regime in Sect. 8.1.6. There is a cooling layer downstream
of the viscous shock transition, followed by a steady downstream final state. This
regime is common in experiments, in which an optically thick piston (and in some
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cases optically thick shocked material) drives a radiative shock into a medium whose
depth is small compared to the steady-state precursor length. The upstream medium
is then quickly heated so that it becomes optically thin. Astrophysical examples of
such systems include the blast wave in a supernova as it emerges from the star and
the accretion shocks produced in some binary systems.

8.1.1.3 Thin-Thin Shocks

In regime C, discussed in Sect. 8.1.5, both downstream and upstream regions are
optically thin. Such shocks are the most-commonly observed in astrophysics, in
part because they are easy to see (as the radiation escapes). Supernova remnant
(SNR) shocks in dense enough environments are of this type—it is thought that
Type II supernovae from red-supergiant precursor stars produce such conditions.
Many shock-cloud interactions, including some of those driven by SNR shocks,
are also of this type. Shocks that propagate up jets (or are driven by clumps
propagating up jets) may be of this type. In such shocks, the entire downstream
region is a radiative cooling layer, and it ends (in large enough systems) when the
downstream temperature reaches a value determined by local sources and losses of
energy rather than by the shock. The density increase associated with such shocks
is formally unbounded in the sense that it is limited only by external factors, such
as the compression of an initially negligible magnetic field or the presence of a
limiting temperature due to other energy sources. Some experiments, with shocks in
sufficiently low-density gases, may produce these conditions.

8.1.1.4 Thin-Thick Shocks

Regime D is not trivial to produce in steady state, as it would require that the shocked
material become optically thin when it is shocked while simultaneously remaining
optically thick in the upstream region, over a sufficient distance to sustain a steady
precursor. Such a change in optical depth can be produced in ionization fronts driven
by radiation, discussed in Sect. 8.2.3 and in Sect. 9.3.1. Obtaining this response in
a shock involving flowing material is more difficult. It might occur, for example,
if a very-high-velocity, low-density incoming flow impacted a comparatively dense
material. If such a system could be produced, it would have a very dense shocked
layer as energy continued to be lost in the downstream direction. Two transient
examples are certain shock-cloud collisions and certain experiments. A shock-cloud
collision in which the cloud was dense enough and large enough to be optically thick
for some time would be of this type. The collision of SNR 1987A with its inner
“ring” may be of this type. An experiment might be in this regime while a hot, thin
layer of gas drives a shock through a much larger volume of gas. All these cases
seem likely to transition to the thin–thin regime if driven harder or longer, and they
may never develop a thick upstream region in the sense discussed above.
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8.1.2 Fluid Dynamics of Radiative Shocks

It turns out that several important properties of radiative shocks are independent
of the details of the radiation transport. In this section, for a polytropic gas, we
consider how the fluid properties must vary within radiative precursors and radiative
shocks. That is, we will consider what things must be true independent of the details
of the radiative transport. Our conclusions here will apply even to shocks whose
transport is far more complex than are the models we use later. One example of
such a complex situation would be the transport of energy by line radiation in the
presence of significant Doppler shifts. We will frame most of this discussion in
the radiative flux regime, assuming the radiation pressure and energy density to be
negligible. We analyze a planar system in steady state, working as usual in the shock
frame. In this case the divergence of the flux terms in the conservative form of the
mass, momentum, and energy equations must be zero.

We will work in our usual shock frame as described in Chap. 4 so that the incom-
ing fluid has a negative velocity. The mass flux �u must be constant everywhere and
equal to its value in the region beyond the precursor, ��ous, where the far upstream
density is �o and the shock velocity is us. The constancy of momentum flux gives

p C �u2 D �ou2s C po; (8.2)

in which the initial upstream pressure is po. The continuity and momentum relations
thus give

p

�ou2s
D 1 � �o

�
C po

�ou2s
and (8.3)

RT

u2s
D �o

�

�
1C po

�ou2s

�
�
�
�o

�

�2
; (8.4)

where we have used p D �RT so RT is proportional to the thermal energy per unit
mass of the plasma at temperature T and R D .1C Z/kB=.Amp/, when the Coulomb
and radiative contributions to p are small. These results are shown in Figs. 8.4
and 8.5. We use as the independent variable the inverse compression, �o=�. It is

Fig. 8.4 Postshock material
pressure, normalized to �ou2s ,
against inverse compression,
for normalized upstream
pressure of zero (black),
Mach 3/
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Fig. 8.5 Postshock
temperature. The thermal
energy of the matter per unit
mass, RT , normalized to u2s is
shown against the inverse
compression, �o=�, for
normalized upstream pressure
of zero (black), Mach 3/
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worth noting that radiation does not enter into these relations (so long as pR � p),
and that these figures apply both to nonradiative shocks and to shocks in the
radiative flux regime. Whether in the precursor or across the shock jump, a change
in compression corresponds to an increase in pressure and a change in temperature
as shown. The pressure increases continuously as �o=� decreases, and so places no
constraints on the shock transition. In contrast, the competition between heating and
pdV work of compression creates the maximum in the thermal energy in Fig. 8.5.
A formal discontinuity in density occurs only if the initial and final states of the
viscous density transition are on opposite sides of the temperature maximum seen
in this figure. (The temperature cannot increase and then decrease across the density
transition, without unphysical consequences for the radiation flux.) In sufficiently
weak shocks, the inverse compression can remain to the right of this maximum,
producing a continuous transition. This also can occur under certain conditions
when the radiation pressure becomes significant. Figure 8.5 shows curves for three
values of the normalized pressure. Note that this normalized pressure, p=.�ou2s /, can
also be written as 1=.	M2/ for upstream Mach number M.

The radiation flux enters into the energy flux equation, which for a polytropic gas
gives

�
	p

	 � 1 C �u2

2

�
u C FR D ��ou3s

2

�
1C 2	

	 � 1
po

�ou2s

�
C Fo; (8.5)

in which �o, po, and Fo are the density, pressure, and radiation flux, respectively,
in some presumably steady upstream state. Note that the negative sign on the first
term on the right-hand side is the consequence of the flow velocity being negative
(according to our standard conventions for shocks throughout this book) and of
taking the “shock velocity,” us, as a positive quantity.

One must understand the physical context in order to set Fo. There are three
limiting cases in which Fo has some specific value for specific reasons. First, in a
shock wave that is fully contained within an optically thick medium, it is sensible
to consider the upstream state to be beyond the reach of any radiation, so one takes
Fo D 0. In this case, the energy flux into the system is the (negative) value of the
material energy influx. Second, in a planar shock of infinite lateral extent with an
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upstream region that has limited optical depth, Fo will correspond to the upstream
radiation flux as some location beyond which heating by absorption of this flux is
negligible. We can take the parameters at this location to be the steady, initial state.
In this case, the values of density and temperature at this location may have evolved
to this state (from some other values) during the initiation of the shock. When Fo >

0, the net energy influx to sustain the shock is reduced by comparison with the
Fo D 0 case. The net energy influx is then the difference between the incoming
material energy flux and the outgoing radiation flux. Third, one may have a (more
or less) planar shock of finite lateral extent. This is relevant to various experiments
that produce optically thin upstream regions. In this case Fo represents the sum of
the energy lost beyond some designated axial position and the energy lost radially
before reaching that position. This is the case because (8.5) keeps track of energy
conservation, so that any energy removed from the radiation flux, as represented in
this equation, must be absorbed in the matter. As a result, when absorption decreases
the upstream radiative energy flux, the returning material energy flux (from further
upstream) must also decrease. In contrast, when lateral losses decrease the upstream
radiative energy flux, the material energy flux does not decrease.

To further clarify what the radiation is doing, it is worthwhile to discuss the
recycling of energy that occurs in radiative shocks. The flow of energy through the
system involves the following sequence as the shock is established. One begins with
incoming mechanical and internal energy from far upstream. In the shock and the
shocked matter, the plasma converts the mechanical energy to additional internal
energy and to radiation. Some of the radiation flows away downstream with the
material. The rest of the radiation flows upstream. If absorbed there (reducing FR

where the absorption occurs) the radiation adds internal energy to the incoming
material. In a steady state, the mechanical and internal energy incoming to the shock
is larger than its initial value before the shock was established. Thus, the elements
of the shock as a system include incoming material energy, recycling of energy by
upstream absorption of radiation, the escape of radiation upstream including perhaps
radially, and the escape of radiation and material energy downstream.

Returning to (8.5), in the absence of a heat flux (FR and Fo here, but this could be
any heat flux), this equation provides a second, redundant condition for the pressure.
The simultaneous solution of (8.3) and (8.5) then determines the only possible
compression at the shock. The presence of the heat flux opens a larger range of
possibilities. Equations (8.3) and (8.5) imply

FR � Fo D �ou3s
2

"
2	

	 � 1
�o

�
� 	 C 1

	 � 1
�
�o

�

�2
� 1 � po

�ou2s

2	

	 � 1
�
1 � �o

�

�#
:

(8.6)
We will use this equation extensively in what follows, choosing Fo according to the
discussion above.

Figure 8.6 shows the dependence of the net radiation flux .FR�Fo/ on the inverse
compression, for po D 0. The flux is normalized to the incoming kinetic energy flux,
�ou3s=2. Note that this curve depends on 	 while the previous figures for pressure and
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Fig. 8.6 Radiative flux in
radiative shocks, normalized
to �ou3s=2, against the inverse
compression, �o=�, for
	 D 4=3. The gray line
shows a characteristic shock
trajectory
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the specific thermal energy RT do not. The net, normalized radiation flux rises above
zero only in the presence of energy recycling in the plasma, when shock-heated
matter emits radiation that warms upstream matter which then carries the energy
back to the shock. A rather magical physical system, with multiple independent
recycling loops, would be needed to drive the flux above 1. The net, normalized
radiation flux reaches –1 if all the energy entering the system is radiated away,
corresponding to a state of formally infinite compression and zero temperature.

Figure 8.6 is tremendously important for understanding the properties of radia-
tive shocks. We discuss some aspects of this now, but we will return to this type
of figure repeatedly in what follows. The general behavior of a radiative shock is
shown as a trajectory on this figure. There is some compression in the precursor
region, as .FR � Fo/ increases from zero to a maximum that equals the value of
.FR � Fo/ entering the precursor from the shocked region. Because .FR � Fo/ is
continuous across the viscous shock transition (the density jump), this value of
.FR � Fo/ then fixes the compression produced by this transition. Further evolution
may also occur after the density jump. The nature of this evolution depends on the
downstream boundary condition. This boundary condition could correspond to (a)
a positive radiation flux if there is a bright source downstream of the shock, (b) a
radiation flux of zero if the downstream region is optically thick, or (c) a negative
radiation flux if the shocked matter also cools by emitting radiation that is lost from
the system. The value of the inverse compression where .FR � Fo/ D 0 corresponds
to the final state one would reach in a nonradiative shock, and is .	 C 1/=.	 � 1/.
This may or may not correspond to the final density in an actual radiative shock. We
will discuss some specific cases in later sections.

When we reach the point of discussing the structure within the shocked material
in a radiative shock, we will need an equation describing the spatial evolution. We
will limit our discussion to steady-state shocks. Our approach will be to assume that
either the final state or the immediate postshock state can be determined on the basis
of the fundamental conservation equations. From this starting point we will integrate
the energy equation to determine the profiles. We again start with (7.3), but now we
are interested in the spatial derivatives. We assume a polytropic gas, work in the
radiative flux regime, and substitute from (8.2) and the continuity relation to obtain
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D �@FR

@x
: (8.7)

This is the equation we will use to explore the spatial profiles.

8.1.3 Transmissive Radiative Precursors

Before turning to specific models, we first discuss one simple threshold for radiative
effects. One can say that a radiative precursor will be present when the flux of
ionizing photons radiated ahead of the shock equals the flux of neutral atoms
incident on the shock. This point of view is that one will certainly see heating
and a change of state of the upstream medium when all (or most) of the incoming
atoms are ionized. To be precise, the threshold would be when the upstream flux of
ionizing photons times the fraction that are absorbed in the upstream region equals
the flux of incoming atoms. One way to express the flux of ionizing photons is as
the flux of photons emitted by a black body at the postshock temperature, which is
2:3� 1023T3s , with Ts in eV, times the fraction of these photons that are emitted and
are ionizing. This fraction is the product of the emissivity of the downstream region,
�d, and the fraction ˛i of all photons that are ionizing. Recall that �d is equal to the
optical depth if the downstream region is optically thin. The fraction ˛i is near unity
for shock velocities above 50 km/s.

The fraction of ionizing photons that is absorbed in the upstream region is equal
to the upstream emissivity, �u. One can assemble the last few lines of material into
an equation for the threshold:

2:3 � 1023�u�d˛iT
3
s > �us=.Amp/: (8.8)

Using (8.1), one can convert this into a threshold for the shock velocity, given by

us > 270 Œ�=.�u�d˛i/�
1=5 km/s: (8.9)

In laboratory experiments with dense gases or foams, the quantities in square
brackets may all be of order unity. For low-density astrophysical systems, (8.9)
is correct but not very useful. With � of order 10�24 g/cm3, obtaining a radiative
precursor will require first of all that the postshock temperature be high enough to
obtain a significant fraction of ionizing photons. Beyond that it will depend on the
optical depth of the system.

Let us return to the properties of the precursor region. Assuming zero initial
upstream pressure po, (8.4) and (8.5) can be solved for the normalized temperature
in the precursor, RTp=u2s , which turns out to depend only on the normalized net
radiation flux, FRn D 2.FR � Fo/=.�ou3s /. One finds

RTp

u2s
D 1

.	 C 1/2

�
1 �

p
1 � .	2 � 1/FRn

	 �
	 C

p
1 � .	2 � 1/FRn

	
: (8.10)
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This temperature goes to zero as FRn goes to zero, as it should. FRn rises above zero
and the precursor heats when there is recycling. As FRn increases, Tp can approach
but cannot exceed the temperature of the radiation from the shocked matter. (We
discuss this point further below.)

The precursor can include a diffusive region, in which absorption and emission
of radiation is a significant part of the dynamics. This cannot occur unless the
upstream matter is optically thick, and so we discuss this case when we discuss
such shocks. There are also transmissive regions in precursors, in which emission
is negligible and the emerging radiation flux attenuates only by absorption (or, in
actual applications, lateral divergence). Some precursors are entirely transmissive,
and one can show as follows that all precursors must included a transmissive region
once FRn attenuates sufficiently. In the limit that the precursor region is optically
thin, the precursor is formally transmissive and may be heated by the radiation,
while the fraction of the radiation flux that is absorbed may be negligible.

When the radiation and matter are in equilibrium in the precursor, the energy
density of the radiation will be 4
T4p=c. This is the maximum possible energy
density of radiation from the precursor. The actual value is near this limit when
the precursor is optically very thick and Tp is changing slowly. In contrast, the
minimum possible energy density of the radiation from the shocked matter is FR=c.
This is larger than .FR � Fo/=c, although Fo is often small or zero when the present
discussion is relevant. The actual value is near FR=c once the radiation is far enough
from the shock front that absorption (or escape) has attenuated the oblique rays.
When the first of these energy densities falls below the second, then the precursor
must be transmissive. We can formulate the relationship as follows. The ratio of the
energy densities is

4
T4p
.FR � Fo/

D 4

u5s

�oR4FRn

�
RTp

u2s

�4
D 4

Q

FRn

�
RTp

u2s

�4
; (8.11)

in which Q D 2
u5s=.R
4�o/ is a shock strength parameter that we will also find

useful below. It has a typical value of 104 to 105 in laboratory radiative shocks. Here
Q is nondimensional but must be evaluated using consistent units, such as cgs units
with 
 in ergs/s�1 cm2/eV4 and with R in ergs/g1/eV1. Figure 8.7 shows the relation

Fig. 8.7 As the radiation flux
decreases, all precursors
eventually become
transmissive
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between Q and FRn for which (8.11) equals 1. For any given Q, values to the left of
the curve have an energy density of thermal precursor radiation that is necessarily
below that of the radiation from the shock. Beyond the location where this occurs,
as the radiation flux further decreases, the thermal radiation density becomes rapidly
even more negligible. Given actual radiation transport, the actual boundary of the
transmissive regime will usually be to the right of the curve shown in the figure.

Because all precursors include a transmissive regime, it makes sense to analyze
this aspect of the behavior now. For any transmissive precursor that extends over
many absorption lengths, one can model the precursor using the nonequilibrium
diffusion theory of Sect. 7.1.1.2. One has from (6.67) and (7.9), again under the
assumptions that the radiation reaches steady state on hydrodynamic time scales
and that the system is in the radiative flux regime, that

FR D � 4

3 N�r
T4R; and (8.12)

r � FR D 4�P
T4p � 4�E
T4R; (8.13)

in which N� and �E are averaged opacities defined in that section and �P is the
Planck mean opacity. Although there are three distinct opacities in (8.13), it seems
common in the literature to assume without comment that these are all equal.
While this has the virtue of being consistent with the treatment in some computer
codes employing nonequilibrium diffusion, it is not numerically correct, and may
introduce significant errors. In the case of a precursor with Tp less than some large
fraction of TR, Tp can be ignored in (8.13). In this case the radiation flux is just
attenuated. Solving (8.12) and (8.13), with the optical depth � defined here as the
magnitude of the distance times the “opacity,” � D p N��Ez, gives

FR D Foe�p
3� ; (8.14)

in which Fo is the radiation flux emerging from the shock. If the absorption is
dominated by bremsstrahlung, this result may be accurate. However, only a fairly
sophisticated computer code will treat the opacities here correctly and thus evaluate
the exponential scale length accurately.

8.1.4 Optically Thin Radiative Shocks

In the present section we consider shocks that are optically thin throughout, so that
radiation freely escapes in both directions. We also assume that nearby radiation
sources are negligible, so that the shock exists in isolation. In this case all of the
incoming energy eventually leaves the system as radiation. It is important that an
optically thin system is not energy conserving. A limiting case is to assume that the
pressure in the precursor is negligible compared to �ou2s . In this case, the ordinate
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Fig. 8.8 Temperature and
radiation flux properties for
optically thin shocks. Note
po D 0
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of Fig. 8.6, .FR � Fo/=.�ou3s=2/, is zero at the shock but Fo is finite and represents
energy escaping in the upstream direction. Figure 8.8 shows the temperature and
radiation flux curves for this type of shock. We use the subscript d to designate the
precursor properties at the density jump. Here by assumption Td D 0, and because
the absorption in the precursor is assumed to be zero, so is FR �Fo at the shock. As a
result, the density jump across the shock is .	C1/=.	�1/ and Ts equals the value for
a non-radiative shock. After this, radiative cooling moves the inverse compression
toward zero and the normalized radiation flux will decreases toward �1, as all the
incoming energy is converted to radiation. The final density will be formally infinite,
limited only by factors outside this analysis, such as increasing magnetic field,
increasing optical depth of the downstream plasma, or external radiation sources.
The question we address here is what profiles develop during this cooling.

To work with (8.7) to find the structure within the shocked material, we consider
that JR is negligible compared to B, so in the transport regime @FR=@x D �4�B.
We now want to simplify (8.7), to find the essential parameters that control the
behavior. We use the subscript s to designate the immediate postshock state. Then
we can take � D �s.�=�s/

m.T=Ts/
�n so that

@FR

@x
D �4�sBs

�
	 C 1

	 � 1
�o

�

��m � T

Ts

�4�n

: (8.15)

With this definition, the natural normalization of (8.7) is to create a radiation
parameter Rr, defined by

Rr D 	 C 1

	

4Bs

�ou3s
D 	 C 1

	

4
T4s
�ou3s

; (8.16)

which is approximately the ratio of the radiative flux from an optically thick shocked
layer at temperature Ts to the incoming energy flux. When Rr > 1, the radiative
fluxes from an optically thick postshock layer would exceed the material energy
fluxes, which would violate the conservation of energy. Thus, when Rr 
 1 a
cooling layer will develop, in which the plasma temperature decreases rapidly to
some final value Tf , such that the entire system conserves energy. In the limit we are
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considering Ts / u2s , so Rr increases as u5s . We also define an optical-depth variable
� D ��iz In addition, (8.4) (the equation of state) implies

T

Ts
D .	 C 1/2

.	 � 1/
�
2C .	 C 1/ po

�ou2s

	 �o

�

�
1C po

�ou2s
� �o

�

�
; (8.17)

where we keep the terms proportional to po (which will be needed later). With these
definitions, (8.7) can be rewritten as
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�4�n

:

Given boundary conditions at the shock, along with Rr, po, and the parameters
describing the material in the system (	 , m; n), one can integrate this equation to
find the density profile. Note that if there is absorption of radiation in the precursor,
then po is not the pressure at the shock, and .FR � Fo/ is no longer zero at the shock.
In this case po is the pressure at a point beyond which there is negligible heating by
radiation. The pressure on the upstream side of the shock has been accounted for
through both po and its relation to compression.

We will see below that Rr is within a few orders of magnitude of unity for typical
laboratory experiments. Under interstellar astrophysical conditions, however, Rr is
enormous. Using 	 D 5=3; kB.1 C Z/=Amp D 1:5 � 1012 ergs/g/eV, and �o D
10�22 g/cm3, one finds Rr � 1018 for us � 100 km/s. Figure 8.9 shows the resulting
density profiles for relevant parameters with Rr D 1018 or 1019. Note that the optical
depth required for the evolution of the profile is approximately 1=Rr. This remains
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Fig. 8.9 Density profiles for optically thin shocks. (a) Cool plasmas. Here 	 D 5=3; n D 4=3,
and m D 2. Profiles are shown for Rr D 1018 (on the right) and Rr D 1019 (on the left). In this
model, the density increases without limit as all the energy goes into radiation. (b) Hot plasmas.
Here 	 D 5=3; n D �1, and m D 2, and Rr D 1021, corresponding qualitatively to the behavior
at temperatures above the minimum of the cooling function near 100 eV
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true even as Rr becomes much smaller (�10). In the astrophysical case, recall (from
Sect. 6.3.2) that we had � � 10�38 cm. Thus the cooling distance 1=.�Rr/ for these
parameters is of order 1020 cm or 100 light years. This distance becomes smaller as
the shock velocity increases, producing more radiation.

As we remarked above, it will be some factor not in this model that stops the
increase in density. The increase will slow or stop, for example, if the slope of � with
T changes or if the magnetic pressure becomes significant. Interstellar astrophysical
shocks often cool by radiation until the temperature of the downstream, shocked
material equals that of the nearby environment both beyond and ahead of the shock.
These are sometimes known by the horribly unphysical designation “isothermal
shocks.” (The term isothermal shock is also sometimes used to describe the very
idealized limit in which a shock in the presence of heat conduction may have no
jump in temperature where the density jump occurs. The presence of a lighter
particle species, such as photons, that transports heat eliminates this solution
except as a limiting case. One example is the “supercritical shock” as discussed
in Sect. 8.1.6.)

One sees in Fig. 8.9a a density increase that becomes increasingly rapid with
increasing optical depth. This type of cooling is sometimes known as catastrophic
cooling. This occurs, for example, when old supernova remnants cool sufficiently.
What is required to produce catastrophic cooling is that @�=@T < 0. Then as cooling
for some time interval leads to a density increase and a temperature decrease, the
rate of cooling increases so there is more cooling in the next time interval. However,
the behavior seen in Fig. 8.9a is not universal in all interstellar astrophysical
shocks. As Fig. 6.5 showed, the astrophysical cooling function reverses slope at
some temperature above a few hundred eV, corresponding to a shock velocity of
approximately 300 km/s. Figure 8.9b shows the cooling that occurs for n D �1 and
Rr D 1021. Some rapid cooling again takes place over a small distance, but following
this there is gradual cooling over a much larger distance. Under these conditions, a
shocked layer will cool slowly until � reaches its minimum and @�=@T < 0. Then
rapid cooling to very low temperature will ensue. The rapid density increase may
be described as a density collapse or collapse of the shock, because the thickness of
the shocked layer decreases in inverse proportion to the increase of density.

8.1.5 Radiative Shocks That Are Thick Downstream
and Thin Upstream

We turn now to a circumstance that is common in laboratory experiments with
radiative shocks. The upstream medium, being limited in extent, may quickly
become ionized and after that will be optically thin. Alternatively, for example, in
a spherical experiment in gas, the upstream medium may quickly become optically
thin out to a heat front (or an ionization front; see Sect. 8.2.3) where the radiation
is absorbed. However, the optical depth of the heated upstream medium is likely



8.1 Radiative Shocks 349

to be small, as is the radiation flux from the precursor region back toward the
shock. Correspondingly, for steady-state calculations we will take the view that
the precursor region is a uniform plasma with some initial temperature, but that
essentially none of the radiation entering the precursor returns across the density
jump. We also will treat the electron and ion temperatures as equal throughout.
Immediately behind the shock front, this is not correct, as ions are heated much
more than electrons at any shock transition (see Chap. 4). But the ion and electron
temperatures equilibrate much faster than the radiative properties change, and so we
ignore this detail as part of the microstructure of the shock.

Before considering the steady-state case, let us qualitatively analyze the evolution
of such a shock from an initial, optically thin limit as a laboratory experiment begins.
One has @�=@T < 0 under many conditions of interest, so the initial behavior will
involve a density collapse like that discussed in the previous section. This could be
limited by the maximum in � at low temperature but is more likely to be limited
by the transition at some temperature (and after some time) to an optically thick
shocked layer. The resulting density and temperature of the shocked layer, making
it optically thick, might be said to represent the initial attempt of the system to
establish a steady state. However, the radiation from the cooling layer controls the
ultimate steady state, as we discuss next. This radiation may heat the shocked matter
to a final temperature above the initial value, establishing a steady state only when
the shocked matter becomes optically thick at the temperature necessary for self-
consistency.

Figure 8.10 shows the behavior of the temperature and radiation flux for this case.
The initial temperature is non-zero because the precursor has been heated. The curve
shown is for pon D 1, shown below to be an overestimate. Because the upstream
region is optically thin, FR D Fo at the shock and the net radiation flux across it
is zero. Because pon is finite, the initial density jump is smaller than .	 C 1/=.	 �
1/. The radiative cooling then reduces the temperature below Ts until it reaches a
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final value, Tf , consistent with energy balance. The cooling layer emits a flux of
magnitude Fcl in both directions, and for a semi-infinite, optically thick downstream
region, we show below that FR D Fo D 2Fcl across the shock transition. We will
first discuss the properties of the radiative precursor and then the energy balance
and its implications. We will find that, because 
T4s is typically much greater than
�u3s=2, the optical depth of the cooling layer must be quite small to conserve energy.
As a result, in physical space the spike in temperature downstream of the shock
is quite narrow, and the temperature rapidly decreases to its final value. This type
of temperature structure was first discovered, for radiative shocks in optically thick
media, by Zel’dovich in the 1950s, and is known as a Zel’dovich spike.

8.1.5.1 Radiative Precursors in the Transport Regime

In many real situations the radiative transfer within the precursor (and the shocked
matter too) may be in the transport regime. The transport regime is the relevant
one in the case that the upstream plasma is optically thin or is limited in extent.
Moreover, in this case the radiative flux may approach the full flux from the shocked
region, 
T4eff, while in the diffusion regime the Rosseland flux is much smaller, being
a blackbody flux 
T4R multiplied by the (small) fractional change in temperature per
unit (reduced) optical depth. We assume first that the radiation pressure is negligible,
that the radiation and matter temperatures are the same, and that the density and
velocity in the precursor region are not changed by the precursor (just as is the case
for the Marshak wave), so that r � u D 0. Under these assumptions and for a planar
precursor (7.5) becomes

�
@�

@t
C �u

@�

@z
D �@FR

@z
D 4�.JR � B/: (8.19)

This equation allows useful estimates of the steady-state plasma temperature and the
time required to reach steady state. First consider .JR � B/. The average intensity JR

has three components. These are the contribution from the shocked matter (J1), the
contribution from the region between the shock and a given location (J2), and the
contribution from the region upstream of the given location (J3). To make a simple
analysis tractable, we suppose that the upstream plasma has a characteristic extent
D in the upstream direction and is infinite laterally. We then examine the plasma in
a location a distance d from the shock.

In calculating the contribution from the shocked matter, we take the radiation
intensity (power per unit area per unit solid angle) to be 
T4eff= . Then we have

J1 D 
T4eff

42

Z
e��d=�d˝ D 
T4eff

2

Z 1

0

e��d=�d�; (8.20)
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in which we integrate over the hemisphere facing upstream. This integral evaluates
to

J1 D 
T4eff

2

�
e��d � �d� .0; �d/

� � 
T4eff

2
; (8.21)

in which � is the incomplete Gamma function and the second approximate equality
requires that we stay where the optical depth to the shock (�d) is small.

To find J2 and J3, we will have to integrate B over space. We will designate the
plasma temperature as Tp so that B D 
T4p= . Our point of view here is that we are
analyzing a very thin system, so that measured in optical depths, the precursor of
interest is very near the shock. This allows us to assume that Tp is constant for the
purpose of evaluating this integral. We then have

J2 D 1

4

Z
d˝

Z d

0

�Be��z=�dz=�; (8.22)

in which the integral over distance evaluates the radiation intensity at a polar angle
corresponding to � and the solid-angle integral is over the forward hemisphere. One
finds

J2 D B

2

�
1 � e��d C �d .� .0; �d//

�
: (8.23)

For small �d, J2 � �dŒ1C � .0; �d/�. Proceeding to J3, one has

J3 D 1

4

Z
d˝

Z D�d

0

�

�
Be��z=�dz D B

2

�
1 � e��D C �D� .0; �D/

�
; (8.24)

in which the solid-angle integral is now over the entire hemisphere in the down-
stream direction and in writing the rightmost expression we have assumed d � D.
We can now rewrite (8.19), realizing that � D RTp=.	 � 1/, as

2�
�

T4eff � 
T4p



1C e��D � �D� .0; �D/

�� D ��ousRT 0
p

	 � 1 : (8.25)

The term on the right-hand side of this equation should be small, by our assump-
tions. One can check this, using (8.10) to evaluate the derivative of RTp, taking the
derivative of FRn to be ��FRn. One finds this term to be small for any strength
parameter Q > 10. Thus one finds for Tp:

Tp D Teff

Œ1C e��D � �D� .0; �D/�1=4
: (8.26)

For small �D, Tp is 84% of Teff. In this equation, Tp increases as �D does,
approaching Teff at large �D. However, the calculation of JR becomes invalid as �D
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increases. One knows from the flux balance equation that Tp will decrease as the net
radiation flux decreases with increasing �D. Note that this system is optically thin
by assumption and that much of the radiation flux crossing the shock is in the end
lost from the system and so increases Fo. We do not know how much is lost a priori,
as is indeed the case in real systems of this type. As we discussed in Sect. 8.1.2, the
flux balance equation demands only a relation between the temperature profile in
the precursor and the radiation flux that is actually absorbed there.

The relevance of (8.26) depends on how readily the steady state is achieved and
whether there is in fact time for the precursor plasma to be heated as the shock
approaches it. To evaluate this, we use (8.4) and take @�=@t � �.Teff/=tss, defining
the time we seek as tss, and we take JR � J1 and B � 0. This gives

tss D ��.Teff/

2�
T4eff

: (8.27)

This turns out to be remarkably fast. For a laboratory plasma, we can take � �
1012Teff ergs/g and � � 106=Teff cm�1 to find tss � 10�6�=T2eff, which is 1 ns for
Teff � 10 eV and � � 0.1 g/cm3. Radiation hydrodynamic experiments usually have
timescales of at least several nanoseconds. Thus we conclude that the precursor
plasma may approach its steady-state temperature reasonably quickly in laboratory
experiments. For an interstellar astrophysical plasma with � � 5 � 10�37 cm�1,
� � 10�23 g/cm�3, and Teff � 10 eV one finds tss � 1010 s � 300 years. This too is
very fast, but it will turn out that Teff is typically not large enough to be significant in
such astrophysical plasmas. In both these examples, there will be an initial transition
period, during which the shock processes precursor material that has not yet reached
this steady state.

Thus, the precursor may approach steady state and the plasma temperature Tp

will be close to Teff in a shock with an optically thin upstream layer. Note that this
result has no explicit dependence on the value of Teff. Instead, the temperature in the
precursor will depend primarily on the optical depth of the (downstream) shocked
layer. The temperature near the shock will tend to increase as the optical depth of
the precursor increases, but a more complete calculation would be needed to assess
how much. The precursor will be determined by Teff, which in turn is determined by
details of the downstream layer discussed in the next two sections.

8.1.5.2 Structure of Thick-Thin Shocks

Figure 8.11 illustrates the energy balance in a steady shock of this type. One can
see how the cooling layer controls the final state. The net flux at the downstream
boundary of the cooling layer must be zero, so the final temperature must increase
until the thermal flux from the steady downstream layer equals the flux from the
cooling layer. When this occurs, the net upstream radiation flux, lost from the system
in our description, but perhaps in reality having the effect of extending the length of
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Fig. 8.11 Energy fluxes in
thick-downstream,
thin-upstream shocks. Note
po D 0
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a precursor region, is 2
T4f . One self-consistency test for calculation of profiles as
is described here is that the integrated radiation source, and the integrated change in
material energy should both equal 2
T4f .

We can develop solutions for the structure of the cooling layer in such shocks,
as follows. Based on our discussion of optically thin precursors, the upstream
temperature will be quite close to Tf . Here we will take it to be equal to Tf , so
the normalized upstream pressure is pon D �oRTf =.�ou2s / D RTf =u2s . From (8.4)
this implies that pon D RTf=.u2s / D �o=�f . Knowing pon, we can evaluate the flux
balance equation (8.6) to find the conditions at the boundaries of the cooling layer.
At the shock transition FR D Fo D 2
T4f , so given pon D �o=�f one finds the initial
inverse compression in terms of the final inverse compression, from (8.6),

�o

�s
D 	 � 1
	 C 1

C 2	

	 C 1

�o

�f
: (8.28)

Figure 8.12 shows the implications of this equation, for 	 D 4=3. One
can see that a very large final compression will be required before the initial
compression becomes as large as the nonradiative, strong-shock value of 7. The
initial compression is smaller than this because of the finite pressure po in the
precursor.

In the final state, FR D 0, so using (8.6) with �o=� D �o=�f D pon one finds the
net (normalized) radiation flux at the final density to be

�2Fo

�ou3s
D �1C

�
�o

�f

�2
; (8.29)

which turns out to be independent of 	 other than through the final density. Note
that the limiting value of Fo, as the final density becomes very large, equals �ou3s=2
as it should (per Fig. 8.10).
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Fig. 8.12 Compression in
thick–thin shocks. The final
compression (gray) and
immediate postshock
compression are shown as a
function of the final
compression, for 	 D 4=3
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To pin down the final state, we observe that the energy supplying the radiation
flux comes from the shocked material, so the net radiation flux must equal the net
energy flux lost from the material between the immediate, postshock state, and the
final state. The behavior of the radiation flux in the shock thus has three differences
from that of the optically thin case, although these are not dramatic on a plot like
Fig. 8.10. The shape of the curve including the value of its maximum are altered
by the finite value of pon, the value of the postshock inverse compression is not the
value for a nonradiative shock, and the final normalized flux is close to but larger
than �1. By setting the net flux (FR � Fo) across the shock equal to 2
T4f (see
Fig. 8.11), we can solve (8.6) to find the final inverse compression. This turns out to
depend on the radiation strength parameter we defined above as Q D 2u5s
=.R

4�o/,
in terms of which

�o

�f
D
sp

1C 8Q � 1
4Q

: (8.30)

This is independent of 	 , although the detailed structure is not. For R D 1012

ergs/g/eV, us in km/s D ukms, and �o in g/cm3, one finds Q D 4 � 10�11u5kms=�o.
At large enough shock velocity and thus large Q the final inverse compression
approaches zero, although by that point the system may be entering the radiation-
dominated regime. This result may seem strange, given that the radiation gets
stronger as velocity increases. But recall that a smaller final inverse compression
corresponds to a decreasing fraction of the incident energy ending up as thermal
energy, as more and more energy is radiated away. At small velocity (8.30) would
take the inverse compression to 1. However, we require u2s > c2so, where cso is the
upstream sound speed, to have a shock. Evaluating u2s=c2so we find

u2s
c2so

D u2s�o

	po
D u2s
	RTf

D �f =�o

	
: (8.31)

Thus, the final compression must exceed 	 , or equivalently the inverse compres-
sion must be smaller than 1=	 , in order to have a shock at all. Correspondingly,
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Fig. 8.13 Final state conditions for thick–thin shocks, for 	 D 4=3, A D 130, and Z D 17. The
curves show results for 1 g/cm3 (gray), 1 mg/cm3, (dashed), and 10�g/cm3 (solid). (a) The ratio of
final density to upstream density as a function of shock velocity. (b) The fraction of the incoming
energy flux carried away upstream by radiation

one can show that Q > 	2.	2 � 1/=2 in order to have a shock. The parameter
Q depends primarily on u5s=�o, which is the same as the ratio we found in our first,
preliminary discussion of precursors. The temperature dependence of R, if included,
would introduce additional complications in the solution. Here, to see the main
qualitative behavior, we will assume R (and thus Z) to be constant.

Figure 8.13 shows (a) the dependence of the final compression on shock velocity
for three densities and (b) the fraction of the energy radiated away under the same
conditions. This figure uses Z D 17 and A D 130, corresponding to the use of a
high-Z material to maximize the radiative effects. One sees that the radiation indeed
carries away most of the energy as the system becomes more radiative. One sees
that the compression can indeed become very high as shock velocity increases, but
that this requires radiation of very nearly all of the incoming energy flux.

We are now ready to determine the profiles. To do so, we note that Rr evaluates
to

Rr D Q
	 C 1

	

"
2.	 � 1/
.	 C 1/2

� .1 � 6	 C 	2/

.	 C 1/2
�o

�f
� 2	.	 � 1/
.	 C 1/2

�
�o

�f

�2#4
: (8.32)

By integrating (8.7) as represented by (8.18), beginning at the shock transition, one
can obtain the profiles shown in Fig. 8.14. (Recall that � D �s.�=�s/

m.T=Ts/
�n.)

The two cases shown correspond to Rr � 20 and Rr � 1200, so one can see that
here again the distance required for the cooling decreases as the shock velocity and
hence Rr increase. One also sees that the optical depth of the cooling layer is indeed
quite small, as we anticipated above.
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8.1.6 Optically Thick Radiative Shocks: Radiative Flux Regime

We now turn to a type of radiative shock that can exist only within an extensive
system, in which both the upstream and the downstream media are optically thick
but yet the shock is in steady state. The historical literature considered only this
case, and the case of optically thin shocks in an astrophysical context. One might
be inclined in this case to consider the system to be in LTE, and to use a diffusion
model to describe the dynamics. However, this is not strictly valid because the shock
itself drives the plasma out of equilibrium with the radiation. We will take the point
of view that the precursor region, far enough away from the shock, can perhaps
be described by a modified Marshak-wave model, and that the downstream region
away from the shock is also in LTE. To start with, there are some general things we
can say about this system. We first discuss the implications of energy flux balance,
with reference to Fig. 8.15, and then the implications of the fluid dynamics, with
reference to Fig. 8.16.

There are two places where the net radiation flux must be zero. These are at
the head of the precursor, where all the net upstream radiation from the shock has
been converted to heat, and at the boundary of the downstream region, where a new
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Fig. 8.16 Fluxes and temperatures in thick–thick shocks

postshock steady state is established. In the radiation-dominated regime, radiation
energy and pressure are convected through these boundaries, but there is still no net
radiation flux through them. If the absolute value of the radiation flux generated in
the cooling layer is Fcl, then at the downstream boundary of the cooling layer one
has Fcl C FRp D 
T4f , where FRp is the radiation from the precursor plasma. (The
cooling layer differs only in details from that discussed in the previous section.
Recall that the cooling layer is optically very thin, so the fluxes from adjacent
regions are fully transmitted.) The net radiation flux moving upstream through the
shock transition must balance the increase in convected energy flux in the precursor,
which is negative and which we can designate as Fp. Thus Fcl C
T4f �FRp CFp D 0,
so that

2Fcl D 2
T4f � FRp D �Fp: (8.33)

This also equals the net radiative flux across the shock.
We can take FRp to be approximately 
T4d , where Td is the temperature of the first

few optical depths of the precursor. As Td approaches Tf , both Fcl and Fp become a
smaller and smaller fraction of the radiation flux in either direction. However, these
cannot become zero, and in fact we will find below the limiting value of Fp from the
fluid dynamics. The implication is that Td < Tf always.

This casts some doubt on the traditional definition of a supercritical shock, which
in fact exists only as a limiting case. In the prior literature of optically thick radiative
shocks, the distinction between a subcritical shock, having Td < Tf , and a critical
or supercritical shock, having Td D Tf , is emphasized. Here Tf is the steady-state
temperature of the downstream region. The traditional viewpoint can be summarized
as follows. The radiative flux must be continuous when one crosses the shock,
which sets the immediate postshock density as can be seen in Fig. 8.16. Because
the temperature curve is shifted to the left relative to the flux curve, the immediate
postshock temperature Ts is always higher than Td. Tf is smaller than Ts, but how
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much smaller depends on the details of the radiation transport and on the radiation
strength Q. If Q is small enough, then Td can never approach Tf . Such a shock is
known in the literature as a subcritical shock. The traditional notion is that a strong
enough shock will produce Td D Tf and such a shock is known as a critical or
supercritical shock. This is implied by an LTE analysis using equilibrium radiation
diffusion. One might imagine that the temperature could become continuous as the
diffusion limit is approached. However, this is not an accurate conclusion because
the shock and cooling layer is always an out-of-equilibrium, nondiffusive structure.
We will see below that Td may approach Tf in various realistic circumstances, but
that this is a limiting case rather than the threshold of a regime. As a result, the
present author disagrees with the notion that a shock of any specific shock strength
can unambiguously be identified as a critical shock.

8.1.6.1 Fluid Dynamics of Optically Thick Shocks: Radiative-Flux Regime

It is next worthwhile to consider what the fluid dynamics may imply in this case. The
flux balance equation, if necessary including radiative pressure and energy terms,
applies to all optically thick radiative shocks. No energy is “lost” from the system
(except perhaps laterally in a laterally limited planar system, but we do not consider
this here). This calculation naturally separates into flux-dominated and radiation-
dominated cases. We take these up in turn.

Figure 8.16 shows the fluid-dynamics trajectory in the flux-dominated regime.
The plasma is heated and compressed in the precursor, undergoes the shock
transition at FR D �Fp, and then cools to a final state with zero flux. For negligible
initial upstream pressure, the final state thus has �f =�o D .	 C 1/=.	 � 1/ and has
a normalized temperature given by (8.4) as

RTf =u2s D 2.	 � 1/=.	 C 1/2; (8.34)

which is 0.12 for 	 D 4=3. For the same reasons as in the thick-thin case of the
previous section, the postshock temperature drops rapidly from Ts toward Tf , the
cooling layer is physically very thin, and thus there is a Zel’dovich spike.

The fluid dynamics also implies Fp as a function of Td, as the difference between
the net material energy flux reaching the shock from upstream (which includes
recycled energy) and the incident material energy flux, �ou3s=2. If one evaluates
(8.6) in the precursor just before the density transition, taking po D 0 and using (8.4)
(which originates from the continuity equation, momentum equation, and equation
of state), one finds that

Fp D � �ou3s
4.	 � 1/

"
.1 � 	/C 2.	 C 1/

RTd

u2s
C .	 � 1/

s
1 � 4RTd

u2s

#
: (8.35)
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Fig. 8.17 Precursor properties in optically thick radiative shocks, for 	 D 4=3. (a) Normalized
temperature and (b) recycled flux

This goes to zero as Td ! 0, as it should, but also goes to zero as Td ! Tf . Thus
Td ! Tf cannot be a solution, because recycled energy is present for any Td ¤ 0.

Given Fp from (8.35) Tf from (8.34), and FRp D 
T4d , one can express (8.33) as
an implicit equation for Td:

�
RTd

u2s

�4
C 1

2Q

RTd

u2s

.	 C 1/

.	 � 1/ C 1

4Q

 s
1 � 4RTd

u2s
� 1

!
� 16 .	 � 1/4

.	 C 1/8
D 0;

(8.36)
in which we again encounter the radiation strength parameter, Q D 2u5s
=
.R4�o/. Noting from (8.35) that the final term on the left-hand side in this equation
is RTf =u2s , one sees that Td reaches Tf only in the limit that Q ! 1, as expected
from the discussion above.

To understand what is happening in this system, we can examine Fig. 8.17, which
plots in (a) the solution of (8.36) for RTd=u2s and in (b) the solution of (8.35) for
2Fp=.�ou3s /, which is the recycled flux as a fraction of the energy flux incident
on the shock, both for 	 D 4=3. We see that as Q increases above 1000, Td

becomes a large fraction of Tf . We also see that, as this occurs, the magnitude of the
recycled energy flux asymptotes to about 70% of the incident energy flux. As the
incident shock velocity (and thus Q/ increases further, the net recycled flux (which
is the net radiative flux across the shock, and also twice the flux from the cooling
layer) remains a fixed fraction of the incident flux while the radiative fluxes in each
direction, 
T4d and 
T4f , increase much more rapidly.

We can now discuss the implications of the fluid dynamics of the precursor.
From Fig. 8.16, one can see that there is a nonzero final temperature for any finite
inverse compression and thus for any possible final value of FR. For example, the
final normalized temperature is approximately 0.12 for the specific value of the
inverse compression (approximately 0.15) corresponding to .FR � Fo/ � 0 and
	 D 4=3. One can see in Fig. 8.16 that if the precursor temperature reaches this
final temperature then the density increase in the precursor will be between 10 and
15%. This is quite small in comparison with the total density increase, of order 10,
which justifies somewhat the assumption in some following sections that the density
is unchanged in the precursor.
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We can also consider whether the precursor is in a transmissive regime or a
diffusive regime, continuing the discussion of Sect. 8.1.3 for the specific case of
optically thick shocks. We can set the terms in (8.11) to one, and use the basic
fluid dynamics equations to determine at what densities FR=c must be > 4
T4P=c as
Q changes. These are shown in Fig. 8.18 as the dashed curve on a plot of inverse
compression vs. Q. Also shown is the value of the inverse compression in the
precursor at the shock front, obtained from the profile calculations discussed below.
The trajectory of the radiation within the shock is to emerge from the shock front,
to diffuse through the precursor if a diffusive zone exists, and then to be transmitted
through the remainder of the precursor once it becomes transmissive. In the diffusive
zone, the temperature profile is concave downward, as is typical of diffusive profiles.
In the transmissive zone, the temperature profile is concave upward, corresponding
to exponential attenuation.

8.1.6.2 Diffusive Radiative Precursors

In the diffusion regime, one is tempted to model the precursor in a supercritical
shock as a Marshak wave, since it is a diffusive radiation wave emanating from
a constant-temperature source. In this case, one must deal heuristically with the
fact that the source is moving. The Marshak wave has a length-dependent velocity,
being very fast when it is short (early in time after its initiation) and slowing
down monotonically as its length increases. One can argue that, in steady state,
the precursor length ahead of a shock must be such that the diffusion wave velocity
equals the shock velocity. In either (7.70) or (7.79) one has the length zo D �o

p
Wt

with �o a constant near 1.6 and W D .�rad//To=Œ�cV.n C 1/�. Matching the precursor
velocity to the shock velocity gives us D .�o=2/

p
W=t, which determines the “time”
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in the Marshak wave evolution at which the length is maintained. Combining these
gives the steady-state precursor length as

zo D �2o W=.2us/: (8.37)

Note that W, being proportional to the coefficient of radiative heat conduction, �rad,
scales as a large power of the temperature (T4 to T7). This is why the precursor
length has a very strong dependence on shock velocity. However, in the context of
real systems one would have difficulty observing such precursors. One can use the
steady-state precursor length in the initial relation for xo to find the time, to, required
for the diffusion wave to reach this length. One obtains

to D .zo=�o

p
W/2 D �2o W=.4u2s /: (8.38)

This time also increases very rapidly with shock velocity. Real experiments in the
planar geometry of this analysis will achieve steady-state precursors only over a
very narrow range in velocity.

The qualitative situation is better for experiments in spherical geometry, if in fact
they can produce large enough systems that a diffusion model can meaningfully
apply. Zel’dovich and Razier (1966) consider the case of nonlinear radiative heat
diffusion from a point source in spherical geometry. They find that the diffusion
wave moves with r / t1=.3nC2/, so that the velocity is / t�.3nC1/=.3nC2/ � 1=t.

It is not too hard to improve the analysis above for a planar system. The gas-
energy equation, simplified with the assumptions relevant to a Marshak wave, is
(8.19). Applying the analysis of Chap. 4, one can show that this equation does not
admit a self-similar solution. But we can hypothesize that a steady precursor may
develop, reflecting the balance of upstream diffusion and downstream flow, so we
consider this problem in steady state. If we take � D cVT , approximating cV as
constant, and assume FR is produced by diffusive heat transport we find

� us
@T

@z
D @

@z

�rad

�cV

@

@z
T; (8.39)

from which as in Sect. 7.3 we obtain

@f

@z
D �W

us

@2f nC1

@z2
(8.40)

in this case, with f D T=Td (taking the radiation and matter to be in equilibrium in
the optically thick system). Now we define a new variable � D zus=W, so that (8.40)
becomes

@f

@�
D �@f nC1

@�2
: (8.41)



362 8 Radiative Shocks and Heat Waves

We can obtain a boundary condition from the fact that the upstream radiative
heat flux at the precursor boundary balances the thermal energy brought back to the
shock by the incoming flow. (This has some subtle aspects, because the diffusion
treatment is not fully self-consistent.) The relevant equation is (7.4), evaluated, for
the upstream region, in the frame of a steady shock for constant � and u. Here we
write the flux balance as

�radrT
ˇ̌
shock D 	��us: (8.42)

Upon ignoring differences between Teff;TR

ˇ̌
shock, and the material temperature at the

shock, which are caught up in the subtleties just mentioned, this becomes

@f

@�

ˇ̌̌
ˇ
�D0

D 	

n C 1
: (8.43)

Figure 8.19 shows the precursor profile for n D 4 and 	 D 4=3. This solution
finds � � 0:9 at the leading edge of the precursor. Let us compare the size of
this precursor with our simple estimate above. The scaling is the same, as W=us.
The ratio of the result of the improved calculation to that of the simple estimate is
1:8=.�2o / � 0:7. One can see that the precursor length from the diffusion model is
somewhat shorter than of the precursor length from the Marshak-wave estimate. In
other words, the effect of the incoming flow is to reduce the size of the precursor in
addition to limiting its expansion.

We can estimate the diffusive precursor length as follows. For typical parameters
(�R � 106T�4=3

eV cm2=g, n D 4; 	 D 4=3; � D 0:1 g/cm3; cV D 1012 ergs g�1/eV,

us D 2�106T1=2eV cm/s), one finds W D 10�4T13=3eff and W=.	us/ D W=.8�106T1=2eff ),
with Teff in eV. This is 19�m at 100 eV for this density but would be 1.9 mm for
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Fig. 8.19 A diffusive precursor profile. A sample solution of (8.39), for 	 D 4=3 and n D 4;

which gives f 0.0/ D �0:26. The temperature ratio f is shown on the ordinate, with the normalized
distance zus=W on the abscissa
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Fig. 8.20 Diffusive
precursor lengths. The
boundaries show the
indicated values. Experiments
with foams and gasses at
densities below 10 mg/cm3

would tend to produce very
large precursors, but in actual
experiments lateral energy
losses will limit the precursor
length
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� D 0:01 g/cm3. Figure 8.20 shows the steady-state diffusive precursor lengths in
a space of density and temperature. The boundary labeled “limit” in this figure is
where the precursor length decreases to ten interparticle spacings for ionized Be.
The model is certainly not valid beyond that point.

8.1.6.3 The Structure of the Optically Thick Radiative Shock

One can calculate the structure of such a shock using the equations presented above.
Figure 8.21 shows the results of doing so using the three-layer model described
here. One divides the structure into the three regions illustrated in Fig. 8.15: a
steady downstream state, a cooling layer, and a precursor. Note the vast change
in the optical depth scale at the shock location. The profiles show the behavior
expected from Fig. 8.15. The temperature and compression increase throughout the
precursor, with the change in compression remaining small. The density increases
by a factor smaller than 7 at the viscous transition, where the temperature roughly
doubles. (Reducing Q leads to a cooler precursor and larger jump in normalized
temperature.) In the cooling layer, the temperature and compression rapidly change
toward the final, downstream values. The expected Zel’dovich spike is present;
physically, it is extremely small. Eventually, the compression reaches its limiting
value of .	 C 1/=.	 � 1/ D 7.

We now discuss the modeling of the various regions. The downstream region is
a steady-state whose properties can be inferred using Fig. 8.16. The precursor is a
very extended region, whose actual length changes very rapidly with us, for reasons
discussed in the previous section. As a result, one can treat the precursor using a
diffusion model with an Eddington factor fE D 1=3. One can see in the plot where
the precursor becomes transmissive and the second derivative of the temperature
profile changes sign. In that part of the profile the actual Eddington factor changes
from 1/3 to 1 as the radiation becomes beam-like, and so the spatial scale obtained
by the calculation is not correct. The cooling layer is modeled using a transport
model, taking @FR=@z D 4�.B � JR/. This is tractable because it turns out that, to
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Fig. 8.21 Profiles of compression [in (a) and (c)] and temperature [in (b) and (d)] in optically
thick shocks. Q D 3 � 105; 	 D 4=3, and fE D 1=3. The shock location is at zero. The optical
depth of the precursor [shown in (c) and (d)], increasing to the right, is far larger than that of the
cooling region [shown in (a) and (b)], increasing to the left

quite good accuracy, JR D Bf throughout the cooling layer. The reason is that JR is
an average over all angles, and the emission is isotropic. As one moves through the
cooling layer, rays producing left-going radiation are replaced by an equal number
of rays producing right-going radiation. At the left boundary of the cooling layer,
the net radiation flux must go to zero, which sets the value of JR. The completion of
the calculation involves satisfying the energy balance at the downstream edge of the
cooling layer, where JR must remain constant and includes contributions from the
downstream region, the cooling layer, and the precursor.

The structure of the cooling layer is quite informative in the context of radiation
transfer, which shows why it is not accurately described by a diffusion model
(single-group or multi-group). First we develop the diffusion model in this context.
The fundamental equations of Chap. 6 imply that

@pR

@z
D � N�

c
FR (8.44)

for radiation along the z axis, and in which N� approaches the Rosseland mean
opacity as the system approaches LTE. This equation is always correct, if one
evaluates N� for the actual distribution of radiation intensity. It is the Eddington
approximation that enables closed diffusion models, by taking pR D fEER D
fE.4=c/JR, giving



8.1 Radiative Shocks 365

4 fE
@JR

@z
D � N�FR: (8.45)

One obtains a diffusion model in this context by normalizing the intensities by
�ou3s=2 and designating this with an added subscript of n, using (8.45) in (8.6) and
a transport model in (8.7), recognizing that the normalized thermal intensity can be
expressed in terms of Q and �o=� and that po D 0 for these shocks, to obtain

4 fE
N�
@JRn

@z
D
"
1 � 2	

	 � 1
�o

�
C 	 C 1

	 � 1
�
�o

�

�2#
and (8.46)
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�

�4#
:

(8.47)

Figure 8.21 showed the results of integrating these equations from the leading edge
of the precursor toward the shock, to find the spatial structure of the precursor, for
the given 	 and Q and assuming �P to be constant for simplicity.

Returning to the cooling layer, note that the sign in (8.44) is always correct;
the direction of the radiation flux opposes that of the radiation-pressure gradient.
It is widely assumed that this also applies to (8.45), so that radiation always flows
“downhill”, toward regions of lower radiation-energy-density. This is why diffusion
models are widely assumed to give qualitatively correct answers. However, in
cooling layers and similar systems this turns out to be false. This is a consequence
of two facts. First, JR and pR are different moments of the radiation intensity, IR.
One has JR D R 1

�1 IRd�=2 while pR D .2=c/
R 1

�1 IR�
2d�. Second, the planar layer

always becomes optically thick near enough to �. = Cos �/ D 0. The consequence
is that JR, although nearly constant in this application, develops a maximum within
the cooling layer (offset to the right because of the contribution of the warm
downstream region), while pR monotonically decreases toward the shock. To the
left of the maximum in JR, (8.45) forces the radiation flux to be leftward when in
actual fact it is large and rightward. A code implementing a diffusion model, if
written so as to conserve energy, will generate incorrect profiles of JR in order to
support the overall features necessary to conserve energy. The general point is that
a diffusion model will give an explicitly wrong answer whenever a system develops
an optically thin hot (or cold) layer that extends far enough laterally to have some
optically thick rays. One can find a more detailed discussion of this point, and of
optically thick shocks in the radiative flux regime, in several papers involving the
present author from 2007 and 2010.
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8.1.7 Radiation-Dominated Optically Thick Shocks

For the radiative shocks in optically thick systems that are our subject here, one
could hope to evaluate the structure in the radiation-dominated regime, using an
approach similar to the one we just described for the radiative flux regime. However,
this would be mathematically even more complicated, because the radiation pressure
depends on the fourth power of T . We will leave the problem of the structure, and
even more so of the structure in transition regimes, to the specialized literature. It is
important to note, as Sect. 8.1.6.1 showed, that treatments of the internal structure
near the shock that use only the diffusion approximation will be qualitatively wrong.
Here we consider only the relation between initial and final states, where the
radiative flux is zero.

In this case the continuity equation is unchanged. The momentum and energy
equations ((7.2) and (7.3)) become, for steady-state planar shocks,

�u2 C p C pR D �ou2o C po C pRo and (8.48)

u

�
�

u2

2
C �� C ER C p C pR

�
D uo

�
�o

u2o
2

C �o�o C ERo C po C pRo

�
;

(8.49)

where as usual these equations are in the shock frame. We would like to develop
useful relations from this, just as we have done previously. Because uo D �us and
u D �us.�o=�/, we find

p C pR

�ou2s
D
�
1 � �o

�

�
C po C pRo

�ou2s
and (8.50)

1

2

 
1 �

�
�o

�
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�ou2s
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�
C
�
	po=.	 � 1/C 4pRo

�ou2s

�
D 0:

(8.51)

Here we have two equations for three unknowns (�, p, and pR). In the case that
radiation completely dominates, so p can be neglected, these are readily solved for
pR and �. If p and pR are both known functions of T , one can solve for T and �.
Alternatively, if the medium is ionizing and has 	 D 4=3, one can solve for the total
pressure and �. We consider the third case here and leave the first two to homework.

If 	 D 4=3, then one can substitute from (8.50) into (8.51) and express the total
pressure as pt to obtain

1

2

�
1 � �o

�

��
1 � 7�o

�
C 8

�
pto

�ou2s

��
D 0; (8.52)

in which pto is the total pressure in the upstream state. The two solutions of this
equation for the inverse compression (�o=�) give the total density change across
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the shock transition. These solutions are 1 (the upstream density) and .1=7/Œ1 C
8pto=.�ou2s /�. Thus, with negligible upstream pressure the density increases by a fac-
tor of 7 and this density increase gets smaller as the upstream pressure, normalized
by the ram pressure, increases. The shock will vanish when the upstream pressure
reaches 7/8 of the ram pressure. One can substitute for the inverse compression in
(8.50) and solve for the final total pressure, finding pt D .6�ou2s � pto/=7. At the
most, this can be 6/7 of the ram pressure when the upstream pressure is negligible.

8.1.8 Electron-Ion Coupling in Shocks

To this point we have ignored the equilibration region behind the density jump in
radiative shocks. The shock heating of the electrons is small [consider (8.1) for
electrons], so that it is the ions that are primarily heated. The ions then heat the
electrons by Coulomb collisions, in a region we will designate the equilibration
zone. At issue here is the slowing of the ions, which would be described in collision
theory as the “test particles” in this case. The field particles, which interact with the
ions and cause them to slow, are the electrons. The electron-heating coefficient is
�ie D 3:2 � 10�9niZ3 ln�=.AT3=2e /, with Te in eV and ne in cm�3. The evolution of
the ion temperature is then

@Tion

@t
D ��ie .Tion � Te/ : (8.53)

The electron heating also may correspond to increased ionization of the ions.
Typically the electron-heating coefficient and the temperature difference both
decrease as the electrons heat. But curiously, if Z / p

Te as is approximately true
in ionizing plasmas, then the electron-heating coefficient remains constant as the
electron temperature increases, leading to more rapid equilibration. The exchange
of energy between the electrons and the ions, including ionization and the heating
of the new electrons, does not change the total postshock pressure. In contrast,
radiation can affect the pressure, and also the rate of equilibration through the
density. This makes it worthwhile to compare the radiative rates with the electron
heating.

First we compare the heating or cooling rates. Then we consider more carefully
the structure of the equilibration zone. The rate of energy emission, in power per
unit volume, is 2�
T4e at high density and neni� at low density (see Chap. 6). The
rate of energy transfer per unit volume per unit fractional temperature difference
.Tion=Te �1/ is �cV�ie. Figure 8.22 shows the ratio of �cV�ie to the radiative cooling
rate for both laboratory and astrophysical conditions. For electron temperatures
that do not approach keV levels, electron heating clearly dominates, except at low
density (0.01 g/cm3), and using a density-independent scaling for � (which may not
apply in actuality). One concludes that radiative cooling of electrons would become



368 8 Radiative Shocks and Heat Waves

Electron Temperature, Te (eV)
5 10 50 100 500

106

104

102

100

C
o

lli
si

o
n

al
 h

ea
ti

n
g

/ r
ad

ia
ti

ve
 c

o
o

lin
g

Fig. 8.22 Ratio of electron heating power to radiative emission vs. Te for cases of interest. In the
laboratory regime, with � D 0.01 g/cm3 (black solid) and 1 g/cm3 (dashed), using the density-
independent form of � for Al from (6.45). In the astrophysical regime (gray), where the ratio
depends only on Te, using � D 10�22 erg cm�3

important in shocks producing ion temperatures of many keV, and possibly under
some conditions for somewhat lower temperatures.

However, Fig. 8.22 overstates the importance of radiation, because it is the net
difference of absorption and emission that heats or cools the electrons. In a shock,
the radiation from the final state will at first overwhelm the radiation emission by the
electrons and will contribute to their heating. Later, when the electron temperature
rises above the final plasma temperature, radiation will have a net cooling effect, in
opposition to electron heating by the ions. However, in many cases these differences
won’t matter because the effect of the radiation on the equilibration zone will be
negligible. Assuming that radiation plays no role, let us consider the structure of the
equilibration zone produced by electron heating alone.

We can convert (8.53) into a spatial equation in the shock frame by dividing
by the postshock fluid velocity, u D us.	 � 1/=.	 C 1/. There is a corresponding
equation for the electrons in which Te and Ts are exchanged and the right-hand
side is negative. One can use (8.1) for the ions with Z D 0 to get a characteristic
initial value of Ts, and one can assume Te � 0 to start. Figure 8.23 shows the
resulting spatial profiles of Te and Ts for a shock velocity of 100 km/s. One sees
that even for very low density, low-Z gas (part a) the equilibration occurs within a
few micrometers. For Xe gas at somewhat higher density, the equilibration occurs
within a fraction of a micrometer.

Recall that in detail the shock transition itself is not instantaneous, but occurs
over a distance of a few ion–ion mean-free paths. Both electron heating and radiation
emission do occur simultaneously with the shock transition, so there may be regimes
in which all three processes are simultaneously important. It will typically be
adequate, though, to assume that the shock transition occurs instantaneously, that
the equilibration zone is at most small, and that the radiation becomes important on
a larger spatial scale. In simulations, the electron heating occurs on the scale of the
shock transition for conditions that produce postshock temperatures of order 10 eV,
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and occurs on a larger (though still small) scale as the postshock ion temperature
reaches hundreds of eV.

8.2 Radiative Heat Fronts

In general a front is a region where some parameter describing a system changes
abruptly, where “abruptly” means that this happens on a spatial scale small
compared to the overall size of the system. The front and whatever structure follows
behind it is often called a “wave”. Thus far, we have primarily been concerned
with shock fronts and shock waves. We have seen that they can have considerable
internal structure, but also that on a large enough scale, they can be viewed as
transitions whose behavior must conserve mass, momentum, and energy. Radiative
shock waves in their simple form produce radiation by emission from shock-heated
matter. Section 8.1 discussed the consequences, which we found to be diverse. It
is also not uncommon to find that radiation sources cause the heating of matter. If
this goes on long enough, then the penetration of the heat into the matter can be
described as a “heat wave” and the leading edge of the heated region as a “heat
front”.

Under most conditions at high energy density, the heat transport by radiation is
large compared to that by electrons, and so here we consider formally only radiative
heat fronts. However, one can find circumstances where the electron heat transport
is dominant, and in these cases one might have an electron heat front. The fluid
dynamics below applies equally well to such fronts.

In this section we will analyze steady heat fronts, in the “heat-front frame”. We
assume that there is a radiation flux incident on the system from the left, and that the
radiation flux is not rapidly absorbed until it reaches the front, where the remaining
radiation is absorbed over a short distance. (There may be gradual absorption, as
we will see below.) There is some similarity to Marshak waves, for which the
constant flux model discussed above proved fairly accurate. As a result of these
assumptions, we have jump conditions across the front that are similar to those we
had for radiative shocks. Once again, and for the same reasons as in most of the
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discussion of radiative shocks, we consider the radiation-flux regime, neglecting the
momentum and pressure of the radiation.

We rewrite the equations here for a polytropic gas of index 	 , and state the
definitions of the variables, for convenience:

�1u1 D �2u2; (8.54)

�1u
2
1 C p1 D �2u

2
2 C p2; and (8.55)

�
�1u21
2

C 	p1
	 � 1

�
u1 � FR D

�
�2u22
2

C 	p2
	 � 1

�
u2; (8.56)

where the density, velocity, and pressure in the upstream, unheated region are �1; u2;
and p1, respectively, and the corresponding quantities in the downstream, heated
region have the subscript 2. The radiation flux FR here represents the energy flux
absorbed at the heat front, so that we have implicitly ignored any radiation that
streams through it. In addition, the radiation might in principle be incident from
either side, but more often is incident from region 2. We retain the same basic
geometric conventions we used above for shocks, so that in the frame of the heat
front, u1 and u2 will be negative. Positive FR then will correspond to the typical
case where radiation from the heated region, region 2, is incident on the front. The
radiative energy deposited at the heat front then will add to the energy carried in
from region 1 to produce the parameters of region 2.

Because steady heat fronts have constant temperatures on each side of the front,
it is natural to normalize the pressure in terms of the square of the isothermal
sound speed, written as a2 D p=�. (a2 here is RT in our discussion of radiative
shocks.) Then the momentum and energy equations become, using (8.54) and (8.55)
to simplify (8.56),

�1.u
2
1 C a21/ D �2.u

2
2 C a22/; and (8.57)

.u22 � u21/

2
C 	

.	 � 1/.a
2
2 � a21/ D � FR

�1u1
: (8.58)

The differences among various heat fronts relate to the assumptions and boundary
conditions used to solve these equations. We will first consider Marshak-like heat
fronts, having a definite downstream temperature and heat flux, and will see a
new aspect of this type of behavior. A slightly different case of great practical
importance is the expansion heat front, which we next explore. Then we will
discuss photoionization fronts. The difference between these types of front lies in the
boundary conditions. Marshak-like waves involve radiation diffusion from a source,
expansion heat fronts must sustain a downstream rarefaction, and photoionization
fronts involve radiation that streams through the medium to a region of ionization.
The impact of this difference lies in the implied boundary conditions. Marshak-
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like waves and expansion heat-fronts feature a nearly constant temperature in the
downstream region, while photoionization fronts have a front velocity determined
by simple kinematics.

8.2.1 Marshak-Like Heat Fronts

When we examined Marshak waves in Sect. 7.3, we assumed that the density
remained constant as the wave propagated through the system. This excludes the
possibility of seeing behavior in which the fluid dynamic response matters. Here
we begin with assumptions appropriate to steady waves that have much in common
with Marshak waves, in order to examine the fluid-dynamic possibilities that result.
We ignore the radiation transport, which was discussed above. Thus, our calculation
complements the previous one.

Marshak waves feature a constant temperature at the downstream boundary. The
incoming radiation flux (from downstream but directed toward the front) decreases
very rapidly at early times but then decreases more slowly. We will approximate
this incoming heat flux as constant, in order to see the hydrodynamic steady state
that would correspond to a given heat flux. In effect, we consider the Marshak-
like wave to represent an abrupt, steady transition in the properties of the plasma,
and we examine the relation between upstream and downstream quantities that is
allowed by the conservation of mass, momentum, and energy in steady state. This
approach is sensible in a regime where absorption opacity dominates and where the
diffusion of energy is nonlinear, so that the heat wave becomes a spatially limited
structure. If scattering opacity were dominant, then one would have to think through
this problem differently. Based on these assumptions, we consider FR, a2, a1, and
�1 to be input parameters that are initially known. This leads us to normalize the
above equations by taking �2 D �1e�, a1 D ea1a2, u1 D eu1a2, u2 D eu1a2=e�, and
FR D eFR�1a32, giving

e�.eu12 Cea12/ D 
eu12 Ce�2� ; and (8.59)

0 D �eFR Ceu13
2

�
1 � 1

e� 2
�

Ceu1 	

	 � 1.ea12 � 1/: (8.60)

One can solve Eq. (8.59) foreu1, obtaining

eu1 D �
qe�.e� �ea21/pe� � 1 ; (8.61)

taking the positive values of the square roots. This remains real for all e� such
that numerator and denominator are both real or both imaginary. Substituting into
Eq. (8.60), one obtains
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Fig. 8.24 Density ratio and downstream Mach number are shown for the two denser roots based on
the jump conditions, assuming a step-function temperature profile. Note that, for some temperature
T characteristic of the source, if FR / T4 and a2 / T then the abscissa is proportional to T

0 D 2eFR.	 � 1/e�pe� � 1C
�e� .	.e� � 1/ � .e�C 1//Cea21 .	.e� � 1/C .e�C 1//

�pe�.e� �ea12/: (8.62)

From Eq. (8.62) one can solve for the density ratioe�, obtaining three real roots as
functions of 	;eFR; andea1. Figure 8.24 shows the two denser roots. The solid curves
show the Marshak-like heat wave. At large enough radiation flux the density ratio
remains clamped at one, consistent with the standard Marshak wave. The difference
is that here we have fixed the radiation flux while in the standard Marshak wave it is
steadily decreasing. But once the downstream Mach number reaches 2, the solution
changes and a shock wave begins to develop at the transition. Since in real heat
waves the radiation flux does drop as the wave penetrates further and the Marshak
wave continues to slow with time, this emergent shock wave moves out ahead of
the heat front. The emergent shock wave has been observed experimentally. It is
distinct from another phenomenon that has also been observed. An experiment often
launches a shock wave from the surface through which the radiation penetrates to
heat the medium. As the Marshak wave slows, this launched shock wave slows much
less if at all. It will then overtake the Marshak wave at some point. Ultimately, these
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systems involve the interplay of the Marshak wave, the emergent shock wave, and
the ablative shock wave.

The dashed curve seen in the figure can be identified as a shock wave corre-
sponding to extra energy deposition at the shock front. This might occur if there
were radiation flux incident, under conditions such that the radiation was much more
strongly absorbed at the front than away from it. Such a flux might be incident from
either direction. The third root in the solution of Eq. (8.62) corresponds to a decrease
in density. While such a solution, with fixed FR and a2, might be relevant under some
very special boundary conditions, we do not discuss it further here. Instead we take
up the similar but more relevant case of an expansion heat front.

8.2.2 The Expansion Heat Front

Ionizing radiation often encounters a surface where the density and absorption
strongly increase, leading to the local deposition of the radiation flux that reaches
the boundary. The ablated material then expands away from the surface, while
the high pressure in the absorption zone drives a shock into the dense material.
This occurs in particular at the surface of an X-ray-driven fuel capsule for inertial
confinement fusion, on the surface of a planar ablator when soft X-rays are used
to drive other experiments, or at confining walls when such radiation reaches them,
as for example in radiative shock experiments. In laboratory systems, there is often
enough absorption of the radiation in the outflow to sustain the temperature of the
expanding plasma. When astrophysical radiation ablates molecular clouds, this will
not be the case. In addition, the heating will then occur at a photoionization front,
discussed in the next subsection. Here we consider the laboratory case.

We describe these dynamics with reference to Fig. 8.25. We again treat the
evolution in the context of a fluid model, assuming the shock front and the heat
front to be infinitesimally thin. For typical conditions, the absorption depth in solid-
density materials is in the vicinity of 1�m, so this defines what corresponds to thin

Fig. 8.25 Schematic of
expansion heat front for
analysis. Soft X-rays incident
from the left sustain an
isothermal rarefaction up to
the heat-front location. The
heat front sustains the
pressure that drives a shock
wave to the right
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in the present context. The shock front in the dense matter is some small number
of orders of magnitude steeper than the heat front. Here we discuss the solutions
for the shock wave, for the heat front and expansion, and how to match the two
solutions. We use the same fundamental variables we used above, begin with (8.54)–
(8.56), and again take a2 D p=�. We denote by FRo the radiation flux that enters the
system. Some of this flux is absorbed while penetrating the expanding plasma, and
the remainder is absorbed at the heat front. We denote the density of the unshocked
matter as �o.

The combination of absorption and heat conduction (at lower density) tends to
sustain the temperature of the expansion, and so we approximate its behavior as
an isothermal rarefaction. We are seeking a steady solution for the heat front and
shock, so the rarefaction must meet the heat front at its sonic point, which is the
only position at which the density does not change with time. Take the density at the
sonic point to be �2. To examine the energy requirements, we take the rarefaction to
extend from x D 0 to 1, with the sonic point at x D 0. The speed in the rarefaction
is ur D a2.1C x=.a2t// and the total energy flux required to sustain the rarefaction
is

Ftot D @

@t

Z 1

0

�2

�
u2r
2

C a22
	 � 1

�
e�x=.a2t/dx D �2a

3
2

�
5	 � 3
2.	 � 1/

�
: (8.63)

We can find another expressions for Ftot from the fluid equation for energy
conservation, which tells us, in 1D, that

@

@t

�
�u2r
2

C �a22
	 � 1

�
D � @

@x

�
�u3r
2

C ur�a22
	

	 � 1 C F

�
; (8.64)

in which F may include energy fluxes from conduction or from radiation transport.
With u > 0 here, one will have F < 0. Equation (8.63) then implies that Ftot D

�
Z 1

0

@

@x

�
�u3r
2

C ur�a22
	

	 � 1 C F

�
dx D �2a

3
2

3	 � 1
2.	 � 1/ C .F2 � F1/;

(8.65)

for u2 D a2. Taken altogether, the above results imply that

F2 � F1 D �2a
3
2: (8.66)

Because F < 0, jF1j > jF2j, as it should.
For the overall calculation of the structure we have three known quantities, FRo,

a2, and �o, and ten unknowns, defined in Table 8.1. We have six equations describing
the jump conditions for mass, momentum, and energy in the two frames. We have
as equations of state that p2 D �2a22 and p1 D �1a21. We know that u2 D �a2
because the heat front is at the sonic point, and we know that the velocity of the
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Table 8.1 Unknowns for the
expansion heat front problem

Name Symbol

Density in rarefaction at heat front �2

Pressure at sonic point p2
Velocity at sonic point u2
Shocked matter velocity in heat-front frame u1
Density of shocked matter �1

Pressure of shocked matter p1
Sound speed (isothermal) in shocked matter a1
Shocked matter velocity in shock frame u1s

Lab-frame velocity of shock front us

Lab-frame velocity of heat front uhf

shocked matter in the lab frame, inferred from either the shock frame or the heat-
front frame, must be the same, so that u1s C us D uhf C u1. We also know that the
incoming radiation flux must supply the energy required to sustain the structure in
time, and include this fact in formulating the energy equation for the rarefaction.
We continue to use the standard sign convention throughout the book, taking us > 0

and u1s; u1; and u2 < 0.
On the assumption that the shock is a strong shock, the relations for the variables

in the shock frame are simple and familiar:

�1 D 	 C 1

	 � 1 �o; (8.67)

p1 D 2

	 C 1
�ou2s ; (8.68)

u1s D �us
	 � 1
	 C 1

; and (8.69)

a1 D us

p
2.	 � 1/
	 C 1

: (8.70)

In the heat-front frame we normalize (8.54)–(8.56) by taking �2 D �oe�2,
u1 D eu1a2, p1 D ep1�oa22 and FRo D eFRo�oa32. One can then solve the normalized
equations, also using the other known facts relating to the rarefaction from above,
to obtain

eu1 D .	 � 1/e�2
.	 C 1/

; (8.71)

ep1 De�2 Œ2.	 C 1/ �e�2.	 � 1/�
.	 C 1/

; and (8.72)
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Fig. 8.26 Solutions for the
expansion heat front, for
	 D 1:5

r

r r

eFRo D e�2.7	 � 5/
2.	 � 1/ � e�22.2	/

.	 C 1/
C e�23.	 � 1/

2.	 C 1/
: (8.73)

One can solve (8.73) fore�2, obtaining a complicated expression that is a function of
	 andeFRo only.

The shock frame and heat-front frame are connected as stated above:

us C u1s D uhf C u1; (8.74)

and in addition the one must have only one pressure in the shocked matter, soep1
from (8.72) equals p1=.�oa32/ with p1 from (8.68). This enables one to connect the
two sets of results just given. One can show that, in order to sustain us > uhf ,
necessary for an expansion heat front, one must have �2 < 2�o. At this point in
the calculation, one can find all the variables as functions of FRo and 	 . Figure 8.26
shows the results of this calculation.

This concludes our discussion of the expansion heat front. We have focused on
behavior relevant to the irradiation of solid surfaces by soft X-rays, which matters
for many applications. Hatchett (1991) provides a more general discussion of the
expansion heat front.

8.2.3 Photoionization Fronts

If an ionized medium remains strongly absorbing, then radiative energy proceeds
diffusively through it and one has a Marshak wave or related phenomenon. However,
the opacity of the medium may decrease strongly after ionization. This is particu-
larly true of ionized hydrogen, which can no longer undergo bound-free transitions
once it is ionized. An opacity decrease can also happen under some circumstances
with other materials. In these cases, the incident radiation can stream through the
ionized medium until it reaches the ionization front, where the ionization occurs
over a comparatively short distance. This establishes a photoionization front. In
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Fig. 8.27 The Horsehead
Nebula. Located in an intense
UV environment, this is an
example of a structure
through which an ionization
front has passed. Credit: N.A.
Sharp/National Optical
Astronomy
Observatory/Association of
Universities for Research in
Astronomy/National Science
Foundation

the astrophysics literature, photoionization fronts are typically referred to just as
ionization fronts. Here we use the longer word, to avoid confusion with shock fronts
and diffusive heat fronts, both of which can often be described as ionization fronts,
in the sense that they are fronts where the ionization changes.

Examples of photoionization fronts are common in astrophysics. They occur
when bright stars emitting primarily in the UV irradiate molecular clouds con-
taining mostly H2. The Horsehead Nebula, shown in Fig. 8.27, is a structure that
has developed, perhaps through hydrodynamic instabilities, in a molecular cloud
through which an ionization front is passing.

8.2.3.1 The Kinematics of Photoionization Fronts

The speed of a photoionization front depends on the photon flux that creates it.
Suppose the flux of ionizing photons is F	 , in number per unit area per unit time.
This flux can be determined from the properties of the photon source including
its geometry. Suppose in turn that the initial number density of atoms or ions to
be ionized further is naŒD �=.Amp/� and that the local density of not-yet-ionized
particles is no. The velocity of the front will from simple kinematics be the flux
divided by the number density, vf D Fo=na where the initial photon flux is Fo. It is
straightforward to write equations for the evolution of the front, which are

dF	
dx

D �F	no
o and
dno

dt
D �F	no
o: (8.75)

These equations can be placed in dimensionless form by taking f D F	=Fo; z D
x=�; � D no=na; and y D vf t=�; where � D 1=.na
o/ is the mean-free path in
the un-ionized medium. One can substitute for f to obtain the following integro-
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Fig. 8.28 Structure of an
ionization front. Neutral
particle fraction no=na vs.
distance in particle mean-free
paths, in an ionization front
that has evolved for a time of
50�=vf
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Figure 8.28 shows the resulting profile, from numerical integration of this
equation, at a time of 50 �=vf . The full scale in the figure is 100 �. One sees that the
ionization front has moved very nearly 50 �, so it moves at the expected velocity.
One also sees that the width of the front (from 10% to 90% ionization) is less than
5 mean-free paths.

Since the speed of a photoionization front is determined by the photon flux, the
front can be subsonic or supersonic relative to the sound speed in the upstream
medium. It may also change from one of these to the other as the radiation
source evolves in time. A supersonic front will encounter an unperturbed upstream
medium. As subsonic front, in contrast, has the potential to produce very compli-
cated behavior, for example, if it drives a shock wave that acts to reduce the opacity
of the shocked material.

In the photoionization region around a star, the radiation flux and hence u1
decrease with distance from the star, because of the spherical geometry. In addition,
because the rate of recombination is finite, the radiation energy within a given solid
angle also decreases. The radiation flux then gets driven to zero at a finite radius,
known as the Strömgren radius.

8.2.3.2 Photoionization Fronts as Heat Fronts

In any regime of likely interest for front behavior, photoionization occurs via the
photoelectric effect, so that the liberated electron retains the difference in energy
between the ionizing photon and the ionization energy. In astrophysics, the radiation
sources of interest are typically stars, emitting Planckian spectra corresponding to a
temperature of a few eV. As a result, photoionization is driven by the high-energy
tail of the photon distribution, except perhaps sometimes for H. The average energy
provided to the liberated electrons corresponds to the integral of the product of the
(energy dependent) photoionization cross section and the spectral photon flux, both
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of which drop rapidly above the ionization energy. The temperature of the liberated
electrons is then of order the temperature of the Planckian, and often much less
than the ionization energy. For this reason, photoionized plasmas in astrophysics
are often described as “overionized”. They are ionized far beyond the collisional
ionization that would correspond to the electron temperature. In the laboratory,
in contrast, the temperature of the radiation source likely exceeds the ionization
energies, so that the plasma may well at first be underionized. In either case, though,
the photoionization front is also a heat front, and we can analyze it accordingly.

The boundary conditions for photoionization heat fronts correspond to the
kinematics of photoionization, discussed in the previous subsection. Simply put,
the front uses up all the photons. Designating the flux of ionizing photons as F	 ,
the front speed as vf , the density of atoms to be ionized as na, and the degree of
ionization achieved as �, we have

F	 D na�vf : (8.77)

Using the geometric conventions we established above for heat fronts, we thus have
u1 D �vf D �F	=.�na/: We include the ionization here to allow for the possibility
of such fronts, in the laboratory, in gasses other than H.

To consider the photoionization front as a heat front, and in comparison with
the astrophysical literature, we need to account for the incoming energy flux
that produces ionization. For the simple case of photoionization of H, it can be
convenient to subtract the ionization energy of the H, �H , from the mean energy
of the electrons produced by ionization, �	 , so that the energy flux entering the
fluid equations is .�	 � �H/nau1. This allows one in principle to otherwise ignore
the atomic physics and take 	 D 5=3. This may not always be justified for low-
temperature fronts that can produce significant radiation. For the laboratory case,
it makes more sense to account for the full incoming, ionizing energy flux and to
use a value of 	 that includes the internal energy of ionization, consistent with our
discussion in Chap. 3. Designating the mean energy of the ionizing photons as NE	 ,
we can replace FR in Eq. (8.56) as follows:

FR ! NE	F	 D NE	na�vf D �
NE	 �
NM �1u1 D �Q2�1u1; (8.78)

where the signs are necessary to support our intention that the energy deposited
at the heat front be added to the energy of state 1 to produce state 2, the average
mass per atom is NM, and Q is a variable with units of velocity that characterizes
the energy deposition. It is significant that the energy flux as such is not important
to the energy equation in this context, but rather the energy per atom deposited
via the photoionization. Changing the energy flux changes u1 but does not change
the energy deposited per atom as the photoionization front progresses. This is an
enormous qualitative difference, compared to the behavior of diffusive heat fronts.

The upstream isothermal sound speed, a1, is independent of the front and makes
a useful parameter for normalization of Eqs. (8.54)–(8.56). So we take �2=�1 D
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�, a2 D Oa2a1, u1 D Ou1a1, u2 D Ou1a1=�, FR D �Q2�1u1, and Q D OQa1. The
normalized equations are

�C Ou21.� � 1/ � Oa22�2 D 0; and (8.79)

�2
�
.2 OQ2 C Ou21/.	 � 1/C 2	

	
� �2	.Ou21 C 1/C Ou21.	 C 1/ D 0: (8.80)

Here the independent variables, set by the problem, are Ou1 and OQ, so we can solve
Eq. (8.79) for Oa2, finding

Oa2 D
q
�C Ou21.� � 1/

�
: (8.81)

Meanwhile Eq. (8.80) can be solved to give two real, positive roots for �, as follows

� D �2

�1
D
	.Ou21 C 1/˙

q
.Ou21 � 	/2 � 2 OQ2 Ou21.	2 � 1/

2 OQ2.	 � 1/C Ou21.	 � 1/C 2	
: (8.82)

Note that in these last two equations the density ratio depends only upon known
quantities—the upstream Mach number of the heat front, Ou1 D u1=a1, 	 , and OQ—
and that knowing these quantities one can infer everything else.

It may be worth mentioning that some of the literature emphasises only the
momentum relations or the energy relations, but solving both as is done here is
necessary to find an un-ambiguous picture. Figure 8.29 shows the solutions for
OQ D 1 and 	 D 4=3. The labels show the standard jargon as defined by Kahn
(1954) and Axford (1961). For finite radiation flux, there is a gap in u1=a1 between
the two sets of roots. This gap vanishes as OFR decreases, until the two weak solutions
for the density ratio join in a single line corresponding to no perturbation at �2 D �1.
Perhaps this is why they are known as the “weak” fronts.

One can ask what will happen when some physical system produces a value
of u1=a1 that lies in the gap seen in Fig. 8.29. The system will have to adjust to
create a flow pattern that conserves mass, momentum, and energy. In this case what
happens is as follows. The initial heating launches a shock wave, which heats and
compresses the upstream matter. This increases the value of a1 and decreases the
value of u1 corresponding to the radiative heat front, so that it now exists in the
allowed, subsonic zone on these plots. The heat front will typically connect to an
isothermal rarefaction, carrying the ablated matter off to the left.

We can say a bit more regarding the various solutions shown in Fig. 8.29.
The Weak R-Type front is the classic, simple ionization front described in the
previous subsection, in which photons stream through an ionized medium and are
stopped over a short distance where they ionize the neutral particles. The Strong
R-Type front is a modified shock wave; the effect of the radiation is to reduce the
compression. This solution requires an incoming flow velocity to support the shock
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Fig. 8.29 Density ratio, sound speed ratio, and downstream internal Mach number are shown
against the upstream Mach number for OQ D 1 and 	 D 4=3. Labels show the standard
identification of the roots

structure (or equivalently, a piston driving the flow from a distance). The Weak D-
Type front represents a subsonic expansion with modest heating. This would require
that the boundary conditions on the outflow support this as a steady-state solution.
The Strong D-Type front is a supersonic rarefaction, in which the density drops
by some amount at the front. In practice such behavior is often connected to an
isothermal rarefaction at lower densities.

This concludes our discussion of the fundamental phenomena of radiation
hydrodynamics. We have seen here that radiation hydrodynamic phenomena appear
frequently in astrophysics and can readily be produced in the laboratory. We
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will see in the following that some radiation hydrodynamic effects are essential
to the production of high-energy-density conditions and specifically to inertial
confinement fusion.

Homework Problems

8.1 Demonstrate that the material energy flux coming into a radiative shock does
not decrease when lateral losses decrease the upstream energy flux, by considering
a system having a planar flow of material within a cylinder of some diameter and of
finite length yet losing radiation both radially and axially, and integrating over the
cylinder.

8.2 Derive (8.6), relating the radiation flux to the material properties, and discuss
the origin and significance of each term.

8.3 Working with the Planck description of blackbody radiation, find and plot the
fraction of photons that are ionizing as a function of temperature. You will need a
computational mathematics program to generate the plot.

8.4 Evaluate the net radiation flux .FR � Fo/ for an optically thin precursor using a
radiative-transfer calculation similar to that done in (8.20) and (8.24).

8.5 Explore further the behavior of radiative shocks that are optically thin upstream
and thick downstream. Beginning with (8.4)–(8.6), derive the final inverse compres-
sion (8.30) under the assumptions of the present section.

8.6 Determine whether the equation for energy flow in a radiative precursor, (8.19),
admits a self-similar solution, assuming a diffusive model for FR.

8.7 Examine the behavior of diffusive precursors. Solve (8.41) numerically, for
several relevant values of n. Comment on the results.

8.8 We saw in Sect. 7.3 that Marshak waves are inherently unsteady, yet in
Sect. 8.2.1 we analyzed them using steady jump conditions. Develop a condition for
the validity of the use of steady jump conditions for Marshak waves, and determine
when this is realistic.

8.9 Consider a truly radiation-dominated case, so p can be neglected in (8.50) and
(8.51). Solve these equations for pR and �. Find the dependence of the postshock T
on the shock velocity, and compare it to the dependence of a non-radiative shock.

8.10 Express p and pR as reasonable functions of T and solve (8.50) and (8.51) to
find T and � in the postshock state. This may be a numerical solution, for which
you should make reasonable choices about the parameters and show a few cases.
Provide at least one graph based on these equations as part of the analysis.
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Chapter 9
Creating High-Energy-Density Conditions

Abstract This chapter discusses a sequence of physical mechanisms and practical
issues associated with the production of high-energy-conditions, primarily using
lasers. After a brief introduction to the lasers themselves, the first topic is the effect
of the laser beams on the plasma and of the plasma on the laser beams. This includes
absorption, refraction, reflection, laser scattering, and laser–plasma instabilities. The
next topic is the transfer of energy by electron heat conduction, which enables a
discussion of the laser heating of the plasma, of the consequent ablation of dense
matter, and of the eventual resulting, rocket-like acceleration of the target. This is
followed by a consideration of the dynamics of mid-Z and high-Z targets, in which
radiation plays a larger role, and specifically of the use of gold targets as an X-ray
source. The final topic is hohlraums, including discussions of the soft-X-ray energy
fluxes they generate, the ablation of low-Z matter by such X-rays, and the problems
that experiments using hohlraums encounter.

Nature often creates high-energy-density conditions. At root, the cause is always
gravity. At the center of the Earth, for example, the pressure is 3.6 Mbar, almost
entirely due to gravity. Jupiter is similar, with a pressure of �80 Mbar at its core.
In stars, the gravitational assembly of the stellar mass leads to heating by nuclear
fusion, which produces much larger pressures—the pressure at the core of the
Sun is roughly 0.2 terabars. Once fusion creates conditions that lead to supernova
explosions, even larger pressures occur. For example, some supernovae produce
neutron stars, and the magnetic field at the surface of a typical neutron star is near 1
teraGauss. The pressure of such a magnetic field is about 40 petabars.

Nature also creates conditions whose laboratory analog must be in the high-
energy-density regime. One can consider, for example, shock waves that are fast
enough to ionize matter and perhaps to cause radiative effects. A 1000 km/s shock
wave in the interstellar medium, where the density of particles is of order one per
cubic centimeter, has a ram pressure of tens of femtobars. This pressure approaches
nanobars when the density becomes large enough that radiative losses become
important. In contrast, a laboratory system that is a good analog of this astrophysical
shock wave might involve a shock wave at 10 km/s in a material that is �1 g/cc, for
which the ram pressure is of order 1 Mbar.
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In this chapter we take up the problem of producing high-energy-density condi-
tions. It would have been convenient to take this up much sooner, but in fact many
of the concepts we have already introduced are needed to understand how to do this.
We will discuss the technology that makes this possible in the early twenty-first
century. We will also discuss the conceptual, physical, and mathematical models
that are necessary to understand how such conditions are produced. These topics
subdivide naturally into five areas: direct laser irradiation, laser-driven hohlraums,
ultrafast lasers, high-energy-density beams, and Z-pinches. The first two of these
are covered here; the next two are covered in Chap. 13. The next chapter addresses
Z-pinches and related systems.

9.1 Direct Laser Irradiation

All lasers, from laser pointers to megaJoule systems, have certain features in
common. They involve the preparation of a medium that can reach a lower-energy
state by giving energy to a light wave. This often involves the excitation of a specific
atom, such as neodymium (Nd), so that more electrons are present in the upper state
than in the lower state of an atomic transition. All lasers also involve the initiation of
a light wave within such a system, sometimes by thermal emission of radiation and
sometimes from an external source. This light wave is then amplified coherently, as
the medium gives energy to it. The resulting beam of light may be well collimated,
but this depends in part on the geometry of the lasing system. In the present book
we will not discuss these aspects of lasers in further detail, leaving this subject to
other books. Instead, we will discuss the aspects of lasers that are specific to high-
energy-density physics—high energies in this section and high powers in Chap. 13.

Before discussing the specifics of lasers, some discussion of the relevant units
in common use is a good idea. The common units, also used here, are somewhat
mixed. The energy of a laser pulse is typically given in Joules (J), or in related
units such as kJ or MJ. Correspondingly, and considering that the timescale of the
pulses is ns, the power is given in W, gigawatts (GW), terawatts (TW), or petawatts
(PW). However, the practical unit of distance for real lasers is the cm, not the meter,
so the power per unit area is typically given in W/cm2, much to the horror of SI
units purists. Perhaps more important is that the high-energy-density community
has a habit of describing this power per unit area as an intensity, so one will see for
example in the literature that the laser intensity in our experiment was 1014 W/cm2.
This spawns confusion across disciplines, because the word “intensity” is used to
mean various physical quantities in various disciplines. It horrifies the conceptual
purists in optics, as the general meaning of intensity involves power per unit area
per unit solid angle (as in Chap. 6). The correct term in optics for power per unit
area is irradiance. Alternatively, these units in simple language represent an energy
flux, and there is a lot to be said for using such basic terms in order to improve
communication and clarity, so we will use this terminology here.
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9.1.1 Laser Technology

Now we turn to the specific issues involved in the lasers that produce high-energy-
density conditions. A number of high-energy lasers have been constructed over
the past few decades, motivated by the challenge of achieving inertial confinement
fusion. The long-term goal is to create miniature fusion explosions with an energy
gain of about 100. Such a laser system begins with a very high-quality laser beam,
initially of low energy, which propagates through and extracts energy from Nd-
doped laser glass. (We do not discuss here lasers based on gasses such as CO2 or
KrF. No high-energy CO2 lasers remain in operation. The KrF lasers represent an
important alternative to Nd-glass lasers for high-energy-density physics.) The first
challenge for glass-based lasers is to prevent defects and diffraction from damaging
the laser components as the energy per unit area of the laser beam reaches high
levels. The second is to extract a large fraction of the stored energy.

The first challenge was met in the 1970s. The key inventions here were image
relaying and spatial filters. A laser system that uses image relaying first creates a
high-quality, low-energy laser beam at a specific position (the object plane). It then
designs the optics in the laser system so that the object plane is imaged onto or
near the planes where the highest-irradiance laser light penetrates optical materials.
These locations are often the lenses that inject the light into spatial filters. Spatial
filters are also essential to reduce the structure in a laser beam. They do so by placing
a pinhole at the focus of an input lens. This clips most of the energy in hot spots or
other structures in the incident laser beam, as these small structures are focused to
a much larger spot than the uniform beam is. The output lens then recollimates the
remaining laser light into a smoother, more-uniform beam. These inventions led to
several high-energy lasers capable of delivering >1 kJ of laser energy to a target.

Figure 9.1 shows one example of such a laser system, the Omega facility (Boehly
et al. 1995), which can deliver 30 kJ to a target. The laser occupies approximately
the area of one (American) football field. The capacitors in the basement accumulate

Fig. 9.1 A drawing of the Omega laser system. Credit: Laboratory for Laser Energetics
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energy for several minutes before delivering it to flashlamps in the laser amplifiers,
preparing the Nd glass to amplify light. The initial laser beam, formed and amplified
at the center of the laser bay, is split, amplified further, and eventually feeds the 60
amplifier chains that proceed down the sides of the laser bay toward the output
end. Frequency conversion crystals then triple the frequency of these laser beams,
decreasing their wavelength from 1.05 to 0.35�m. Mirrors then direct the laser
beams toward the center of the target chamber.

The second challenge cited above, of using the stored energy more efficiently,
was met by large lasers constructed in the early twenty-first century. For the laser
beam to extract more of the stored energy it must pass through the Nd-doped glass
several times, without destroying the quality or the focusability of the laser beam.
To accomplish this it is necessary to clean up the laser beam between passes, using
spatial filters, and/or to compensate for the phase differences across the amplifying
optics, using adaptive optics. (An adaptive optic deforms an optical surface either
continually or in small segments, allowing local adjustment of the distance that the
light travels.)

9.1.2 Laser Focusing

It would seem that a simple lens would be sufficient to focus a high-energy beam
to high energy flux for experiments, just as a simple magnifier can focus sunlight to
start a fire. Unfortunately, a typical laser beam, especially when focused to a spot
that is larger than the smallest (or best focus) spot that a lens can produce, creates a
very irregular spot. This has a variety of adverse consequences, some of which we
will touch on later. Inertial fusion, for example, requires the irradiation of a target by
a very smooth laser beam. Small lasers often use a Gaussian beam to produce a high-
quality laser spot. A Gaussian beam has a profile of energy flux that is approximately
Gaussian as a function of radius (proportional to exp.�r2=a2/, where r is radius and
a is a distance). Such a beam can be image-relayed through an optical system to
maintain high quality. This type of laser is comparatively inefficient, however, as
most of the beam is at low intensity and does not extract much of the stored energy
from the laser glass. High-energy beams must extract as much as possible of this
stored energy, and thus must use much flatter energy flux profiles. Unfortunately,
thorough studies proved that no practical optics could produce laser beams with flat
energy flux profiles whose phase fronts were uniform enough that they would focus
to smooth spots without some sort of extra processing. This has led to the invention
of a number of techniques for so-called beam-smoothing. We discuss some of these
here.

These techniques typically rely on the diffractive behavior of laser optics. When a
light wave passes through a circular aperture, diffraction of the light by the aperture
is well known to produce an Airy pattern (see Fig. 9.2). If such a light wave is
focused, then diameter, d, of the first zero of the Airy pattern is given by

d D 2:44�f ; (9.1)
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Fig. 9.2 An Airy pattern
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in which the wavelength of the light is � and the f number, the ratio of length to
aperture, of the focusing system is f . The central maximum of the Airy pattern
contains about 88% of the energy in the light wave. Thus, for example, for a 30-cm
dia. lens with a 3-m focal length, f D 10 so for 0.35�m light d D 8:5 �m. This is
also called the diffraction-limited spot size of the laser system. Typical high-energy
laser systems, using only a focusing lens, produce best-focus spots that are larger
than ten times the diffraction-limited spot size. The size of these best-focus spots
and their structure is due to the gradual variation of the phase of the light across the
aperture of the lens, and to the interference of the beam from different portions of
the aperture.

The simplest of the beam-smoothing systems, no longer in much use, is the
random phase plate (RPP). A random phase plate passes the laser beam through an
array of hundreds or thousands of adjacent optical elements, of randomly varying
thickness, thus dividing the beam into small beamlets. The elements are typically
hexagonal in shape. The elements are sized so that the diffraction-limited spot of
each element is the size of the desired laser spot. Thus, to obtain a 1 mm spot with
0.35-�m light at a distance of 3 m, (9.1) implies the aperture of an element must be
2.6 mm. This determines the overall size of the laser spot. (In actual experiments,
one is most often concerned with the size of the spot that contains half the laser
energy, or at the edges of which the energy flux is half its peak value. These numbers
are somewhat smaller than the value from (9.1) and for real systems must be
determined numerically or experimentally.) In addition, the beamlets from different
elements interfere with one another, typically producing small, local maxima in the
energy flux pattern, known as speckles. The minimum speckle diameter is produced
by interfering beamlets that originate from opposing edges of the laser beam, and is
given by (9.1) using the aperture of the entire laser beam to determine the f number.
These speckles are actually very long and narrow structures. Their length, Ls, is

Ls D 7�of 2; (9.2)

so the ratio of length to width is roughly 3f .
What has largely replaced the random phase plate in practice is the distributed

phase plate, or DPP, in which the phase of each small element is controlled by
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Fig. 9.3 Pattern of energy
flux from a distributed phase
plate. The graph shows a line
through the image, shown in
the inset. Credit: Laboratory
for Laser Energetics
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design in order to determine the shape and structure of the resulting laser spot. In
particular, this allows one to produce laser beams with flatter overall profiles of
energy flux and with less energy in the wings of the laser spot. Figure 9.3 shows
the typical energy flux pattern produced by a distributed phase plate. One sees a
smooth overall profile modulated by many speckles. A related type of optic, often
used in combination with a DPP, is a distributed polarization rotator or DPR. A
DPR uses birefringent optical elements to rotate the polarization of each beamlet
by a controlled amount. Since only the components of two beamlets with parallel
polarizations interfere with one another, this provides a further dimension of control
when designing the shape of a laser spot. It also in principle allows one to tailor the
polarization of the laser beamlets as they interact with the target.

Plasmas conduct heat easily, which will tend to smooth the effect of small-scale
spikes like those seen in Fig. 9.3. This smoothing, combined with the tendency of
shock waves to anneal as discussed in Chap. 5, implies that for some experiments
the use of an RPP or DPP is sufficient to obtain high-quality results. However,
for inertial fusion, at least in cases where the laser directly illuminates the fusion
capsule, such smoothing techniques are not sufficient. The fixed location of each
speckle creates lasting effects at a high spatial frequency. An improvement on this
is to cause the speckles to move around, so that the profile of time-averaged energy
flux across the overall laser spot is very smooth. There are two approaches to this.

The first approach is induced spatial incoherence, or ISI. One again breaks the
laser beam into beamlets, but now one arranges that the difference in optical path
length between the beamlets exceeds the distance over which the laser is coherent.
This is only feasible using a comparatively broadband laser. The result is that the
phase difference between beamlets varies in time, causing the speckles to move
around on a timescale comparable to the coherence time of the laser. ISI was
demonstrated on Nd-glass lasers, and is particularly well suited for implementation
in KrF lasers. where it can be integrated into the laser design.

The second approach is smoothing by spectral dispersion (SSD), which has
proven to be more practical for large glass lasers. In this approach one produces
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a broadband laser pulse, disperses it in angle using a diffraction grating, and then
collimates it to produce a laser beam whose frequency varies in the direction that
was dispersed. One can also use two gratings (or complicated optics) to disperse
the beam in two directions, producing 2D SSD. When such a beam is focused
through a distributed phase plate, the phase difference between beamlets varies in
time because the beamlets have different frequencies so their individual phases vary
at different rates. This again causes the speckles to move around with a timescale
determined by how large the differences in frequency are.

9.1.3 Propagation and Absorption of Electromagnetic Waves

Now that we have some idea how to irradiate a target with a high-energy laser beam
that has been smoothed, we are ready to examine what happens when such a laser
beam actually strikes a target. At the energy fluxes of interest, which are typically
1012–1016 W/cm2, the laser light immediately produces a plasma at the surface of the
target. At the higher energy fluxes in this range, the electric field of the laser light is
sufficient to directly ionize the atoms. At the lower energy fluxes, the process is more
complicated but nonetheless a plasma is quickly produced. Figure 9.4 illustrates the
three fundamental processes that occur when laser light penetrates a plasma. The
laser light is refracted as it propagates through the density gradient in the plasma, it
is reflected when it reaches a high enough density, and it is absorbed along its entire
path of propagation. We will analyze these processes by examining the fundamental
behavior of light in plasma.

To understand the behavior of laser light as it penetrates a plasma, we begin with
Ampere’s law, (2.18), in Gaussian cgs units, and use the standard vector and scalar
potentials in the Coulomb gauge. This gives

r � r � A D �1
c2
@2A
@t2

C 4J
c

� 1

c

@r˚
@t

: (9.3)

Fig. 9.4 The simple
processes that occur when a
light wave enters a plasma
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This equation has two parts, and it turns out that they separate completely. Any
vector can be decomposed into a transverse (or rotational) part, the divergence of
which is zero, and a longitudinal (or compressive, or irrotational) part, the curl of
which is zero. By definition, A is purely transverse. Also, any gradient has zero
curl, so r˚ is purely longitudinal. Taking the divergence of (9.3) yields a continuity
equation for the charge in the plasma, in which the variation with time charge density
(proportional to r2˚ via the Poisson equation) is balanced by the divergence of a
flux of charge (i.e., a current).

One can expand the left-hand of (9.3) and then subtract the longitudinal terms
from the equation, to obtain a fundamental equation for light wave propagation:

@2A
@t2

� c2r2A D 4cJt; (9.4)

in which Jt refers to the transverse part of J. (One can construct Jt from J if needed.
This is discussed for example in Jackson (1999).)

For any specific plasma environment, the behavior of light waves is thus
determined by Jt. It is also true that the frequencies of the lasers of interest are
so large that the ion motion is negligible on the timescale of the laser propagation.
(Ion motion can have important consequences on longer timescales, some of which
are discussed in Sect. 9.1.4.) The net current carried by the electrons is �eneue; we
are seeking the transverse part of this current.

To find this transverse current, we work with the continuity and momentum
equations for the electron fluid, which are (2.42) and (2.43). The momentum
equation, written again here for electrons,

mene
@ue

@t
Cmeneue �rue D�nee

�
EC ue

c
� B

	
�rpe�

X
jDions

menj.ue�uj/�ej; (9.5)

is key. In applying this equation here we can make several observations and
simplifications. The velocity of any ions is negligible and can be neglected. In
addition, the pressure gradient is an inherently longitudinal vector, so we can drop
it as we are seeking the transverse velocity. We can also ignore r˚ after we again
use the scalar and vector potentials. Finally, we can divide each term by neme. After
these adjustments, we have an equation for the transverse electron velocity,

@ue

@t
C ue � rue D �e

me

�
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@t

C ue

c
� r � A

�
� ue�ei: (9.6)

From standard vector identities, ue � rue D �ue � r � ue C ru2e=2, but the
gradient term here is also longitudinal and can also be dropped. (This term will play
a role in the coupling of laser light to longitudinal waves in the plasma.) Substituting
and rearranging, we have

�
@

@t
C �ei

�
ue � ue � r � ue D

�
@vos

@t
� ue � r � vos

�
; (9.7)
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where we have defined vos D eA=.mec/, which we will identify as the oscillating
velocity of the electron within the light wave. One can see from (9.7) that in the
absence of any collisional energy loss to the ions, one would have precisely ue D
vos. The presence of �ei introduces spatial damping of the electromagnetic wave and
a phase variation between ue and vos. There are typically two simplifying aspects.
The first, dealt with below, is that the spatial scale of the variation in A is large
compared to the wavelength of the light. The second is that ue is a small fraction
of the speed of light. (This second is true for typical high-energy lasers, having
pulses of order a ns, but not for sufficiently intense, high-power lasers, discussed in
Chap. 13. To treat the relativistic regime one must use modified equations.) So one
can divide (9.7) by c2 and note that the terms involving the curl are much smaller
than the other terms because j@=@.ct/j � !=c � k � jrj. This justifies the use of
linearization and the dropping of the terms involving the curl. Then, assuming that
A and thus ue vary as e�i!ot, we find

ue D vos
1

1C i�ei=!o
: (9.8)

Here the imaginary term produces the phase shift mentioned above, but this is small
so long as �ei � !o. Also note that ue is purely transverse, because A and E for an
electromagnetic wave are purely transverse.

It will be helpful for applications to connect vos and �ei with practical units. The
direction of vos is the direction of the electric field of the laser, typically described
as the direction of polarization of the laser. The magnitude, vos, can be related to
the energy flux of the laser in vacuum, IL, as follows. Because the energy density
of the electromagnetic field is E2=.8/, and because this propagates with a group
velocity in vacuum of c, one has IL D cE2=.8/. The magnitude of this is IL D
!2o A2=.8c/ D v2os!

2
o m2

ec=.8e2/, from which

vos=c D
q

I14�2�=117; (9.9)

in which I14 is IL in units of 1014 W/cm2 and �� is the wavelength of the light in
�m. We discussed �ei in Chap. 2. In practical units it is

�ei D 3 � 10�6 ln�
neZ

T3=2e

; (9.10)

with ne in cm�3, Te in eV, and where ln� D max


1;
�
24 � ln.

p
ne=Te/

��
.

We then take Jt D �enevos=.1 C i�ei=!o/ in (9.4). This is completely accurate
if ne is constant. (However, if a variation in ne is designated as ne1, then the part
of Jt proportional to ne1vos may have transverse and longitudinal components,
depending on the direction of the gradient in ne. This detail matters for wave
coupling calculations, but we ignore it here.) Substituting into (9.4), simplifying,
and rearranging, we obtain
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@2

@t2
C !2pe

.1C i�ei=!o/
� c2r2

!
A D 0; (9.11)

in which !pe is the plasma frequency defined in Chap. 2. This is the wave equation
for a damped electromagnetic wave in a plasma.

It is worthwhile to examine and discuss the dispersion relation implied by (9.11),
which is

!2o � !2peh
1C .�ei=!o/

2
i � c2k2 C i

�ei=!oh
1C .�ei=!o/

2
i!2pe D 0; (9.12)

in which k is the wavenumber of the light wave. The imaginary term here introduces
an imaginary component to the phase of the wave, which may be expressed as
an imaginary part of either !o or k. It causes damping as the wave propagates.
We will examine this damping below. The real component of (9.12) describes
the propagation of the wave. The reader may recall that a propagating light wave
traveling through a stationary, unchanging medium experiences variations in k and
not in !o. Furthermore, when k is driven to zero the wave cannot propagate further
and must be reflected and/or absorbed. Equation (9.12) implies that k is driven
to zero approximately when !o D !pe. Physically, when !o D !pe the electrons
resonantly oscillate at the frequency of the light wave, creating a reflecting surface
like a mirror. This surface is known as the critical surface and the density there is
the critical density, nc. From !o D !pe one can show that

nc.cm�3/ D 1:1 � 1021=�2�: (9.13)

Thus, for visible and UV lasers, nc < 1023 cm�3. If one now looks again at
Fig. 9.5, one can draw some implications for the absorption of light in plasmas. The
critical density for visible and UV lasers is typically small enough that �ei < !pe

there. Such laser beams propagate through the plasma and reflect, perhaps having
been substantially absorbed in the process. In contrast, the critical density for X-
rays is typically above any density present in the plasma. Thus, in the absence of

Fig. 9.5 Refraction at an
interface, with solid lines
showing phase fronts
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absorption the X-rays would penetrate freely through the target. But absorption can
be strong: �ei becomes quite large at densities near or above solid density. The result
is that soft X-rays, with energies below roughly 1 keV, are very strongly absorbed
by collisions. Harder X-rays usually are not strongly absorbed by collisions, but the
atomic absorption of these X-rays can be significant as discussed in Chap. 6.

Let us focus now on the absorption of laser light and assume that .�ei=!o/
2 is

small enough to be ignored. We are interested in the spatial rate of absorption, so we
assume !o to be real and take k D kr C i�EM=2, with real and imaginary parts kr and
�EM=2, respectively. Here �EM is the spatial rate of absorption of the laser energy,
proportional to E2, and �EM=2 is the spatial rate of change of E (or A). We then
solve (9.12) for kr and �EM, ignoring the term involving �2EM subject to verifying our
assumption that the light is absorbed slowly as it propagates (i.e., �EM � k). We
obtain

kr D .!o=c/
p
1 � ne=nc (9.14)

and

�EM D �ei

!2pe

!2o

1

c
p
1 � ne=nc

D �ei

vg

ne

nc
; (9.15)

in which vg is the group velocity of the light wave in the plasma. Equation (9.15) is
easy to understand—only that fraction of the energy in the light wave that partici-
pates in electron oscillations, ne=nc, can be affected by electron–ion collisions, and
the spatial rate at which this effect occurs is the temporal collision rate divided by
the rate at which energy propagates in space (i.e., the group velocity). Also note that
our previous assumption that �ei � !o assures that �EM � k.

The above discussion implies that the fraction of the incident laser light
transmitted through a uniform plasma of length D is expŒ��EMD�. Kruer (1988)
shows how to determine the absorption in more complicated circumstances. Two of
his results are worth quoting here. Let the electron-ion collision rate at the critical
density be ��

ei, let z be a spatial variable and let L be a scale length. Then, for a laser
beam normally incident on a plasma with a linear density profile, so ne D ncz=L,
the absorption fA is

fA D 1 � exp

��8��
eiL

3c

�
; (9.16)

while for a laser beam incident at an angle � from the normal on a plasma with an
exponential density profile, so ne D noe�z=L, the absorption is

fA D 1 � exp

��8��
eiL

3c
cos3 �

�
: (9.17)
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The third important process that occurs during penetration of a plasma by laser
light is refraction. Refraction refers to the bending of rays of light as they propagate.
The concepts of light rays and refraction are valid in the geometric-optics limit,
when variations in the medium occur on scales large compared to the wavelength
of the light. In high-energy-density systems, refraction is a sensible concept when
light, incident at some angle from normal incidence, penetrates a plasma that has
been expanding from an initial solid surface for 100 ps or more. In contrast, if the
light penetrates to the critical density or if the plasma is only a few wavelengths in
extent, one must analyze the light as a wave. Kruer (1988) provides a discussion of
laser light reflection at the critical surface, where some energy can be absorbed by
resonance absorption.

Continuing with the discussion of refraction, the variation of kr in a plasma is
given by (9.14). The variation in the wave vector k is given by the equations of ray
propagation (see Landau and Lifshitz 1987) as

dk
dt

D �r!; (9.18)

which is the analogy in geometric optics of the relation between the rate of change
of momentum and the gradient of the Hamiltonian in mechanics. It is sensible to
identify the components both parallel and perpendicular to the density gradient as
kjj and k?, respectively. Thus, the component perpendicular to the density gradient
does not change. Intuitively, this may be easiest to see by recalling the refractive
behavior at a sharp interface, illustrated in Fig. 9.5. The phase velocity .!=k/ of
the wave changes at the interface, implying that the distance between the phase
fronts must change. However, the distance between the phase fronts along the
interface is determined by the incident wave. As a result the component of the phase
velocity (and k/ that is perpendicular to the interface is what changes. One can view
propagation up a gradient as the limit of propagation up a series of steps as the
number of steps becomes large and the step size becomes small.

Also, because the boundary condition is that the fields in the wave must vary
continuously across the boundary of the plasma, one has k? D sin.�/!o=c, in which
� is the angle of incidence, measured with respect to a normal vector. This implies

kk D .!o=c/
p

cos2� � ne=nc: (9.19)

This equation has an obvious interpretation: an obliquely incident light wave (in
a planar plasma) reflects at a density such that ne=nc D cos2 � . Thus, when the
angle of incidence is 45ı, the laser light is reflected at roughly nc=2, and at 60ı this
decreases to nc=4.
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9.1.4 Laser Scattering and Laser–Plasma Instabilities

Most of the applications in high-energy-density physics would be simpler and easier
if laser beams did no more than propagate, refract, and absorb in plasmas. Even
laser scattering from small fluctuations, discussed just below, would not disturb
these applications. From this point of view, it is unfortunate that the underdense
plasma produced by the laser is host to a variety of waves, and that these waves can
couple unstably to the laser light wave. The unstable waves can become large and
can have large effects, scattering large amounts of laser light, producing substantial
populations of energetic electrons or ions, and even causing modulations in the
laser absorption dynamics. From the point of view of such dynamics, laser–plasma
interactions (LPI) is a tremendously exciting field. It even has a few astrophysical
applications, relating for example to the dynamics in certain solar bursts and in the
turbulence within stellar winds. One such application—the scattering of pulsar radi-
ation by the plasma of a binary companion—might at times occur at a high energy
density. But LPI is not our primary topic here. Our goal here is to cover as much of
LPI as our reader should know to work intelligently in high-energy-density physics.
Those interested in more details should start with the book on LPI by Kruer (1988).

We will now discuss the dynamics involved in laser scattering from density
fluctuations in the plasma. We will consider only uniform plasmas. This is an
oversimplification, as most scattering and instabilities actually occur in plasmas that
are nonuniform. Here we ignore nonuniformity because it introduces complications
without introducing many new ideas. Collisions may at times be important but we
will ignore them too for the same reason. Thus, we take A D AL C As, in which s
refers to a scattered light wave, and we take ne D neo C ınp. We will use L; s, and
p as subscripts for the laser light wave, the scattered light wave, and the wave in the
plasma, respectively. It is worth noting that the laser light interacts primarily with
the electrons, because the ions move so much more slowly and thus carry far less
current. However, the electron-density fluctuation ınp may be produced by any wave
in the plasma. On the one hand, it could be produced by an electron–plasma wave
in which the ion density is effectively fixed. On the other hand, it could be produced
by an acoustic wave in which the ion density fluctuates and the electrons are forced
by the ion-charge variations to move with the ions. We also assume that proper
normalization would show that terms involving AL alone are large in comparison
with those involving only As or ınp. We then substitute into (9.11) and linearize. We
find that we can drop the terms involving only AL because they cancel one another,
so we obtain

�
@2

@t2
C !2pe � c2r2

�
As D �!2pe

ınp

neo
AL: (9.20)

With reference to (9.4), the interpretation of this equation is simple. The
interaction of the laser light with the density fluctuation produces an additional
transverse current proportional to the right-hand side of (9.20). Another aspect of
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Fig. 9.6 This spectral image from Thomson scattering in the collective regime, with wavelength
varying in the vertical direction shows two peaks due to oppositely propagating acoustic waves.
The feature near zero shows the wavelength of the probe laser. The colors on this image cycle
from white to black twice as the intensity of the signal increases. Adapted from Montgomery et al.
(1999)

(9.20) is that it is fundamentally an equation describing wave beating. The laser light
wave and the electron density fluctuation beat together to drive scattered light waves.
The reader should also recall, from elementary physics, that this will produce beat
waves having both the sum and the difference of the frequencies and wavenumbers
of the two driven waves. One may wonder where the energy in the scattered-light
wave comes from. It is obtained from the laser light wave through a second-order
term that slowly reduces AL.

Indeed, when scattering measurements are used to characterize the fluctuations in
the plasma, a technique known as Thomson scattering, one sees both of the resulting
scattered-light waves. Figure 9.6 shows an example of such data. This figure is
a gated imaging spectrum, meaning: (a) the measurement was limited to a brief
period (it was gated); (b) the instrumentation provides an image along a line through
the object, horizontal in the figure; and (c) the signal from this line was resolved
spectrally in the orthogonal (vertical) direction. Thus, a vertical cut through the
image shown in the figure provides a spectrum at that specific location. The plasma
motion at any location shifts the entire spectrum, by the Doppler effect, providing
a measurement of the local velocity. One can see that this average frequency shift
increases with distance in the figure, which implies that the plasma flow velocity
is increasing with distance. This is sensible because this image is from a plasma
expanding from a laser-irradiated surface, as an isothermal rarefaction. The fact that
the rarefaction is isothermal is confirmed by the constant spacing between the two
peaks in the spectrum. The spacing is proportional to the frequency of the acoustic
waves causing the thermal density fluctuation; thus it measures the sound speed
in the plasma, which depends mainly on the electron temperature. The weakening
of the signal from left to right in the image is due to decreasing plasma density
in the rarefaction. Studies of the ionosphere employ similar Thomson-scattering
techniques, also for the purpose of diagnosing density and temperature. Both the
laser–plasma and the ionospheric applications take place in what is known as the
collective regime of Thomson scattering, to which (9.20) applies. In contrast, the
use of Thomson scattering in magnetic-fusion plasmas takes place in the single-
particle regime, in which the scattering is effectively from individual particles. The
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different Doppler shifts of these particles produces a scattered-light spectrum from
which temperature can be inferred. Sheffield et al. (2010) treat the fundamental
theory of Thomson scattering.

We now turn to cases in which one of the scattered-light waves can participate in
an instability, producing much stronger scattering. We consider explicitly the case
of stimulated Raman scattering (SRS). This process involves scattered-light waves,
which we have just discussed, and electron–plasma waves, discussed in Chap. 2. To
develop an initial understanding, SRS and the other instabilities are most profitably
described in uniform plasmas irradiated by laser pulses that are not depleted by the
action of the instability. In the simplest form of these instabilities, only the difference
frequency participates, and we will selectively include here only those terms in our
discussion here.

Before proceeding with this selective analysis, some words on notation are
needed. All the complex quantities in any derivation must be related to real
quantities by some convention, such as R.AL/ D .ALCA�

L/=2, in which � designates
the complex conjugate. We will assume that the amplitude is real (an approximation
that retains the essential physics) and will use a caret O to designate the amplitude
of each wave, so that for example As D OAsei.ks�x�!st/. When doing theory with
no nonlinear terms, we might typically write the time-and-space dependence of
the scattered light as ei.ks�x�!st/. When working accurately with equations that have
nonlinear terms, one would have to write As D . OAsei.ks�x�!st/ C OA�

s e�i.ks�x�!st//=2.
The interaction of the two real physical quantities in the nonlinear terms involves
cross terms, and these are essential to accounting for the beat waves.

For a cursory analysis we will work with selected terms. Consider first the beat
term in which the phase of the light waves varies as ei.ks�x�!st/ and that the phase of
the plasma wave varies as e�i.kp�x�!pt/. One then has from (9.20)


�!2s C !2pe C c2k2s
� OAs D �!2pe

2

ı Onp

neo

OAL�

exp i
�


kL � ks � kp
� � x � 


!L � !s � !p
�

t
�
;

(9.21)

in which the exponential term is a phase-matching term. Its argument must be zero
to obtain a nonzero averaged response. This imposes the beating condition that we
expect—the frequency and wavevector of the driven wave must equal the difference
of the values for the laser and for the electron–plasma wave.

To see the unstable behavior, we need to reconsider the derivation of the electron–
plasma wave from (2.42) to (2.50), in the presence of light waves and informed by
the discussion earlier in this chapter. We are looking for the ways in which light
waves can affect plasma waves. The electron plasma wave is a purely longitudinal
wave, so one can write ue D vos C vp, in which vos is purely transverse but may
involve the sum of contributions from more than one light wave and vp is the purely
longitudinal vector describing the motion of the electron fluid in the plasma wave.
Substituting into (9.5) and again using scalar and vector potentials, one obtains an
equation from which (9.6) can be subtracted. After linearizing in jvpj and ignoring
collisions we find
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@vp

@t
� e

me
r˚ C rpe

neme
D �r v

2
os

2
; (9.22)

in which we have also dropped a term proportional to vp � r � vos, whose direction
is orthogonal to vp.

As in Chap. 2, one obtains a wave equation by taking the divergence of this
equation, then using continuity and the equation of state to simplify all the terms on
the left-hand side. The right-hand side of this equation represents the force known
as the ponderomotive force. This term is the gradient of v2os, which is equivalent to
the gradient in the energy density (or pressure) of the electromagnetic waves. The
ponderomotive force can be important in other contexts, but here we focus on its
role in instabilities. If the light waves present have vector potentials AL and As, then
v2os has three terms. However, only the cross term involves the beating of two waves.
Keeping only the cross term, one obtains

�
@2

@t2
C !2pe � 3kBTe

me
r2

�
ınp

neo
D e2

m2
ec2

r2 .AL � As/ : (9.23)

This equation describes the driving of electron–plasma waves by the beating of light
waves in the plasma. Once again the wave beating produces source terms that are
upshifted or downshifted in frequency relative to the laser frequency, and once again
only the downshifted source term is significant for the simple instability. To see the
unstable coupling, consider the beat term in which the phases of the laser-light wave,
the scattered-light wave, and the plasma wave vary as e�i.kL�x�!Lt/, ei.ks�x�!st/, and
e�i.kp�x�!pt/, respectively, and again use a caret O to designate the amplitude of each
wave (assumed to be real). One then finds

�
�!2p C !2pe C 3

kBTe

me
k2p

�
ı Onp

neo
D �e2k2p
2m2

ec2

� OAL � OAs

	

� exp i
�
�kL C ks C kp

� � x � 
�!L C !s C !p
�

t
�
: (9.24)

One sees here the same sort of phase-matching term we encountered in (9.21). If
one now multiplies (9.21) by OAL, and substitutes for ı Onp from (9.24), one finds


�!2s C !2pe C c2k2
� ��!2p C !2pe C 3

kBTe

me
k2p

�
D !2pe

k2pv
2
os

4
: (9.25)

This coupled dispersion relation describes the growth of an instability. Physically,
the laser light beats with density fluctuations to drive the scattered light and beats
with the scattered light to drive density fluctuations. When phase-matching is
satisfied—that is, when kL D ks C kp and !L D !s C!p—the process is resonantly
reinforcing. Note that the two sets of parentheses on the left-hand side each enclose
the dispersion relation of one of the normal modes of oscillation of the plasma.
In the absence of driving or coupling and for any given wavenumber, each set
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of parentheses would determine the frequency for each mode independently. The
coupling represented by the right-hand side, in the presence of the phase matching
that connects the mode frequencies and wavevectors, leads to instability growth.

Equation (9.25) implies an exponential growth rate for the instability. For the
uniform-plasma case considered here it makes sense to look for temporal growth.
Mathematically, the two driven waves grow as e	 t while the amplitudes are small.
One finds 	 by identifying the real part of each frequency with the subscript r and
the imaginary part of both of them as 	o, with the sign corresponding to growth in
time. For the components we have chosen to consider, this gives us !s D !sr C i	o

and !p D !pr � i	o. We also assume here that the real part of each frequency is
the normal-mode frequency, and thus cancels the other real terms in its part of the
equation. If 	o is much smaller than the wave frequencies, as is nearly always the
case for SRS (and is sometimes the case for other instabilities), then one finds the
growth rate for SRS in a homogeneous plasma,

	o D
s

!2pe

!sr!pr

kpvos

4
: (9.26)

The growth of SRS in other more complicated situations can be usefully
expressed in ways involving this growth rate. SRS can occur in principle at densities
up to nc=4, where !pr and !sr are both � !o=2. It more typically occurs near nc=10,
where!pr � !o=3,!sr � 2!o=3, and kp � 1:5!o=c. The growth rate, for I14�2� � 1,
is 	o � 0:002!o. Thus, SRS indeed grows slowly on the scale of the wave cycles.
But note that 1=!o � 1 fs, so 1=	o < 1 ps. The instability, when present, thus grows
extremely rapidly on the ns scale of the typical laser pulse.

We should confess that the derivation just provided involves cheating at several
levels, in order to most simply make its physical point. Strictly speaking, one should
express all the wave amplitudes as real quantities and follow through with all the
wave-beating terms that arise. This is the only way one can obtain the factor of 2
that mysteriously appeared in (9.21) and (9.24). One also should not assume that the
light wave and the electron plasma wave, which are normal modes of an undisturbed
plasma, will be unchanged by the instability. Doing all this properly would involve
several more pages, however, and in the end would produce the same result with
many nuances. One could then proceed to consider other complications such as
nonuniform plasmas and depletion of the laser pulse. A first level of improved
analysis can be found in the book by Kruer (1988). Doing better than that requires
submersion in the archival literature.

Of greater importance than the details of the SRS theory is to understand that
once energy is given to electron–plasma waves (by any instability), it tends to be
converted to electron energy in a tail on the distribution function. (In such a tail,
the density of the electrons in phase space at energies above the thermal energy
is increased by comparison to the density present in a Maxwellian.) The electrons
in the tail are known as suprathermal electrons. They are in most cases a terrible
nuisance. They readily penetrate target materials, especially low-Z materials, and
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so can preheat them and alter the initial conditions for later evolution of the target.
This is a crucial issue for laser fusion, as we discuss in Chap. 11. In addition, because
laser irradiation produces large-scale magnetic fields that wrap around the target, the
energetic electrons can very easily travel around almost any shielding to penetrate
and heat surfaces that are distant from the laser spot. This can affect both the physics
of an experiment and the signals seen by diagnostics.

Landau damping produces the energetic electrons. Landau damping typically
dominates over collisional damping of electron–plasma waves. (If collisions are
strong, the waves will not be driven, and if collisions are weak, then the waves
are Landau damped.) Some readers will recall that Landau damping operates by
accelerating electrons in the wave, so that the electrons produced have an energy of
order the phase velocity of the wave. This energy, for the typical SRS conditions
given above, is then

1

2
mev

2 � 1

2
me

 
!2pr

kp

!2
� mec2

40
� 13 keV: (9.27)

This increases and becomes closer to 30 keV as the density approaches nc=4. Two-
plasmon decay, discussed below, can produce smaller wavenumbers, higher phase
velocities, and higher-energy electrons. The penetration of such energetic electrons
into materials is discussed at the end of Sect. 9.1.5.

Table 9.1 summarizes the instabilities driven by the laser beam in laser plasmas.
In all cases, each of the two driven waves is coupled to the laser light wave so as to
drive the other driven wave. The density where each instability occurs is given, as
is the growth rate in a homogeneous plasma, with the two driven waves indicated
by subscripts 1 and 2. In the column giving the growth rates, !pi is the ion plasma
frequency, !2pi D 4Z2e2ni=mi, with ion density ni and mass mi, and cs is the sound
speed, derived for plasmas in Chap. 2. As shown in (2.53) it is given approximately
for a two-fluid plasma by c2s D ZkBTe=mi C 3kBTi=mi. We now briefly discuss the
instabilities shown in the table.

Table 9.1 Laser-driven instabilities

Name Driven wave 1 Driven wave 2 Where Growth rate

Stimulated Raman Scattered light Electron plasma � nc=4

q
!2pe

!1!2

k2vos
4

scattering

Stimulated Brillouin Scattered light Acoustic � nc

r
!2pi

!1k2cs

k2vos
4

scattering

Two-plasmon decay Electron plasma Electron plasma � nc=4
k2vos
4

Parametric decay Electron plasma Acoustic � nc

r
!2pi

!1k2cs

k2vos
4

Filamentation Modulated light Zero-frequency � nc
v2os

8.Te=mi/

!2pe

!o

acoustic
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SRS is strongly reduced by collisional effects for short laser wavelengths and by
the creation of smooth plasmas with SSD or other methods. Stimulated Brillouin
scattering (SBS) is a direct analog of SRS in which the second-driven wave is an
acoustic wave. It can be strongly reduced by the introduction of bandwidth in the
laser and also saturates fairly easily under many conditions. However, both SRS and
SBS have at times been observed to convert more than 50% of the laser energy, so
they can be enormous.

In addition, there are two decay instabilities in which the laser light wave drives
two waves within the plasma. These instabilities directly produce no scattered light.
Two-plasmon decay, being localized at a single density surface in the plasma,
saturates fairly easily. However, at this writing it appears to be the largest potential
threat to laser fusion by direct laser irradiation. In most modern experiments,
collisional absorption of the laser light prevents the occurrence of the parametric
decay instability near nc, except perhaps for a brief period at the start of the laser
pulse. (During this early period, the laser electric field may also penetrate to nc,
where it may excite resonance absorption—see Kruer (1988).) There is a variant
of this instability involving a zero-frequency acoustic wave, sometimes described
as the oscillating two-stream instability. The variant of SBS with a zero-frequency
acoustic wave is filamentation, which in the nonlinear limit will break the laser beam
into discrete intense beamlets. At present it appears that strong filamentation near
the leading edge of the plasma may smooth the illumination of the denser regions,
by producing beamlets that focus strongly and then spray their energy into a wide
angular range. There are actually several types of filamentation. The growth rate
shown in Table 9.1 is for ponderomotive filamentation, in which the ponderomotive
force causes the plasma motion just as it does in SBS. In colder plasmas, thermal
filamentation, involving differential heating, can be important. When vos becomes
relativistic, relativistic self-focusing can arise; this process involves variations in the
effective electron mass.

One is led to wonder why all the laser energy is not consumed by SRS or some
other instability (most of them grow very quickly on the scale of the laser pulse).
The answer to this question is twofold. On the one hand, all the laser energy (more
or less) is consumed by these instabilities if the laser wavelength is too long—
roughly 1�m or longer. This nearly led to the death of the laser fusion program,
which initially attempted to use laser wavelengths of 1–10�m. Such lasers produced
some spectacular phenomena but not much progress toward fusion. Lasers with
wavelengths in the visible and UV have two advantages—vos is smaller for a given
laser energy flux and collisional effects begin to play a role. On the other hand, so
long as vos is not too large, some of the instabilities saturate at low values and they
all are strongly affected by plasma nonuniformity or laser bandwidth. It is worth
emphasizing here that a very common mistake, among those doing experiments not
focused on laser-plasma instabilities, to fail to consider and test the ways in which
they may adversely affect the experiment.
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9.1.5 Electron Heat Transport

We have emphasized the mobility of electrons by comparison with ions, so that the
electrons dominate for example the direct interactions of the laser with the plasma.
This might lead one to expect that the thermal electrons would play a dominant
role in transporting energy throughout all plasma systems. This, however, is not
the case in the systems of interest here. Laboratory systems in the high-energy-
density regime are typically so collisional that the electrons cannot manage to escape
the ions and do not manage to affect the dynamics very strongly. We saw this
quantitatively in Chap. 3. It is also remarkable that there are very few astrophysical
systems in which the electrons carry significant heat. The electrons, because of their
small mass, are very tightly bound to the magnetic field, and the magnetic field
is typically tangled enough to keep them from accomplishing any large-scale heat
transport. Systems involving instabilities in loops of magnetic field, which occur
for example near the Sun, or involving magnetic reconnection, which occurs in
many places, produce bursts of energetic electrons. These electrons in turn radiate,
so that the electron radiation can be an important diagnostic of the phenomena.
However, the electrons do not dominate the overall dynamics of reconnecting
systems. Likewise, the radiation from electrons has become an important indicator
of cosmic-ray acceleration in supernova remnants, but the cosmic rays that actually
reach the Earth are almost all ions. So electrons are important. However, with two
crucial exceptions, they rarely carry much heat anywhere that matters.

One crucial exception is in the delivery of energy from a laser beam to dense
material. This is an essential aspect of inertial fusion and any other high-energy-
density experiment using lasers. A second exception is in the loss of energy from
the burning region in inertial fusion. For these reasons, it is worthwhile to have
some understanding of electron heat transport. Figure 9.7 shows the profile of a
laser-irradiated plasma, taken from a computer simulation. The plasma expands
but absorbs little laser light in the expansion zone while absorption takes place in
the absorption zone, over some range of densities below the critical density. The
entire region below critical density is often designated the corona, by analogy with

Fig. 9.7 The electron density
profile from a computer
simulation, with various
regions indicated. The
simulation corresponds to a
laser wavelength of 0.35�m
and an energy flux of
1015 W/cm2
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the solar corona. In the transport zone, electron heat transport carries the energy
to higher densities above the critical density. Ablation occurs in this high-density
material. In reaction to the ablation (or equivalently, in response to the ablation
pressure), a shock wave propagates into the material, creating a region of high
electron density.

To gain an understanding of electron heat transport, we will discuss here the
classic derivation by Spitzer and Harm, after which we discuss the limit when
transport becomes too strong for this derivation to be valid. Because this process
involves the behavior of individual particles, we use the kinetic description of
Sect. 2.5 and discuss the behavior of the distribution function f .v/, normalized for
this purpose so that its integral over velocity space gives ne.

Suppose we have a plasma with a gentle temperature gradient, a condition we
would express mathematically as �mf p � Te=jrTej, where �mfp is the collisional
mean free path of the electrons. The heat flux, Q, in a direction z within such
a plasma is found by integrating the energy carried by each particle over the
distribution:

Q D
Z �

1

2
mev

2

�
vzf .v/d

3v: (9.28)

One can see that Q D 0 if f .v/ is Maxwellian or any symmetric function in vz.
Actual distributions are often nearly Maxwellian but are seldom fully symmetric, so
that heat is usually carried by the electrons. The source of asymmetry can be found
by thinking about what would happen if the plasma initially consisted of Maxwellian
distributions with a slow spatial variation of the temperature. As temperature
increases, the number of hot particles with energies above kBTe increases while the
number of cold particles, with lower energies, decreases. As a result, the flow of
particles through some point from a Maxwellian distribution in a warmer region
will include a surplus of hot particles and a deficit of cold ones. From the opposite,
cooler, direction, there will be a deficit of hot particles and a surplus of cold ones.
Thus, if the distribution functions were initially Maxwellian but had a varying
temperature, they would almost immediately develop non-Maxwellian structure,
asymmetric in velocity, and thus able to carry heat.

To find an equation for the heat flow, we assume a plasma of constant density
and slowly varying temperature. Note that the temperature gradient defines a unique
direction within the plasma, and that the effects of interest involve motions in that
direction, which we will call z. This motivates the definition of a polar angle � with
respect to that direction and the expansion of the distribution function by means of
Legendre polynomials. Keeping only the first term in this expansion, we have

f .v/ D fo.v/C f1.v/ cos �; (9.29)

in which fo.v/ is a Maxwellian and f1.v/must be small to justify using only the first
two terms in the expansion. In some experiments, such as those of Liu et al. (1994),
two or three coefficients of this expansion have been directly measured.
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In addition, it is shown by Shkarofsky et al. (1966) that one can accurately treat
the effects of collisions in this problem using a simple relaxation rate. Expressing
this rate in terms of the electron–ion collision rate �ei defined in Sect. 2.4 gives

�
ıf

ıt

�
C

D �3
4

�
2kBTe

me

�3=2
�ei

v3
f1.v/ cos � D �W

v3
f1.v/ cos �; (9.30)

which defines the coefficient W strictly for convenience in what follows. We can
substitute (9.29) and (9.30) into (2.63) and keep only the terms proportional to cos �
to obtain
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C vz
@fo
@z

� eE

me

@fo
@v

D �W

v3
f1.v/; (9.31)

in which the electric field must be in the z direction from the symmetry of the
problem. We ignore B here, which is justified in the dense target material near the
center of the laser spot, where collisions are large and the magnetic field produced
by the laser is weak. In steady state, this implies

f1.v/ D �v3
W

�
vz
@fo
@z

� eE

me

@fo
@v

�
: (9.32)

To find E, one can note that any net flow of charge would cause an electric
potential to develop that would then shut off the flow of charge, so in steady state
the net current in the z direction, Jz, must be zero. This gives

Jz D 0 D �e
Z 1

0

vzf .v/dv D �2e
Z
.v cos �/f1.v/ cos �v2 sin �d�dv;

(9.33)
from which
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me
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Integrating this, solving for E, and substituting for the derivatives of fo, assumed
to be Maxwellian, one finds eE D �4kB@Te=@z, so

f1.v/ D fo.v/
v4

2WkBTe

�
8 � mev

2

kBTe

�
kB
@Te

@z
: (9.35)

The heat flux per d3v is proportional to v3f1.v/ cos2 � per (9.27) and (9.28). Also, the
contribution at a large velocity reverses sign compared to that at a small velocity, as
we expected from our qualitative analysis. Integrating (9.28) one finds the Spitzer–
Harm heat flux, QSH , as
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QSH D �128
3

nekBTe

me�ei
kB
@Te

@z
D ��th

@kBTe

@z
; (9.36)

in which the heat transport coefficient is �th. Here kB must convert Te to the energy
units used in QSH, and if Te is expressed independently in some other units then the
heat transport coefficient is �thkB. Note that, through �ei, �th is proportional to T5=2e ,
so that the heat transported increases very rapidly with temperature. Remarkably,
the heat transported is independent of density. The increase in the flux of particles
with increasing density is precisely balanced by the increase in collision rate.
This model is also known as a diffusion model or a description of diffusive heat
transport, because the electrons carry the heat through a diffusive process. Indeed,
when one uses (9.36) in a fluid equation for the electron energy, one obtains a
diffusion equation (in simple limits). Note that kBTe=.me�ei/ has units of a kinematic
diffusion coefficient (e.g., cm2/s). Kruer (1988) points out that (9.36) overestimates
the transport because the derivation ignores electron–electron collisions, and that
this can be approximately corrected for by multiplying �th by g.Z/ D .1C3:3=Z/�1.

The Spitzer–Harm transport model, adjusted as just described, gives accurate
results regarding the heat transport within limits we are about to define, despite the
fact that it has some fundamental problems. These relate to the use of the expansion
in (9.29), which is only valid if f1=fo � 1. One can show from (9.35) that this ratio is

f1
fo

D 1p
2

�
8
v4

v4th
� v6

v6th

�
�mfp

LT
; (9.37)

in which the electron mean-free-path is �mfp D vth=�ei, the temperature scale
length is LT D Te=jrTej, and v2th D kBTe=me. This particular definition of a
thermal velocity vth is common in laser–plasma interactions. (In various other areas
of physics there is some numerical factor multiplying the right-hand side of this
definition.) Figure 9.8 shows this ratio, normalized by �mfp=LT . Two points are
important with regard to this figure. First, the expansion of f .v/ always breaks
down at a large velocity. The only reason the Spitzer-Harm model ever gives
accurate results is that negligible heat is carried by the high-velocity electrons.

Fig. 9.8 The normalized
perturbation to the
distribution function from the
Spitzer–Harm theory
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Fig. 9.9 Ratio of
temperature scale length to
electron mean free path, for
ne D 6� 1021 per cc and
Te D 500 eV. This ratio
scales with T�2

e , Z, and ne.
The heat transport should be
flux-limited for values not
	 30

10

30

50

100

200

Mathematically, fo decreases much more rapidly than jf1=foj increases. Second, the
heat is carried primarily by the electrons with energies of about three times kBTe,
corresponding to the maximum in Fig. 9.8 for v=vth between 2 and 2.5. In this
range, f1=fo � 30�mfp=LT , so the Spitzer–Harm model will be accurate if

LT=�mfp 	 30: (9.38)

Unfortunately, condition (9.38) is only sometimes satisfied in laser-irradiated
plasmas. As a rule of thumb, this condition is likely to be satisfied for UV lasers,
may or may not be satisfied for visible lasers, and is not satisfied for infrared lasers.
Figure 9.9 shows this ratio for relevant plasma parameters and laser wavelengths.

The proper way to proceed when (9.38) is not satisfied is to find a better solution
to the Boltzmann equation, which may also require finding a more sophisticated
expression of the collision term. The standard, more-sophisticated version of the
Boltzmann equation is known as the Fokker–Planck equation, but this equation must
be solved numerically for all cases of interest. In addition, finding the heat flux from
the Fokker–Planck equation is difficult enough that it cannot readily be included in
radiation-hydrodynamic simulations of the overall dynamics of a laser target. This
difficulty strongly motivates the search for simple models that can be of some use.

There is such a model, very crude but very widely used, known as flux-limited
heat transport. The maximum possible flow of energy would occur if the thermal
energy density in the plasma were transported as some characteristic thermal
velocity, producing a free-streaming heat flux, equal to nekBTvth. In real physical
systems, the maximum heat transported only approaches some fraction of this limit.
This is described by introducing a flux limiter, f , so that

QFS D f � nekBTevth: (9.39)
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Under typical conditions, matching the heat flux found in Fokker–Planck calcula-
tions requires taking f � 0:1. Figure 9.9 can be used to determine how likely this is.
The ratio QSH=QFS scales with T2e .

However, in some historical experiments, especially using infrared lasers and
high intensities, the observations could only be explained using f as small as
0.01. This indicated that additional, noncollisional processes were impeding the
heat transport in these cases. Possible explanations of these observations include
the effects of laser-generated magnetic fields and of intense acoustic fluctuations
produced by plasma instabilities. A very common model in simulations is to set
f at some value and to take Q to be the smaller of the values given by (9.39)
and (9.36). Some more sophisticated computer simulations employ a technique
known as multigroup, flux-limited diffusion. In this technique, the electrons are
divided into a number of groups, with each group being treated as either diffusive
or flux-limited as appropriate.

The models just described are adequate for the calculation of the global influence
of the laser on the material it irradiates. For example, they can be used, after
some tuning, to calculate accurately the production of pressure and shock waves
by the laser. In practice, most tuned models of experiments use f D 0:05 or
0.06. However, when it comes to the detailed structure of the target plasma near
the irradiated surface, these models give results that are not correct. Unfortunately,
although flux-limited transport can provide a quantitative estimate of the local flow
of heat, it fails fundamentally to capture the dynamics of heat transport in strong
temperature gradients. The reason is that such transport is at root nonlocal. The
heat deposited at a given point is not determined only by the local conditions, but
rather involves particles transported from a range of distances. As a result, the long-
term evolution of the plasma differs from what would occur if heat transport were
local. In particular, because the more energetic particles have smaller Coulomb cross
sections and longer mean free paths, they tend to penetrate deeper into the target
and to produce a warm foot ahead of the main heat front. There has been a great
deal of work over several decades aimed at producing a model of nonlocal, electron
heat transport that would be practical to implement within radiation-hydrodynamic
codes. One of these, by Schurtz et al. (2000), has recently emerged and has been
implemented in some of these codes.

In the presence of laser–plasma instabilities, the reality becomes even more
complex than this. As we discussed in Sect. 9.1.4, these instabilities produce
electrons with energies of tens of keV. Such electrons penetrate far deeper into
materials than the electrons from the thermal population that transport heat inward.
As a result, they can preheat the initially cold material in an experimental system,
altering the initial conditions for the subsequent evolution. The distributions of
electrons produced by instabilities are often observed to be exponential in energy,
even though they do not arise from waves with a wide distribution of phase
velocities. Thus, this is another of the many cases in which a plasma anomalously
produces an exponential particle distribution. (The first was Langmuir’s paradox,
from the early 1900s, relating to the behavior of low density plasma in evacuated
chambers.) The exponential energy distribution allows one to assign a temperature
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to the energetic electrons. These are most often described as suprathermal electrons
or hot electrons, with a temperature designated by Thot.

The penetration of such electrons into materials is complex, as they are strongly
scattered by any nucleus they get close to and also by the cold, local electrons.
The result is that their penetration is diffusive, with a step size of an electron
mean free path and a collision time of the mean free path divided by the velocity.
However, the electron velocity decreases steadily as it loses energy in successive
collisions and by drag on the electrons in the material. The net effect is that of
diffusive penetration with a steadily decreasing diffusion coefficient. Rosen et al.
(1987) provide a resulting mean electron range for carbon. This range should be
proportional to the density of atoms in the matter. Scaling their result accordingly,
one finds a mean range as an areal mass density, xo, in g/cm2, of

xo D 5 � 10�6 
A=Z3=2nuc

�
T2hot; (9.40)

where as before Znuc is the nuclear charge and Thot is in keV. For A D 2Znuc, Znuc �
4, and Thot � 30 keV, one finds xo � 5 � 10�3 g/cm2. For plastic at �1 g/cm3 this
is a 50�m mean penetration depth. This is enough to affect many experiments,
and the penetration increases strongly as Thot increases. For example, one might
irradiate a 1 mm spot with 10 kJ of laser energy for 1 ns, producing an energy flux
of 1.3 � 1015 W/cm2. If 1% of the laser energy were converted to hot electrons, at
30 keV temperature, that were deposited in a 30�m layer of plastic, the temperature
of this material would increase to �30 eV and its pressure would be �10 Mbar.
This is why preheat is very often a concern in laser experiments. In addition, since
the penetration of energy is a diffusive process, noticeable heating may occur at
depths well beyond xo. For their case, Rosen et al. (1987) find the heating to scale as
�0:1 exp.�1:65�0:4/ with � D x=xo. (For different reasons, preheat is also a concern
in Z-pinch experiments.)

9.1.6 Laser Heating and Ablation Pressure

Although much of what we have discussed in the preceding two sections is confined
primarily to laboratory environments, the ablation of matter by irradiation is found
much more widely. Figure 9.10 shows an image of the Eagle Nebula, justly famous
for its dramatic structures, referred to as Elephant Trunks. The Eagle Nebula exists
within a star-forming region—a zone with many dense molecular clouds that can
provide mass for very large new stars. These new stars are very massive and very
bright, with much of their radiation in the deep UV. These photons have energies
large enough to directly ionize the material they encounter, creating an ionization
front that is also a region of comparatively high pressure. One hypothesis regarding
the origin of the structures is that they might have been produced by Rayleigh–
Taylor instabilities that developed when the hot, low-density, ablated plasma began
pushing on the cooler, denser plasma behind it.
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Fig. 9.10 The Eagle Nebula.
From Hubble Space
Telescope, WFPC2. Credit:
NASA, Jeff Hester and Paul
Scowen Arizona State
University

The intense lasers used in high-energy-density experiments also substantially
affect the material they encounter. The photons in these lasers cannot individually
ionize the material, but in combination they can and do ionize it. At most relevant
energy fluxes the electric field of the laser can directly ionize the atoms. At lower
energy fluxes the interaction with the target quickly produces plasma, although the
mechanisms are more complex. (We leave it as an exercise for the student to find
the threshold for direct ionization.) In this section we explore the ablation of matter
and discuss its effects.

9.1.6.1 Generation of Ablation Pressure

Even technically informed people often first imagine that the influence of light on a
material is primarily due to reflection, as is the case for example in a solar sail. The
magnitude of this effect is straightforward to estimate. The pressure produced by
reflection, Pref , is the rate of change of momentum by the reflection. The momentum
of a single photon is „k and the change of momentum upon its reflection is 2„k.
The flux of photons, F, is the energy flux IL divided by the energy per photon,
F D IL=.„!/. The pressure is thus Pref D 2„kF D 2.k=!/IL D 2IL=c. If the
photon is absorbed and not reflected, then the light pressure is half this value. If one
chooses instead to take a microscopic view of reflection, one can do so by evaluating
the ponderomotive pressure at the reflection surface. A first estimate of this, based
on the relations given above, gives nemev

2
os=2 D IL=c. One recovers 2IL=c by taking

into account the doubling of the laser electric field during reflection and by taking
the time-averaged value of vos. In practical units, Pref D 0:067I14 Mbar. However,
reflection competes with ablation, which nearly always dominates the effect of the
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laser on the target material at solid density in experiments using lasers whose pulse
duration exceeds a few hundred ps. Let us consider this.

Ablation is the process in which material is heated and then flows away from a
surface. By Newton’s third law, the surface experiences a reaction force equal to the
rate at which momentum is carried away. In detail, sustained laser heating produces
a high pressure in the laser-heated region, beyond which the electrons carry heat
into the material, causing it to ablate and flow outward. These two perspectives are
equivalent—in rockets driven by thermal release of fuel, it is the pressure of the hot
fuel that drives the rocket forward. Let us evaluate the laser heating.

We will continue to use IL for the laser energy flux, although our calculation
really involves the absorbed energy flux. In effect, we are assuming the laser energy
is completely absorbed. This is quite accurate for UV lasers and becomes less and
less accurate at longer laser wavelength. The energy deposited by the laser in the
absorption region supports three phenomena. It sustains the rarefaction of material
away from the target surface, it sustains an electron heat flux into the denser matter
above critical density, and it sustains radiative losses from the matter below critical
density. The third of these is negligible for conditions of interest. For an initial
calculation, we assume that the laser energy divides equally between the first two.

We thus suppose that half the energy is transported through the critical surface.
Using a flux-limited heat transport model, we then have

0:5IL D fnckBTe

p
kBTe=me; (9.41)

from which for f D 0:05

Te D 2:6
�

I14�
2
�

	2=3
keV; (9.42)

in which I14 is IL in units of 1014 W/cm2 and �� is the wavelength of the light in
�m. The ablation pressure is then the corresponding pressure at the critical density.
If Te D Ti at this density, this is

Pabl D nc.1C 1=Z/kBTe D 6:1I2=314 �
�2=3
� Mbar; (9.43)

A standard value (Lindl 1995) of the coefficient which is 6.1 here would be 8.6,
based on computer simulations of the detailed energy transport, using a flux-
limited, multigroup, diffusive electron-heat-transport model. But in actuality, as of
2017, systematic studies that would firmly ground these theoretical estimates in
experimental data remain to be undertaken.

Continuing the comparison with the pressure produced by reflection, the formu-
lae we just obtained imply that the laser energy flux would have to reach about
1021 W/cm2 before reflection became dominant over ablation. This is not correct
in detail because relativistic effects become important at 1018 W/cm2, as we will
discuss in Chap. 13. An accurate statement is that throughout the non-relativistic
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regime ablation is more important than reflection in the acceleration of material
at or near solid density. This does not, however, imply that reflection and the
ponderomotive force have no effects. The ponderomotive pressure grows to equal
the plasma pressure at the critical density by the time the laser energy flux reaches
1016 W/cm2. Above this intensity, the ponderomotive pressure steepens the density
profile by pushing the critical surface inward. Even so, this does not prevent the
outward flow of material that corresponds to the ablation pressure produced by the
heating and removal of solid matter at higher density.

Before proceeding, take a moment to note that the ablation pressure produced by
these systems is an amazing number. Using late-twentieth century laser facilities,
it is straightforward to irradiate a large (mm2) area with 0.35�m laser light at
1015 W/cm2. This produces an ablation pressure of 75 Mbar, which is near the
pressure at the core of Jupiter! The idea that one can produce pressures of many
millions of atmospheres in an Earth-bound laboratory is pretty exciting. Indeed,
this is what has made the work described in this book as experimental astrophysics
possible.

Let us return to laser heating, and explore some of its aspects further. For
comparison with the pressure evaluated above, we can quantify the outward flux
of momentum through the critical surface. This flow is well approximated as an
isothermal rarefaction, although simulations often find that there is a density drop
across the critical surface. Because the density at this location remains steady, the
represents the centered location for the rarefaction, which occurs at the sonic point.
If the density there is �s, and is a fraction g is the mass density at the critical surface,
then the pressure inferred from the momentum flux, Pflux is

Pflux D �sc
2
s D gnc

Z
ŒZkBTe C 3kBTi� ; (9.44)

with cs from (2.53). Out in the underdense corona, simulations typically find
Ti � Te=3. If this applied near the critical surface, the result here would equal
that of (9.43) for g D 1. The models here are not accurate enough to make a further
exploration of these differences worthwhile.

As to the value of the temperature, we can improve the calculation above by
explicitly including the energy flux required to sustain the coronal plasma, treated
as an isothermal rarefaction. This energy flux is �sc3s .5	 �3/=.2.	 �1//. This is the
total energy flux required to support a rarefaction that starts at the sonic point. Thus
we write

IL D fnckBTe

p
kBTe=me C �sc

3
s

.5	 � 3/
2.	 � 1/ ; (9.45)

from which

kBTe D
�

IL

nc

�2=3  fp
me

C g.1C Z/3=2.5	 � 3/
2
p

AmpZ.	 � 1/

!�2=3
; (9.46)
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Fig. 9.11 Electron temperature from a model in which the laser energy sustains an isothermal
rarefaction and flux-limited, free-streaming inward heat transport. The maximum density of
expansion is the fraction of critical density at which the rarefaction starts. The upper curve is
for A D 200;Z D 35, and 	 D 4=3 and the lower curve is for A D 8;Z D 4, and 	 D 5=3

which implies

Te D 4:19
�

I14�
2
�

	2=3 �
20f C 0:233g.1C Z/3=2.5	 � 3/p

AZ.	 � 1/
��2=3

keV: (9.47)

Figure 9.11 shows the results for I14 D 10 and �� D 0:35, using parameters that
correspond to a low-Z (Be) plasma and a high-Z (Au) plasma. Supporting the plasma
expansion takes about half the laser energy flux when the rarefaction begins near nc

(so g � 1), and progressively less as g decreases. This leads to larger temperatures.
Higher-Z targets tend to produce larger temperatures, a trend qualitatively seen in
data.

The exact value of the electron temperatures and the ablation pressure can be
affected by several details. The temperature may differ from that given by the
models here, as the heat-transport model used is only approximate. The temperature
can also be reduced by the lateral transport of energy, which is not considered here.
Current computer simulations of laser absorption may not necessarily give correct
results. One reason for this is that they often do not include the nonlocal effects
of heat transport. Other phenomena that inhibit the transport of heat, including
magnetization of the electrons and turbulence in the plasma, tend to increase the
coronal temperature. Simulations of such effects, using crude models, find that they
also decrease g. For any specific type of experiment, it is often necessary to adjust
the simulation parameters based on (direct or indirect) measurements of the ablation
pressure, in order to obtain realistic results.



9.1 Direct Laser Irradiation 415

9.1.6.2 Mass Ablation and the Rocket Effect

Next we discuss the effects of ablation on the target itself. First, the ablation removes
mass from the target, creating a loss of mass per unit area often designated Pm.
This mass flows through the critical surface into the rarefaction, so the mass flux
is �scs, ignoring any motion of the critical surface. In terms of the above models and
evaluating Te from (9.42), this gives

Pm D g
Ampnc

Z

s
ZkBTe C 3kBTi

Amp
D 1:5 � 105I1=314 �

�4=3
� g cm�2 s�1; (9.48)

for g D 1, Ti D Te=3, Z D 4, and A D 8. The standard scaling from Lindl (1995),
which is based on simulations, has a coefficient of 2.6 rather than 1.5 here. The
reality is that this coefficient depends on details that are beyond both this calculation
and the standard simulations, so that it must be measured in any case where its
precise value matters.

Second, the ablation pressure pushes on the target. The immediate effect of the
ablation pressure on the target is to launch a shock into it, with consequences that
were discussed in Chaps. 4 and 5. A short time after the shock wave has traversed
the target, the entire target begins to accelerate. This is essential to laser fusion,
for example, which needs initially to deposit as much kinetic energy as possible
within moving material. To assess the acceleration of the target, which is like the
acceleration of a rocket, we work with equations describing the conservation of
momentum for such an object.

We take the object to have an initial mass, mo, and an instantaneous remaining
mass mr D mo �ma, where ma is the total ablated mass. (Equivalently, all the masses
may be replaced by mass per unit area.) One can derive the resulting behavior using
the conservation of momentum, which must apply to the combined system of rocket
and exhaust. Working in the lab frame, when an element of mass dm is ejected, the
exhaust carries away (in the opposite direction) a momentum dm.Vex � V/, in which
the rocket velocity is V and the exhaust velocity is Vex. The increase in momentum
of the remaining rocket mass is .mr � dm/.V C dV/� mrV . Setting these equal and
taking the limit that dm and dV are infinitesimal (so the product dmdV is negligible),
one finds

Vexdm D mrdV D .mo � ma/dV; (9.49)

where ma is the variable whose increase is measured by dm. Integrating from ma D 0

to some value, and taking V D 0 initially, one finds

V D Vex ln .mo=mr/ : (9.50)

This shows that the velocity of the rocket increases rapidly at first and then more
slowly, reaching Vex when about 2/3 of the mass has been ablated. It would seem
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that one could reach an arbitrarily high velocity by ablating nearly all the mass.
Unfortunately, the hydrodynamic instabilities discussed in Chap. 5 place a limit on
the amount of mass that can be ablated without breaking up the target.

The ablation efficiency of such a rocket, �R, is defined as the ratio of kinetic
energy of the remaining mass to the total kinetic energy of the rocket plus the
exhaust. This is the efficiency of an ideal system in which all the energy was kinetic
and no energy went to heat. Thus �R D mrV2=.mrV2C2Kex/, where Kex is the kinetic
energy of the exhaust. To find this one must determine the total kinetic energy of the
exhaust, from

Kex D
Z ma

0

1

2
.Vex � V/2 dma

D
Z ma

0

1

2
V2

ex

�
1C ln

�
1 � ma

mo

��2
dma (9.51)

D 1

2
moV2

ex

Z 1

mr=mo

�
1C ln

�
mr

mo

��2
d

�
mr

mo

�
:

This integral evaluates to 1 � .mr=mo/Œ1 C ln.mr=mo/�. Evaluating the efficiency,
one finds

�R D .mr=mo/ ln2.mr=mo/

1 � .mr=mo/
; (9.52)

which is plotted in Fig. 9.12. When a small fraction of the mass has been ablated,
one can expand the logarithm in (9.51), using the fact that ma � mo. Doing this, one
finds to the lowest order �R D ma=mo, so that the efficiency is equal to the fraction of
the initial mass that has been ablated. This is a very useful result. One can see that it
is reasonably accurate up to about 70% ablated mass fraction, which is far beyond its
formal range of validity. The observed efficiency, in laser–plasma experiments and
computer simulations, is roughly half this value. This reflects the fact, discussed
above, that only about half of the energy provided by the laser energy flux actually
reaches the densities above the absorption zone, where the ablation occurs.

Fig. 9.12 Ideal efficiency of
rocket-based acceleration.
The dashed line shows the
simple estimate for small
ablated mass
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9.2 Dynamics of Mid-Z to High-Z Targets

Mid-Z and high-Z targets exhibit some common behavior upon irradiation with
energy fluxes relevant to inertial fusion, and do so whether the energy source is
laser light or X-rays. We discuss this behavior here.

For low-Z targets, heating near the surface ionizes the matter fully, or at least into
a He-like state. This reduces the opacity to a value not much above the free-free,
inverse-bremsstrahlung value. We saw in Chap. 6 that this opacity is much smaller
than the opacity when more electrons are attached. As a result the radiation emission
is relatively small and radiation plays at most a minor role in the dynamics. For the
case of laser irradiation, the electrons carry heat into the denser matter, sustaining
its pressure and driving a shock forward into the matter. The resulting profile is like
that shown in Fig. 9.7.

As the nuclear charge Znuc of an irradiated target increases, the emission of
thermal radiation by matter at densities near 1 g/cm3 plays an increasing role in the
dynamics. The ionization there becomes less complete and the opacity increases, so
that the matter in this region emits significantly more radiation than one sees in low-
Z targets. The target evolution then involves the interplay of radiation emission and
transport, shock-wave generation, and hydrodynamic expansion. We will discuss
this interplay here.

Begin with heating of a layer at the surface of a target, either by heat conduction
from a laser-heated corona, or by absorption of an external X-ray flux. When
the radiation emitted by this hot layer is sufficient, three effects ensue. First, the
radiation launches a Marshak-like heat wave into the target. As we saw in Chap. 7,
such diffusive waves initially have a high velocity but slow with time. Second, the
high pressure of the heated matter at the target surface launches a shock wave. This
shock wave penetrates the target at a relatively steady velocity, and so eventually
overtakes the heat wave. The shock launched as the heat-wave slows (see Sects. 7.3.1
and 8.2.1) may also play a role. For practical experimental parameters, and for
all materials of interest, this all occurs within small fractions of a nanosecond.
Third, the heated matter at the target surface expands, forming a nearly isothermal
rarefaction at a density near 1 g/cm�3.

The temperature in the rarefaction is small hundreds of eV, for reasons discussed
below, so the sound speed associated with the rarefaction is many tens of �m/ns
and its spatial scale quickly becomes tens of �m. So long as the radiation mean-
free-path is a few � or less, the radiation transport will be diffusive. This requires
that the specific opacity be of order 104 cm2/g or larger. This requirement is satisfied
at such temperatures for all mid-Z and high-Z materials. As heating continues, the
radiation penetrates diffusively through the rarefaction, sustaining its temperature
and eventually heating and ablating the denser matter. The structure of the dense
matter evolves into an expansion heat front (Sect. 8.2.2), although the evolution of
the densest matter will also be affected by the returning rarefactions and consequent
reshocks (Sect. 4.6.3).
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At the outer surface of the optically thick layer, the hot matter emits radiation
outward. It turns out that this process soon becomes dominant in the energy balance.
Suppose the incident energy flux, in units of 1014 W/cm2, is F14, and that the fraction
radiated outward is ˇ. Then the effective temperature of the radiation is

Teff D 177.ˇF14/
1=4 eV. (9.53)

When the incident energy flux is X-rays, ˇ � 1 after the initial transients, and so
the re-emission becomes nearly 100% efficient. One says the material has an albedo
of �1.

The story for laser-irradiated targets is more complex. Additional phenomena
that are important in these targets include laser absorption below the critical density
and electron heat transport to higher density, where the dynamics just described
applies. The heating by laser absorption drives an isothermal rarefaction in the
corona below critical density. The heat transported inward by the electrons acts to
ablate the lower-density end of the rarefaction driven by the X-rays. The resulting
structure, featuring two ablation fronts and two rarefactions, has become known as
a double ablation front (Sanz et al. 2009; Drean et al. 2010). The value of ˇ in
this case does vary strongly with Z. It depends on how much of the energy flux is
expended in the low-density matter and does not reach the strongly radiative zone.
We discuss the specific case of high-Z targets such as Au in the next section.

Figure 9.13 shows profiles of plasma parameters for Cu and Ag irradiated by
laser light, under conditions described in the caption. In both materials, one can
see three distinct physical regions, separated by relatively abrupt transitions. There
is the underdense corona, where the ionization is nearly complete and Te is a few
keV. The steepness and extent of the transition to the middle region is affected by
electron heat transport. If the transport is more inhibited then the transition is steeper
and extends to lower density [lowering g in (9.44) through (9.47)]. In the middle,
one sees the optically thick rarefaction produced by expansion of the denser matter
heated by X-ray diffusion. Here Z is reduced, the density is relatively flat, and Te

m m

Fig. 9.13 Axial profiles of plasma parameters, as labeled, for Cu and Ag targets irradiated with
0.35�m light at 1015 W/cm2, as evaluated after 1 ns of laser irradiation. The profiles were taken
near the axis of symmetry from simulations using a two-dimensional radiation hydrodynamics
code with accurate laser absorption. The simulation used a 680�m laser spot
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and Tr are both somewhat above 100 eV. The extent of this region is relatively small
in Cu at 1 ns; it would increase with time. Finally there is a denser region of shocked
target material, in which Z, Te, and Tr are further reduced. To the left is the shock
front, which in reality would be much steeper than can be resolved in this simulation.
The target material extends much further to the left. For Ag, as Z drops to zero so
does ne. For Cu, the opacity is small enough that some radiative heating penetrates
beyond the shock-wave, so there is some ionization and ne remains finite there. In
detail, one sees in Cu the separation of Tr from Te discussed for radiative-shock
precursors in Chap. 8.

9.2.1 X-Ray Conversion of Laser Energy

Experiments using thermal X-rays to drive matter require an initial X-ray source.
In many cases, this X-ray source is produced by irradiating a high-Z surface with a
laser. The most common material used is gold, because it produces X-rays with high
efficiency, it is easy to work with for target fabrication, and it is chemically inactive,
so that oxidation or other processes are not a concern. In the present section, we
specifically discuss laser-irradiated gold.

Below the critical density, collisional absorption, which scales as Z2, is much
larger than it is in low-Z plasmas. The gold becomes ionized to a Z of several
tens. There are two limiting types of behavior relating to the heat transport. In the
first case, the heat transport is the Spitzer-Harm value and small enough that flux-
limiting is not needed, and the absorption occurs over an extended volume below
critical density. The radiation from the lower-density, multi-keV, gold plasma is
not dominant, but may include noticeable radiation at higher energies, as we see
below. In the second limiting case, the heat transport is well below the Spitzer-
Harm value because some mechanism interferes with it. In response, the plasma
below critical density becomes significantly hotter and the density profile across the
critical density becomes much steeper. The heat is still carried by the electrons, but
the behavior near nc then resembles the expansion heat front discussed in Sect. 8.2.2.
In this limit, laser absorption near critical density by resonance absorption or other
mechanisms may become important.

At least two mechanisms can potentially interfere with the electron heat transport
through the critical surface. One of these is self-generated magnetic fields, which
inhibit transport by trapping electrons locally, penetrating only as collisions displace
their orbits. Such fields mainly have been thought to occur near the edges of the
plasma, but some recent evidence suggests that they may not be so simple. The
second such mechanism is the excitation of ion-acoustic turbulence. The Landau
damping of ion-acoustic waves is small in high-Z plasmas. When heat transport is
large enough, simulations and theory indicate that they can be driven into a turbulent
state. The initiating mechanism is a two-stream instability, developing because the
entire electron distribution drifts outward to balance the current carried inward by
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the heat-transport process. When this drift speed exceeds the sound speed, ion-
acoustic waves become unstable. At this writing, both of these mechanisms remain
active areas of research.

The plasma above the critical density strongly radiates the energy that reaches it.
As we saw above, the energies being radiated are hundreds of eV. The mechanisms
involved are a combination of bremsstrahlung emission and emission from the very
many transitions that involve the N, O, and P shells in the Au. There are so many
such transitions, that each shell is associated with a band of emission rather than
with discrete lines. Accurate atomic physics modeling of them requires accounting
for millions or more of such transitions. As we discussed in Chap. 6, the limiting
intensities of any such line (band) emission are the Planckian thermal spectrum,
and these intensities are reached when any given energy becomes optically thick.
The outcome is that the spectrum from the laser spots is similar enough to a
Planckian that we can treat it that way for our purposes here. When the emission
from laser spots irradiates a gold wall, the re-emission from that wall is even closer
to Planckian.

Returning to the gold plasma, the dense material above the critical density is
heated by the energy transported to it, primarily by electron heat conduction. The
consequences were discussed in the previous section. There is an initial competition
between a Marshak-like heat wave and a shock waves. Before long an expansion
heat front develops. It includes a nearly isothermal rarefaction, heated by radiation
diffusion. The expansion within the rarefaction, and the ablation of material at its
high-density end, enables the radiation to penetrate the material more quickly than
it would in a pure Marshak wave. A standard estimate by M.D. Rosen, reported in
Lindl (1995), for the penetration depth xM into the dense matter is

xM D 0:53T1:86heV t0:75ns �m; (9.54)

in which TheV is the temperature of the material at 1 ns, measured in hundreds of
eV, and t is as usual the time, measured in ns here. Note that TheV is the temperature
in the rarefaction above critical density, and is not the electron temperature in the
absorption region, which is much larger. The power required to heat this layer is

PM D �RTe
dxM

dt
; (9.55)

after converting the units of xM as needed. Here � is the density of the solid material
but R and Te correspond to the properties of the material within the rarefaction. For
temperatures of interest, below a few hundred eV, this power remains less than 10%
of the power incident on the target. The shock wave moves a few times faster into the
dense matter, but heats it much less (to �10 eV), and so adds only a small fraction
to the required power.

In addition, even without additional inhibition of heat conduction, simulations
typically find the temperature in laser-heated Au plasmas to be a few keV and find
a significant drop in density through the critical surface, both of which correspond
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Fig. 9.14 A typical spectrum
from an irradiated gold
surface. Here Jx is the X-ray
energy into 2 steradians and
JL is the laser energy. The
energy flux was
�5� 1014 W/cm2, at 0.35�m
wavelength. The data below
2 keV is from a 10-channel
X-ray diode detector system;
above 2 keV it is from two
crystal spectrometers. Credit:
Robert L. Kauffman
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(see Fig. 9.11 and the related discussion) to having a majority of the laser energy
penetrate to higher density. And from the above discussion, nearly all of this energy
should be re-radiated as soft X-rays. Experiments using irradiation of spherical
targets have observed conversion efficiencies from laser energy to soft-X-ray energy
above 70% for Au targets and above 90% for targets using a mixture of Au,
U, and Dy. There are other complexities. Targets with small laser spots produce
much lower conversion efficiencies, an effect attributed to lateral heat conduction.
Some evidence suggests that laser spots within the high-temperature environment
of hohlraums have higher conversion efficiencies than laser spots in isolation do.
The effect on nominal effective temperature is modest. For conversion efficiencies
of 50%, 70%, and 100%, the coefficient in (9.53) becomes 148, 162, and 177,
respectively. In the discussion of hohlraums that follows, we will take the conversion
efficiency to be 70%.

Figure 9.14 shows a typical spectrum of the X-rays emitted by a gold laser spot.
The total radiation has soft component dominated by emission from the N, O, and P
bands in the Au, in addition to inverse bremsstrahlung. This is often approximated
as a blackbody spectrum having a temperature of order the estimates just given.
It is often described as the “thermal” emission. The emission from the hotter,
underdense, absorption region has a more-energetic, but nonequilibrium spectrum,
dominated by radiation from Au M-band transitions (involving lower-state electrons
whose principal quantum number is n D 3). These have an energy near 2 keV and
typically contain from a few % to more than 10% of the laser energy. The M-band
radiation can pose challenges for inertial fusion or other experiments, as it penetrates
much more deeply into low-Z surfaces than the thermal radiation does.

9.2.2 X-Ray Production by Ion Beams

Another approach to heating hohlraums is to use beams of heavy ions. These
can in principle be produced with a high efficiency and at a high repetition rate,
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making heavy ions a plausible source of energy for a power plant based on inertial
confinement fusion. But the ion beams are not focusable to the degree that a laser
is. An ion-beam-heated hohlraum will be irradiated from a single direction or from
two opposing directions. The ion beams will deposit their energy within the outer
wall of a hohlraum, or within a beam target placed within the hohlraum. This will
produce a hot source that will irradiate those walls exposed to it, beginning the same
process of absorption and reemission that occurs in a laser-heated hohlraum. For
applications needing uniform X-ray heating of some object, the ion-beam-heated
spot will typically be hidden from the object, which will be heated only by radiation
from the hot walls.

9.3 Hohlraums

When Max Planck was exploring the fundamental nature of thermal radiation, in
the late nineteenth century, he found it useful to conceive of a completely enclosed
volume, within which the radiation field would reach equilibrium with the material
in the walls of the volume. He designated such a volume a hohlraum. Placing a
very small hole in such an enclosure disturbs it negligibly, and the image of an
enclosed volume whose radiation emerges from a small hole has become a standard
one in the study of blackbody radiation in courses on statistical and thermal physics.
Evidently by heating such an enclosure one can increase the temperature of the
radiation field. This is the notion behind laser-driven hohlraums, which allow one
to produce radiation fields having very nearly the spectrum of blackbody radiation
(described as Planckian) at temperatures of millions of degrees. In this section, we
explore these devices and some of their behavior.

Figure 9.15 shows an image of a typical hohlraum. The overall purpose of the
hohlraum is to create a useful radiation environment. They are often cylindrical,
as this is easy to manufacture, but they can be made and have been made with
a very wide variety of shapes. Their typical dimensions are a few mm or less,
for experiments using kJ-class lasers. Hohlraums are composed of some high-
Z material. Gold is often used because good methods have been developed for

Fig. 9.15 Image of a typical
hohlraum. The hohlraum is
the cylindrical object, with a
visible laser entrance hole to
the right. The laser beams
strike the interior walls of the
hohlraum, as indicated in one
case. An experimental
package may be located
within the hohlraum or on the
wall as shown

Hohlraum

Laser
beams

Experimental
package

Laser-heated
interior spot
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producing gold hohlraums. Every so often, someone does an experiment in which
the laser beams heat a (thin-walled) hohlraum by striking it on the outside. But it
is more typical to do as shown in Fig. 9.15—to provide one or more laser entrance
holes, through which some number of laser beams enter the volume. In many cases
beams enter the hohlraum from two directions, which makes it easier to create
symmetric conditions inside the hohlraum. Some experiments, however, use only
one laser entrance hole and a comparatively short cylinder. Such targets are known
as halfraums, which is something of a pun as it confuses hohl with whole. (Another
common mis-use of language is to describe an enclosed target made of a low-Z
material as a “low-Z hohlraum”.) Hohlraums also can be heated by ion beams
(Sect. 9.2.2) or Z-pinches, discussed in Sect. 10.10. Here for laser-heated hohlraums,
we discuss the establishment of a radiation environment, the application of the
radiation to the ablation of matter, and what can go wrong.

At times the radiation is used to heat a spherical capsule in the center of the
hohlraum, with the important example being inertial confinement fusion. Sometimes
the radiation is used to heat a sample rather than to ablate it, for example in order to
measure the structure of the X-ray opacity. At other times the object to be heated is
mounded on the wall of the capsule, as in Fig. 9.15.

Consider the energy balance for a hohlraum within which there is an energy
source, in the form of X-rays emitted from laser-heated spots. (One can adjust the
calculation for other initial energy sources.) This radiation from the laser spots
illuminates the interior walls of the hohlraum. This is similar to the irradiation
of the laser spots, although the X-rays penetrate to higher densities, where they
contribute to heating, driving Marshak and shock waves, and reemission. But an
arbitrary point on the wall of the hohlraum is not just irradiated by the laser spots.
It is also irradiated by the other walls of the hohlraum that it can see, which further
contributes to the local heating. Because the transit and reemission times are short
compared to the timescale for the evolution of the system, we can express the total
energy flux reaching the wall, Iw, as a series:

Iw D Io


1C ˛f C ˛2f 2 C � � � � D Io

.1 � ˛f /
D �fAL=Aw

.1 � ˛f /
IL D �IL; (9.56)

in which Io D �fILAL=Aw is the average energy flux of the walls due to the laser
spots. Here � is the X-ray conversion efficiency, AL and Aw are the areas of laser
irradiation and of the wall, respectively, and f is the fraction of the emission from
the laser spots that reaches other walls. The fraction f is less than 1 because energy is
lost through the laser-entrance hole and to capsules or other objects. The fraction of
the radiation incident on a point on the wall that is reemitted by the wall is the albedo
˛; so the fraction of the energy flux of the walls by the laser spots that is reemitted
and is then absorbed again by other walls is ˛f . There is in turn reemission of this
radiation, and so on. One thus constructs the power series seen in (9.56). This series
converges and the final result is that the wall energy flux is proportional to the laser
energy flux. The constant of proportionality is � D �f .AL=Aw/=.1�˛f /. We assume
here that this applies uniformly and in an averaged sense. In actual hohlraums, the
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wall temperature varies because the transport of energy is not uniform. We will
return to this point in Chap. 11 Typical values of the parameters are � � 0.7, f �
0.9, which is basically the ratio of entrance hole and package areas to the total area,
˛ � 1, because the reemission is much larger than the energy penetration into the
walls, and AL � 0:1Aw, because one wants AL to be as large as feasible but must also
inject the laser beam into the hohlraum and place the laser spot where the experiment
demands. Taken together, one finds Iw � 0:6IL. Thus, � can be near unity.

Take note of this result. Hohlraums are amazingly efficient devices. They can
absorb the input energy and keep most of it bouncing around from wall to wall
for many bounces. They can irradiate a capsule or an experimental package with
an energy flux of soft X-rays that approaches the energy flux of the laser beams
themselves. We will return to this point soon. In addition, it is now clear that we
were not really justified in treating the laser spot in isolation, because the laser spot
is also illuminated by the hohlraum walls and by other laser spots. Indeed, there is
some evidence (Lindl 1995) that the effective conversion efficiency is higher within
hohlraums than outside them. But the evidence is complicated and not entirely
conclusive. We will leave its exploration to the interested reader.

Solving the approximate solution to the energy transport equation, Iw � 
T4w,
where Tw is the wall temperature, we obtain an equation for the wall temperature
(often called the hohlraum temperature or the radiation temperature, Tr):

Tw D
�
�fAL=Aw


 .1 � ˛f /
IL

�1=4
D 177 Œ�I14�

1=4 eV: (9.57)

The units of Tw are determined by those of 
 , which must be consistent with those
of IL.

Next suppose we place a capsule or other experimental package, of area Ac,
within or on the wall of the hohlraum. The energy flux experienced by such an
object is Iw. The material is usually low-Z as the goal is often to produce ablation
pressure, and even targets irradiated for other purposes very often use a low-Z outer
layer to prevent motion of the interior materials (such a layer is called a tamper).
The X-rays readily penetrate through the ionized, low-Z material that has already
been heated. (This material may be fully ionized but in any event has few atomic
transitions to absorb the X-rays. It also has a low enough collision rate to be weakly
absorbing.) The X-rays are then absorbed in a short distance once they reach the
cooler material that has not yet been heated. In most cases the object absorbs nearly
all the energy incident upon it and thus contributes to f . The fraction of the laser
power that is delivered to the capsule is

IwAc

ILAL
D �f

.1 � ˛f /

Ac

Aw
: (9.58)

This can be a large fraction but cannot exceed 1 because � < 1; ˛ < 1, and f <
.1�Ac=Aw/. One sees that the larger one makes the capsule, relative to the hohlraum,
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the more efficiently one will deliver energy to it. Unfortunately, this comes at a
cost because larger capsules experience less uniform irradiation, as we will discuss
further in Chap. 11.

9.3.1 X-Ray Ablation

As is mentioned above, many applications of hohlraums involve the ablation of low-
Z materials by the X-rays produced in the hohlraum. This drives a shock-wave into
the matter, and then acts to accelerate samples that are sufficiently thin, as discussed
in Sect. 9.1.6.2. During the period of shock propagation, the structure is that of an
expansion heat front, as discussed in Sect. 8.2.2 and illustrated in Fig. 8.25.

A first estimate of the ablation pressure (on the downstream side of the heat front)
can be obtained as follows. Some fraction of the power delivered to the ablating
object by the soft X-rays is deposited at the heat front, where it provides the flow
of energy into the rarefaction at speed cs and the energy necessary to sustain the
pressure behind the shock. Balancing these gives the energy density at the heat front,
�hf , and the ablation pressure is .	 � 1/�hf . The incident X-ray energy flux must
also provide the required downstream heating and kinetic energy of the rarefaction
and the energy for pdV work, so we assume that 50% of the incident X-ray energy
contributes to the ablation pressure, which gives

Pabl D 0:50.	 � 1/
T4w

s
Amp

.Z C 1/kBTw
: (9.59)

Note that this is formally independent of density. However, based on the above
discussion one will only find the conditions necessary to create the structure
depicted in Fig. 8.25 with certain materials and over a certain density range. If we
evaluate this for 	 D 5=3 and for Be, we find

Pabl D 4:4

�
Tw

100 eV

�3:5
D 33 Œ�I14�

7=8 in Mbar. (9.60)

The standard estimate, based on simulations and reported in Lindl (1995), would
replace 4.4 by 3 in the first part of this equation or would correspond to � D 0:68

in the second part. In detail, the ablation pressure depends on materials and varies
in time. It is also useful to have an equation for cs subject to the same assumptions.
This is

cs D
s
.Z C 1/kBTw

Amp
D 7:3�106

r
Tw

100 eV
D 0:97�107 Œ�I14�

1=8 cm/s: (9.61)
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For comparison, we can also evaluate these quantities using the solutions from
Sect. 8.2.2 for a self-similar expansion heat front when the source temperature
determines the temperature in the rarefaction. The expressions are algebraically
complex, but the result scales quite closely to T3:5w , as does the simple estimate
above. One finds a coefficient of about 7.5, for comparison with the values of 4.4
and 3 discussed above. We will return to X-ray ablation in Chap. 11, where we
discuss its applications to inertial fusion. What is important at present is to see
from (9.60) that it is also straightforward to obtain pressures of order 100 Mbar
by using lasers to heat a hohlraum. Although the target is more complicated in this
case, the resulting irradiation is inherently uniform, unlike that obtained even with
smoothed laser beams. As a result, hohlraums are an option worth evaluating for
any experiment that would benefit from highly uniform irradiation.

9.3.2 Problems with Hohlraums

In addition to their complexity, hohlraums have other limitations that affect their
usefulness in certain experiments. We will discuss here four of these: asymmetry,
LPI, plasma pressure pulses, and crossed-beam effects.

9.3.2.1 Hohlraums: Asymmetry

For laser-driven fusion and for some other applications, it is important to irradiate a
capsule symmetrically. In practical experiments hohlraums do not produce isotropic
radiation fields. Using the equations of this chapter, one would be led in designing
almost any experiment to maximize AL=Aw, to maximize the energy delivered to a
capsule or other target. But a given point on an experimental package sees larger X-
ray emission (a hotter environment) from the laser spots and little X-ray emission (a
colder environment) from the laser entrance holes. As one moves around the surface
of a laser capsule, or even of a planar target, this can produce significant variations
in the X-ray flux. This in turn can produce asymmetric pressures on the surface of
the irradiated object. Efficient target designs require the use of viewfactor codes,
which integrate a specified X-ray source distribution over solid angle at each point
on a target, to assess quantitatively the radiation uniformity.

Unfortunately, as the hohlraum walls expand the X-ray sources at the laser spots
move. The result is that one cannot obtain symmetric irradiation of a capsule at all
times, from a fixed set of laser beams. It is necessary to design the experiment so
as to produce a desired symmetric outcome (such as a spherical capsule implosion)
by using asymmetric irradiation that varies in time. The design must be such that
the effect of these time variations averages out. If one has enough independent
laser beams available, then one can also vary their properties in a way to assist
with this. Note that to succeed at such a design one must successfully model both
the motion of the X-ray sources and the response of the capsule. In practice this
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has not proven feasible. To obtain a desired pattern of irradiation, it has proven
necessary to measure the time-dependent structure of the X-ray irradiation in three
dimensions and to adjust the experimental setup in response. The issue of the effect
of asymmetry on fusion capsules is discussed in Chap. 11.

9.3.2.2 Laser-Plasma Instabilities

Any hohlraum very quickly develops a volume of plasma that is very large compared
with the scale that matters for laser-plasma instabilities (LPI), which is of order
the laser wavelength. Hohlraum plasmas also are often much more uniform than
those emerging from open targets. Because the strongest limitation on LPI is
nonuniformity, the implication is that hohlraums have the potential to produce much
larger levels of LPI than open targets do. These problems are very much larger in
experiments with infrared lasers, because they have higher oscillating velocities and
smaller collisional effects at a given energy flux. Managers of research programs
seeking to produce fusion using hohlraums have never liked the fact that LPI
threatens their success. Unfortunately, they have often chosen to ignore it and have
failed to prepare for the potential adverse effects. This unwise prioritization has
nearly killed the laser-driven-fusion program in the US at least twice.

The first time was in the late 1970s, at a time when attempts to produce fusion in
hohlraums were centered on “vacuum hohlraums”, having only the fusion capsule
within them. Time and again, the neutron yields from fusion experiments fell orders
of magnitude below those predicted by the computer simulations that were used to
define the experiments. In that era almost none of the details of target performance
were checked by measurement, and so many relevant issues were not controlled.
But the dominant explanation of the observations turned out to be plasma filling.

Plasma filling is jargon, as any hohlraum will fill with plasma at some density
almost immediately. Beyond this, plasma filling refers to the establishment of
conditions that permit the excitation of the laser–plasma instabilities discussed in
Sect. 9.1.3. In particular, stimulated Raman scattering can become very strong in
plasmas with a large volume near 0.1nc in density.

We can gain a qualitative understanding of the main aspects of plasma filling
from some simple calculations. Both the laser-heated spots and the X-ray heated
walls contribute to the filling of the hohlraum. The X-ray heating takes time to
develop, so that early in time the laser-heated spots dominate. Based on (2.53),
the sound speed � p

ZTe=M is above 3 � 107 cm/s, and the hohlraum radius is
below 1 mm, so the timescale for filling is less than 3 ns. This is the regime in which
vacuum hohlraums irradiated with infrared laser light operate.

The production of hot electrons as a result of plasma filling was both a severe and
an unknown problem in early laser fusion experiments. The U.S. laser fusion effort
was nearly canceled before the scientists involved discovered and demonstrated the
effects of plasma filling. Data from such experiments were eventually well explained
by a model that assumed that all the laser energy was lost to LPI as soon as the
hohlraum filled to a density of �0:25nc. A next level of detail regarding these
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observations is provided by Lindl (1995). Some observers, including the present
author, believe that this problem was not found sooner because the fact that the
phenomena responsible for it, though known to exist, were not incorporated in the
primary computer code used to model the experiments.

For hohlraums irradiated with optical and UV lasers, the expansion of the heated
walls becomes more important. Once the walls of the hohlraum heat sufficiently,
the sound speed of their plasma is �107 cm/s. However, because the plasma
expands from a much higher initial density, it needs to expand for a only a short
time to produce effects throughout the hohlraum. Describing this expansion as an
isothermal rarefaction (Sect. 4.4.1), so that the density is n D nse�x=.cst/, where
x is the distance from the high-density edge of the rarefaction, ns is the electron
density near the solid material, which we will take to be 1024 cm�3, and we take
cs from (9.61). We ask how long it will take for the plasma density at the center
of the hohlraum from one segment of wall to reach 0.001nc, This is about 14 e-
foldings below solid density, and when this occurs there is a large volume in which
the density is near 0.1nc, which is about eight e-foldings below solid density. For a
hohlraum radius Rmm in mm we find

t D 0:61
Rmmp

Tw=100 eV
ns; (9.62)

with � in g/cm3 and Tw in eV. For typical parameters, this gives times below 2 ns.
Thus, plasma filling can also be an issue in hohlraums irradiated by optical and UV
lasers.

The second time that failures involving LPI, among other problems, nearly killed
the laser fusion program in the US was in the early years of operation of the National
Ignition Facility (NIF). The NIF, a �2 MJ laser, has been spectacularly successful
as a research facility. In the several decades during which the author has seen the
completion of many major research facilities, NIF is the only one to have been ready
when “completed” to operate at its specifications, without needing more time for
system integration or needing to soon make major repairs. Unfortunately, the initial
research program whose goal was to use NIF to achieve fusion was a failure, despite
the involvement of a large team of outstanding scientists fielding mind-blowing new
diagnostics. Much could be said about the combination of rationalistic thinking,
hubris, and just plain bad management that brought this about, but here we focus
only on the LPI aspect.

The initial targets for NIF employed gas-filled hohlraums. The gas was intro-
duced to reduce the expansion of the gold walls and the resulting time variation
in the symmetry of capsule irradiation. The evident danger was that the gas
immediately would produce uniform plasmas within which LPI could become
large. The plan was to produce conditions that would limit the unstable gain of
the instabilities (though control of density, temperature, and gradients) by using
computer models of the plasma conditions. Unfortunately, these computer models
never have been able to model, with high accuracy, the plasma conditions produced
even by simple planar targets. It is no wonder that they failed horribly to model the
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conditions produced in the NIF hohlraums. To make matters worse, the managers in
control chose not to prioritize any ability to actually measure the plasma conditions
in the hohlraums. In the event, some of the NIF laser beams lost more than half
their energy to LPI, and specifically SRS. The NIF scientists developed clever ways
to compensate for this that seemed to work in 2D computer models, but that did
not work in reality. In other, non-fusion experiments, levels of Stimulated Brillouin
backscattering in one case became large enough to damage some of the laser optics.

It is clear that MJ-class UV lasers have entered a regime where LPI effects can
readily spoil an experiment and even damage the laser itself. This increases the
challenge of doing successful experiments with hohlraums. This challenge has been
met since the early failures on NIF. As of 2017, more recent target designs have
produced comparable and in some ways better results with much less LPI.

It is worthwhile to add an aside here relating to a very bad habit in the high-
energy-density community. Unless one had made a very attentive study of the
literature, one could be forgiven for being surprised that the computer models
failed so badly at predicting the plasma conditions on NIF. Contributing to this
blindness is the entrenched tendency to model experiments using a multiphysics
code, to in some way tune the code to obtain results that look somewhat like the
data, and then to write in the paper that the code achieved “good agreement with
the data”. Managers strongly prefer this as it seems to make their program look
competent and successful. In contrast, the author has come to conclude that this
practice is at best non-scientific and perhaps even anti-scientific. (Alas, too many of
the author’s past papers do include such statements.) Unless a computer model is
truly an implementation of first-principles science that accurately models the actual
case of the experiment, to say that the code agrees with the data has no scientific
significance. What may be scientifically significant is the specific ways in which
the code result differs from the data, and the specifics of the tuning necessary to
obtain some level of agreement between the code and the data, as these provide
clues to potential missing important physics and to the improvement of the code.
In the specific case of multiphysics modeling of plasma hydrodynamics, claims of
“good agreement” in many papers might lead one to believe the models are quite
accurate, but examination of the specifics of the disagreements would lead to the
opposite point of view.

The overall point here is that both attention during experiment design and
measurements during the experiments are important to avoid doing experiments that
are compromised or worse as a result of LPI in the hohlraum. Typical experiments
using hohlraums last at least a few ns. So it should be no surprise that plasma filling
can be a significant factor. Both the energetic electrons and the laser scattering that
laser–plasma instabilities can produce are of concern for experiments and especially
for laser fusion. We discuss some of this further in Chap. 11. Finally, it is very easy to
mistake a limited computer model for reality. This is a cautionary note for students
of this or any other science.
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9.3.2.3 Plasma Pressure

The third phenomenon worth discussing is the development of plasma pressure. A
planar isothermal rarefaction, like that described above, has a velocity v D cs� with
� D x=.cst/ and a mass density � D �oe�� . The ram pressure, �v2, of such a plasma
is �oc2s�

2e�� , which has a maximum of � �oc2s=2 when � � 2. Thus, for plasma
from a gold wall with �o � 19 g/cm3 and cs as given above, the maximum ram
pressure is

Pram � �oc2s=2 D 1:3.Tw=100 eV/ Gbar; (9.63)

in which Tw is in eV. This is already an enormous pressure, but if the hohlraum
wall stayed hot long enough, it would be an underestimate, because the pressure at
the center of the hohlraum would be increased by convergence effects. The nominal
time required for the point with � D 2 to reach the center of the hohlraum would be
tmaxp D R=.2cs/, which is

tmaxp D 8:4Rmm=
p

Tw=100 eV ns: (9.64)

This typically would be a few ns, but the heating pulse for hohlraums less than 1 mm
in radius is typically of order 1 ns. So the pressure actually produced when the gold
plasma converges is smaller than that indicated by (9.63). Nonetheless, it can be very
large compared to the ablation pressure on a package irradiated by the hohlraum.
What happens on this timescale in an actual hohlraum, as elucidated by Hurricane
et al. (2001), is that a large pressure pulse propagates outward from the center of
the hohlraum. The implication is that any experiment using X-ray ablation to drive
a package has only a limited potential duration before the effects of the ablation
are overwhelmed by the pressure pulse that will eventually follow. This places a
real limitation on the design of experiments to examine the long-term evolution of
hydrodynamic phenomena.

A combination of practical considerations make this issue more dangerous than it
might seem. It is not practical to set up and run a multiphysics model that adequately
describes the behavior of the hohlraum and also the detailed behavior of whatever
experiment is produced using the X-rays from the hohlraum. Modeling the hohlraum
alone is a major challenge, and is in some ways not very accurate, as discussed in
the previous section. In practice, one uses a hohlraum model to define a “radiation
source”, and one models the physics experiment by driving it with this radiation
source. However, the eventual stagnation shock is not included in the radiation
source. So it is also important, and easily overlooked, to run the hohlraum model
long enough, along with a low-resolution representation of the physics experiment,
to get an estimate of the stagnation effects. Unfortunately, the models of such effects
may not be accurate. So making relevant measurements also matters.
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9.3.2.4 Crossed-Beam Effects

There is some potential for LPI to develop in the plasma that fills the entrance hole
through which the lasers penetrate the hohlraum. Both the heating by these lasers
and their combined ponderomotive force tend to resist this such filling, but even so
one ends up with a finite plasma density there. In the laser entrance hole, many
laser beams cross. If one considers any two such beams, their wavevectors can
be connected by ion waves having the correct k to satisfy the matching condition
required for one of the beams to give energy to the other, discussed in Sect. 9.1.4. In
a stationary plasma, this process would only be resonant if the two laser beams also
differed in frequency by the frequency of the acoustic wave. In a moving plasma,
the Doppler shift of the acoustic wave can bring the transfer into resonance for any
difference, or no difference, in laser-beam frequencies. As a result, one can produce
resonant, crossed-beam energy transfer either by careful (or accidental) selection
of plasma conditions or by tuning the difference in laser-beam frequencies. This
process can be quite large. In the early experiments on NIF, it was cleverly used to
move energy into the beams who were suffering large losses from LPI.

In general, and in both hohlraums and directly-irradiated targets, one must be
aware of crossed-beam effects. These include the transfer of energy just mentioned
and also the potential, local plasma heating via damping of the ion waves involved.

Homework Problems

9.1 Derive the general electromagnetic wave equation (9.3) from Maxwell’s equa-
tions.

9.2 Derive an equation for the conservation of charge from (9.3).

9.3 Using the equation of motion for the electron fluid in the fields of an
electromagnetic wave in a plasma of constant density, determine the time-averaged
distribution of energy among the electric field, the magnetic field, and the kinetic
energy of the electrons. Discuss how this varies with density.

9.4 Derive the wave equation for scattering of laser light from density fluctuations
(9.20).

9.5 Derive (9.22) for the longitudinal plasma velocity. Calculate the energy density
of the laser light wave and show how this is related to the source term on the right-
hand side.

9.6 Develop an energy equation for the electron fluid including a Spitzer–Harm
heat flux, and show that it is a diffusion equation.
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9.7 Determine the range of electron velocities that contribute significantly to the
heat flux, by plotting the first-order contribution to the argument of the heat-flux
integral (9.28).

9.8 Find the approximate expression for the ablation efficiency �R of a rocket, to
second order in the quantity ma=mo. Plot the corresponding rocket efficiency and
the value of (9.52). Discuss the comparison.

9.9 Examine the energy distribution of the dynamics at the surface of a laser-
irradiated, mid-Z target, where in the upper rarefaction the plasma temperature is
T . Model this region as a material at T and at a density of 1 g/cm3, growing at the
sound speed. Assume the pressure throughout the dense material, up to the shock
driven inward, equals that at 1 g/cm3, and assume the shock is driven into matter
whose initial solid density is 10 g/cm3. Evaluate and plot, as a function of T , the
energy fluxes that are radiated outward, that sustain the shock wave driven into the
solid material, that sustain the growing region near 1 g/cm3. Discuss the results.

9.10 Assume that a hohlraum of 1 mm radius is heated for 1 ns at a temperature
of 200 eV. Estimate the pressure produced at the center of the hohlraum when
the plasma expanding from the gold walls reaches the axis. (Note: this is not an
application of (9.63). Instead, you will need to think about the rarefaction produced
during the heating pulse.)
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Chapter 10
Magnetized Flows and Pulsed-Power Devices

Abstract This chapter concerns the phenomena that occur within the magnetized
flows one can produce using high-energy-density facilities, and the generation
of high-energy-density conditions that involve strong magnetic fields. It begins
with a brief summary of the motions of charged particles in magnetic fields. The
bulk of the chapter concerns the magnetohydrodynamic (MHD) equations and
their consequences, including magnetic-field generation by various mechanisms,
field transport by the Nernst effect, waves and shock waves in MHD plasmas,
the magnetized Rayleigh-Taylor instability, and magnetic reconnection. Pulsed
magnetic coils, Z-pinches, and flyer plates are discussed as experimental systems
involving strong magnetic effects.

The early twenty-first century has seen the maturing of several methods of using
high magnetic fields to enable the study magnetized, flowing plasmas or for other
purposes including equation-of-state research and inertial confinement fusion. The
first is the use of pulsed-power devices to drive currents so intense that they
create both strong magnetic fields and plasma, most often generating the plasma
by ionizing metals or ionizing and compressing gasses. These devices also can
be energy sources for a wide range of experiments and applications. The second
is the use of small, pulsed-current drivers (or lasers) to create magnetic fields of
up to tens of Tesla within which lasers can produce plasmas to study. The third
is to exploit the “thermo-electric” or “Biermann-battery” field long known to be
produced near the edges of laser-heated spots. Beyond these, pulsed-power devices
can magnetically launch slabs of matter, producing collisions that create high-
energy-density conditions. We discuss some of the fundamental dynamics that occur
in this chapter.

We begin with a review of single-particle motions in magnetic fields, which can
be skipped by those with a background in plasma physics. Then we turn to the sim-
plest model that may apply to magnetized plasma systems, magnetohydrodynamics
(MHD), introducing its equations and discussing some of the consequences. Much
of the material in the present chapter is covered in more depth and at more length
in the many available books on plasma physics, although some of the dynamical
aspects that apply most strongly at high energy density, such as magnetized shock
waves, are often not covered. One book that covers quite of few topics of interest
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here is the book, Plasma Physics for Astrophysics, by Kulsrud (2005). We finish
with a discussion of some common means of producing magnetic fields and using
them to produce experimental systems of interest.

10.1 Single-Particle Motions

Magnetic fields influence high-energy-density systems primarily by affecting trans-
port properties like heat conduction and electrical resistivity. This is especially
true at the boundaries of such systems. They play a small role in the dynamics
of most nonrelativistic high-energy-density systems. In addition, they are important
in some astrophysical systems that one might hope to understand with the aid of
high-energy-density experiments. Moreover, by using high-energy-density tools and
working at lower mass density, one can seek to examine the behavior of energetic
plasmas in which magnetic fields are dynamically important. And finally, relativistic
high-energy-density systems often inherently involve magnetic fields. For all these
reasons, understanding some simple aspects of particle motion in magnetic fields
is important for those who work with high-energy-density systems. Those readers
who have studied plasma physics have this knowledge. For those readers with no
background in plasma physics, this section is included. In Chap. 13, some aspects
of relativistic motion are discussed. Figure 10.1 illustrates the basic motions derived
and discussed in this section.

The motion of a single particle is in general described by Newton’s second law,
which in nonrelativistic form reads

m
dv

dt
D q

�
E C v

c
� B

	
C F; (10.1)

in which the particle velocity, mass, and charge are v; m, and q, respectively, The
fields are in Gaussian cgs units, and the nonelectromagnetic forces are designated
by F: Because of the cross product in the Lorentz force, it makes sense to write v as
a sum of components perpendicular and parallel to the magnetic field, B; as

v D v? C vjj: (10.2)

The equation of motion along B is then

m
dvjj
dt

D qEjj C Fjj; (10.3)

in which the k subscript designates the component of a vector that is parallel to B:
Likewise the ? subscript designates components perpendicular to B:

The motion perpendicular to B is more complex but fortunately can be separated
into distinct elements. We find the first of these by assuming E D F D 0. The
equation of motion perpendicular to B is then
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Fig. 10.1 The motions and
drifts of charged particles.
This work is licensed under a
Creative Commons
Attribution 2.5 Generic
License

m
dv?
dt

D q
v?
c

� B: (10.4)

One sees that the derivative of v? is inherently perpendicular to v?, and is constant
in magnitude. This circumstance describes circular motion. One traditionally iden-
tifies the center of the circle as a line of magnetic field, and says that the particle
“orbits” this field line. The radius of this orbit is known as the Larmor radius, and
is given by an equation that sets the force involved in circular motion equal to that
from (10.4), as follows:

mv2?
rL

D q
v?B

c
; (10.5)

which gives

rL D mv?
qB=c

(cgs) D mv?
qB

(SI): (10.6)

The frequency of the orbit is known as the gyrofrequency and (in radians per second)
is given in cgs units by qB=.mc/ or in SI units by qB=m.
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To find the next element of the particle motion, suppose F D 0, E ¤ 0, and write
the particle velocity as

v D vg C vd C vjj; (10.7)

in which we understand that the gyromotion is fully included in vg, and that the
vector vd describes the new, “drift” motion that is due to the electric field; this drift
motion is also perpendicular to B: In this case the equation of motion becomes

m
dvd

dt
D q

�
E C vd

c
� B

	
: (10.8)

To find the effect of E in the direction perpendicular to B; we cross this equation
with B; obtaining with the aid of a vector identity

m

q

dvd

dt
� B D .E � B/C vd

c
B2: (10.9)

The solution of this equation, for constant fields so vd is constant in time, is

vd D c
.E � B/

B2
cgs: (10.10)

Thus, the particles drift in a direction perpendicular to both E and B: An interesting
aspect of this behavior is that both positive and negative particles drift in the same
direction. A similar derivation shows that the drift velocity associated with an
arbitrary force F is

vd D c

q

.F � B/
B2

cgs: (10.11)

If such a force is not proportional to an odd power of q, then the positive and negative
charges will drift in opposite directions, driving a current.

In the common event that the magnetic field has a spatial gradient, this also
produces a drift, known as the grad B drift. In the typical case the gradient is small
along B, so that

rB � B D 0: (10.12)

Identifying the magnetic field at the center of the orbit as Bo, the field locally
experienced by the particle is then

B D Bo C rL � rB; (10.13)
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so that the equation of motion perpendicular to B for E D F D 0, in Gaussian cgs
units, is

dv?
dt

D q

m

v?
c

� Bo

�
1C rL � rB

Bo

�
: (10.14)

If we now write v? as

v? D vd C vg D vd C q

mc
rL � Bo; (10.15)

where we have written the orbital velocity in terms of rL, then (10.14) becomes, by
substitution and using a vector identity,

dv?
dt

D �
�

qBo

m

�2
rL

�
1C rL � rB

Bo

�
C q

m
vd � Bo: (10.16)

This is still an instantaneous equation, but we are in fact interested in the average
behavior over many particle orbits. We average this equation over an orbit, noting
that

hrL .rL � rB/i D 1

2
r2LrB: (10.17)

Then by taking the cross product of the averaged equation with B; as before, we find
the grad-B drift velocity,

vd D 1

2

mv2?
q

B � rB

B3
: (10.18)

Note that this drift also drives a current in the plasma. This concludes our brief
summary of charged-particle drifts in magnetic fields.

One other aspect of particle motion is worth mentioning. Because r � B D 0,
any change in the magnitude of B along the direction of the initial field line is also
accompanied by a change in some other component of B: The simplest example
occurs when initially straight magnetic field lines are squeezed together, for example
by a magnetic coil, producing an inward radial component to B: The Lorentz force
due to this second component of B either accelerates or decelerates the particle in
its orbit and in its motion along B: Since magnetic forces do no work, this does not
change the total energy of the particle, but it does redistribute the energy between
motion along B and orbital motion.

One can analyze the behavior in more than one way. On the one hand, one can
consider explicitly the forces on the particle and determine the particle motion. On
the other hand, one can note that the particle has a magnetic moment because its
motion represents the flow of current around a circular loop, and can determine the
effects of the electric field induced around the loop due to changes in B. (This second
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calculation is easier to do.) In either case, one finds that the magnetic moment of the
particle remains constant, a result that can be expressed as

1

2

mv2?
B

D constant: (10.19)

The result of (10.19) is that as B increases, so does v?. This continues until all the
energy of the particle is carried by the orbital motion, at which point the particle will
change directions and begin moving in the direction of decreasing B. A magnetic
structure in which magnetic field increases to a maximum, causing the reflection of
many of the particles incident upon it, is known as a magnetic mirror.

10.2 Magnetohydrodynamic Equations

One often finds that the dynamics of interest in some case are at low frequency, in
the sense that the electrons may be taken to be in steady state to sufficient accuracy.
As a result, phenomena at frequencies a great deal larger than acoustic frequencies
are unimportant, while the capacity of the plasma to carry current and support
magnetic fields remains crucial. In addition, in many systems of interest all the
distances that matter are a very large multiple of the ion orbit radius (see Sect. 10.1).
In such cases, the fluid equations and the Maxwell equations can be simplified
in ways we will soon discuss. There are many cases in astrophysics for which
MHD modeling can be highly valuable, including the study of stellar atmospheres,
planetary magnetospheres, interplanetary and interstellar space, among others.
Furthermore, the relativistic generalization of the MHD equations is effective for the
description of pulsar magnetospheres, galactic jets, and other phenomena. In some
of these systems the magnetic field is dynamically important and strongly affects
the behavior of matter. Even when the magnetic field is not dynamically important,
it may greatly alter the flow of heat through the plasma. In addition, weak fields
present over large volumes can contain substantial amounts of energy.

To describe phenomena at low frequencies in current-carrying plasma, one can
simplify the fundamental equations to obtain MHD equations. These come in many
detailed variations, some of which we will discuss here. First, we can add the mass
continuity equations (2.42) and the momentum equations (2.43) for all the species
to obtain, in Gaussian cgs units,

@�

@t
C r � .�u/ D 0 and (10.20)

�
Du
Dt

D �rp C J � B
c

; (10.21)
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in which the total pressure is p and the current density is J. In practical cases, �
is dominated by the ions while J is carried almost entirely by the electrons. There
is no term involving E, because the net charge density is very nearly zero at low
frequencies.

Now consider the equations describing the fields, under these assumptions.
Because the charge density is negligibly small, one does not need the Poisson
equation. Faraday’s law stands as written,

1

c

@B
@t

D �r � E; (10.22)

but the final Maxwell equation can be simplified to Ampère’s law,

cr � B D 4J; (10.23)

discarding the term involving the time derivative of E that is present in (2.18). This
term was essential to electromagnetic waves, discussed in Chap. 9, and is important
in other high-frequency waves, but is negligible for the conditions of interest for
MHD. In addition, one knows that r � B D 0 and the vanishing charge density
implies that r � J D 0. These two relations may be used in some derivations but are
often not listed as part of the MHD equation set.

If we apply Ampère’s Law (10.23)–(10.21) we obtain the MHD equation of
motion,

�
Du
Dt

D �rp � B � .r � B/
4

: (10.24)

Expanding the double cross product, this equation can also be cast in the form

�
Du
Dt

D �rp � r jBj2
8

C .B � rB/
4

: (10.25)

This version has intuitive value, as it lets one see that the plasma is affected by
gradients in the magnetic pressure, jBj2=.8/ and also by magnetic tension. Here
.B � rB/ describes the restoring force when a field line is bent, often compared to
the familiar restoring force on a guitar string.

When we come to shock waves, we will also need an energy equation. This
requires inclusion of magnetic energies in an equation like (2.28). Here we drop
the radiative terms from that equation, assume that heat fluxes and work done by
mechanical forces are negligible, and assume the medium is a polytropic gas, to
obtain

@

@t

�
�� C �u2

2
C B2

8

�
(10.26)

D �r �
�

u
�
	p

	 � 1 C �
u2

2

�
� .u � B/ � B

4

�
� J � E;
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noting that the Joule heating term on the right hand side may be negligible, though
not if the resistivity is significant.

The equations above are justified more fully in many of the textbooks on plasma
physics. Yet they do not enable a complete solution for the physical behavior. For
this, one needs additional equations. One needs an equation of state connecting p to
other parameters. In the equations above and our applications here, we will take the
plasma to be a barotropic ideal gas having polytropic index 	 . One also needs an
equation, known as an Ohm’s law, connecting E to other properties of the plasma. If
either the equation of state or the Ohm’s law involve the plasma temperature, then
one may need an energy equation and perhaps an ionization-balance model, as well.

Because the electric field is established by the motions of the electrons, under the
influence of forces, the most general form of Ohm’s law is the electron-momentum
equation. Haines (1986) discusses this form, and the impact of averaging its high-
frequency terms. Here we drop the terms associated with electron motion and
provide the form first developed by Braginskii (1965):

ene

�
E C u � B

c

�
D �r � Pe C J � B

c
C ene˛ � J � neˇ � rTe; (10.27)

in which the electron pressure tensor is Pe. Braginskii also provided an equation for
the heat flux,

Q D �� � rTe � ˇ � J=e: (10.28)

Epperlein and Haines (1986) provide the best evaluation of the tensor operators
˛, ˇ, and �. They do this using Fokker-Planck calculations and provide fits for wide
variations of ionization Z. These coefficients all depend nonlinearly on the electron
magnetization,!ce� , for electron cyclotron frequency!ce and electron collision time
� D 1=�ei. They also depend linearly (or inversely) upon me, ne, � , and Te, in various
combinations.

For reference below, we write out the final two dot products in (10.27). In each
case, there are three terms, each corresponding to one of three orthogonal directions.
These are the direction of B, the direction perpendicular to B in the plane of B and J
or rTe, and the direction perpendicular to both B and J or rTe. The corresponding
subscripts are jj, ?, and �, respectively. One has, designating a unit vector in the
direction of B as b D B=B;

˛ � J D ˛jj.J � b/b C ˛?b � .J � b/ � ˛�.b � J/; and (10.29)

ˇ � rTe=e D ˇjj.rTe � b/b=e C ˇ?b � .rTe � b/=e C ˇ�.b � rTe/=e: (10.30)
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There are some aspects of these coefficients worth noting. First, as B ! 0, ˛ � J and
ˇ � rTe=e are replaced by ˛jjJ and ˇjjrTe=e, respectively, evaluated for !ce� D 0.
Second, the final term in ˛ � J has the effect of augmenting the J � B term (the Hall
term) in (10.27). We ignore the consequences of the other terms for the moment.

To solve for plasma behavior using these equations, one substitutes E from
Ohm’s law into Faraday’s law (10.22). We will consider several cases that are
important in research using high-energy-density facilities.

10.2.1 Unmagnetized Plasma: The Biermann Battery

While always present, the source term associated with the pressure gradient has its
most dramatic effects in unmagnetized plasma. Since the electrons move quickly,
they attempt to flow away from the ions in response to any gradient in the electron
pressure, pe. In response, an electric field arises that prevents their escape from the
ions. One has

E D �1
e

rpe

ne
; so (10.31)

@B
@t

D � c

n2ee
.rne � rpe/ D �ckB

nee
.rne � rTe/ : (10.32)

Historically, the laser-plasma community did not have a unique name for this source
of field, which was sometimes referred to as “thermoelectric” or the “grad n cross
grad T” field. More recently, however, the community has become more aware that
Biermann identified this source, in an astrophysical context, in 1950, and so it is
usually now called the Biermann battery. In astrophysics, a key role for this process
is that it may have been the original source of magnetic field in the universe. Any
asphericity in the shock wave from a supernova produces misaligned gradients of
density and temperature, and so creates a magnetic field via (10.32).

It is not so easy to intuit why misaligned density and temperature gradients
produce the current necessary to create magnetic field. Haines (1986) provides some
help, pointing out that the energy extracted from the plasma is / J � E, and that J
involves the difference in electron and ion velocities, so the energy source represents
the difference in work done by the pressure gradient on the electrons and the ions.

This source of magnetic field is important near the edges of laser-heated
plasmas expanding from surfaces they irradiate. In that case, the density gradient
is dominantly axial while the temperature gradient is dominantly radial. As a result,
a toroidal magnetic field forms around the outer edges of the laser spot. For typical
ICF lasers (ns, �1014–15 W/cm2), its magnitude is �1 MG �100 T. It also operates
in structures produced by the Rayleigh-Taylor instability, and under various other
circumstances.
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These Biermann-battery fields have also been used or present in some appli-
cations. If one creates two adjacent laser spots, each of which produces such
field, then the lateral expansion of these plasmas brings together plasmas having
oppositely directed magnetic fields, causing reconnection. This has been used
in several experiments to study reconnection and its effects. In addition, under
some circumstances the toroidal field can be convected downstream. This creates
additional complications, at minimum for diagnostics, in experiments intending to
use such flows to drive instabilities or turbulence.

10.2.2 Ideal and Resistive MHD

It is not so uncommon to find plasmas where any currents flow along B and the
pressure and temperature-gradient sources of field are small. In this case the Ohm’s
law simplifies to

E C u � B
c

D �J; (10.33)

in which � is the resistivity (i.e., the scalar value of ˛ in this limit). Then the
magnetic-field equation becomes

@B
@t

D r � .u � B/ � cr � .�J/ (10.34)

When � D 0, one has Ideal MHD, commonly used for low-density, magnetized,
laboratory plasmas. In this case (10.34) causes the magnetic field to move precisely
as the plasma does. The field is then said to be “frozen in” the plasma. In addition,
the plasma flow velocity u is then equal to the E � B drift speed.

We will use the Ideal MHD model to derive some of the basic waves in MHD
systems, but in practice magnetized flows at high energy density most often are
significantly resistive. This author is partial to the treatment of resistivity in Krall
and Trivelpiece (1986). The resistivity is

� D �eime

nee2
D 4�ei

!2pe

sec; (10.35)

in cgs units; the conversion to mks units is 1 s D 9 � 109 ohm-m. Here the plasma
frequency !pe and the electron–ion collision frequency �ei are both defined in
Sect. 2.4.

The implications of the MHD equations for motion of the magnetic field are
important for the behavior of Z-pinches and of many astrophysical systems. If one
substitutes for J in (10.34) using Ampère’s law, one finds
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@B
@t

D �c2

4
r2B C r � .u � B/: (10.36)

For a fluid at rest, with u = 0, this is a pure diffusion equation for the magnetic field.
(The notion that magnetic field can diffuse is often confusing to students. It may
help to note two things. First, the presence of a field implies the presence of current,
generally carried by particles. Second, the particles are affected by collisions, which
will tend to cause any current-carrying region to broaden.) In this case the magnetic
diffusion time �B, with a system spatial scale of L; is

�B D 4L2

�c2
D !2peL2

�eic2
D 1:2 � 10�8 L2mmT3=2eV

Z ln�
sec; (10.37)

in which Lmm is L in mm and TeV is T in eV, and the Coulomb logarithm ln�
is also defined in Sect. 2.5. The numbers implied by (10.37) are quite interesting
and are illustrated in Fig. 10.2. Plasmas with sub-mm scale lengths tend to have
1–10 ns magnetic diffusion times, while plasmas with scale lengths of a few mm
and temperatures above 100 eV have �s-scale diffusion times. High-energy-density
systems that are magnetized can be found in either of these regimes.

If one uses the normalizing relations of Chap. 2 to evaluate the dimensionless
scaling of (10.37), one finds that the relative magnitude of the diffusion term
scales with 1/Rm, where Rm is the magnetic Reynolds number defined as Rm D
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4UL=.�c2/. The magnetic Reynold number is thus the ratio of the magnetic
diffusion time �B to the hydrodynamic timescale �H � .L=U/:

10.2.3 Hall MHD and the Nernst Effect

When there are cross-field currents, for example corresponding to those particle
drifts that drive current, the J � B term in (10.27) can become significant or
dominant. This is known as Hall MHD. We can note that .J � eneu/ is the electron
fluid velocity (times ene); the net effect is that this regime has the magnetic field
lines frozen to the electron motion. Hall MHD phenomena are very important in the
polar Earth ionosphere and in other heliospheric contexts, and also in the coupling
of a pulsed-power energy source to a target. When and whether such effects prove
to become significant for the inner working of experiments in high-energy-density
physics remains to be seen.

In contrast, the Nernst effect, not very well known in plasma physics, can be very
important in high-energy-density systems. This effect has long been thought, from
simulations, to be present in some cases. More recently (since 2010), experiments
with jet-like flows within imposed magnetic fields have begun to measure its effects.
In the Nernst effect, a temperature gradient causes charged particles to move, on
average, across a magnetic field. This induces an electric field perpendicular to the
field and the gradient, and can in turn induce a magnetic field through Faraday’s law.

To find this effect, we recast the final term in (10.30) as

ˇ�.b � rTe/=e D �VN � B
c

; with VN D c

e
ˇ�

rTe

B
; (10.38)

defining a Nernst velocity, VN . Then one has

@B
@t

D r �
�
.u C VN/ � B C c

ene

�
r � Pe � J � B

c
� other terms

��
: (10.39)

Now the magnetic field is no longer frozen in but rather convects through the
flowing plasma at VN , in consequence of heat transport. In addition, while the u � B
term leads only to convection of magnetic flux with the flow at u, this new term can
sustain field amplification during convection. To illustrate this, suppose u and all the
terms in the rightmost parentheses in (10.39) are zero, and note that VN depends on
B. Then one has

�
@

@t
C VN � r

�
B D �B

�
b.r � VN/ � .b � r/.BVN/C VN

B
.b � r/B

�
:

(10.40)

This shows that B can amplify convectively when B has a component along VN .
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Fig. 10.3 The coefficient of heat conduction that is important to the Nernst effect, ˇ�, depends
strongly on the electron collisionality and the charge of the plasma ions. Adapted from Epperlein
and Haines (1986). The solid lines are from their calculation, the long-dashed lines are from the
fits they provide, and the short-dashed lines are from the earlier work by Braginskii (1965)

Figure 10.3 shows accurate results for the value of ˇ� in (10.38), from Epperlein
and Haines (1986), who also provide fits. One can see that its value is, roughly 0.07,
to within a factor of about 7, but that it also can vary by a factor of �50 as the
electron collisionality varies. Its value peaks at moderate collisionality.

10.3 Scaling Magnetized Flows

The scaling of magnetized flows is similar to the scaling of hydrodynamic flows
discussed in Chap. 2. If we again nondimensionalize the momentum equation
(now (10.24)), replacing @=@t by U=L, replacing r by 1=L, where U is a charac-
teristic speed and L is a characteristic spatial scale, and then dividing the equation
by �U2=L, the terms on the right hand side become

Lrp

�U2
! 1

M2
and

LB � .r � B/
4�U2

! 1

ˇM2
; (10.41)

with, as usual, Mach number M and ratio of plasma to field pressure ˇ. This captures
the reality that magnetic effects become more important as ˇ decreases and that
these forces have a much bigger impact on subsonic motion than on supersonic
motion.

Turning to the magnetic induction equation (10.36), in a time � the field diffuses
a distance

d �
r
�c2�

4
; (10.42)
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for a fluid at rest. As a result, in a time L=U the distance diffused is

d �
s
�c2L

4U
D L

s
�c2

4UL
D L

r
1

Rm
: (10.43)

From this we see that the fraction of the system scale over which the fields diffuse
in an evolution time L=U is 1=

p
Rm. An experiment will be unable to sustain field

structures on scales smaller than this.
The behavior of structured, magnetized flows is of interest in contexts ranging

from particle acceleration at shock waves to magnetic-field production in turbu-
lence. Sustaining small-scale structure in both the fluid parameters and the magnetic
field requires that both Rm and the fluid Reynolds number, Re D UL=� (see Chap. 2)
be large. Practical expressions for these quantities are as follows:

Rm D 4UL

�c2
D !2peUL

c2�ei
D; and (10.44)

Re D UL

�
; (10.45)

with the kinematic viscosity � taken from (2.39). In practical units, one has

Rm D 59T3=2e

Z ln�
D; and (10.46)

Re D 5:4 � 10�20neUL
AZ3 ln�p

AT5=2i C 0:013Z3T5=2e

; (10.47)

with temperatures in eV and other quantities in cgs units.

Fig. 10.4 The fluid Reynolds
number, Re, shown by solid
lines, decreases as Te

increases and increases in
proportion to electron density.
The magnetic Reynolds
number, Rm, shown by
dashed lines, increases with
Te and depends weakly on
electron density. Rm
decreases slightly as density
increases; only the density of
the uppermost dashed curve
is labeled. These curves are
for a Be plasma in a system
5 mm in extent with flow
velocities of 1000 km/s
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Figure 10.4 shows Re and Rm for some parameters of likely interest, evaluated
for Be with A D 9, Z D 4, and Ti D Te. In the abstract, it would be desirable to get
Rm above 104 so that magnetic structures endure down to 1% of the system scale,
and to get Re above 104 so that fluid turbulence can be excited. One sees that, for
the product UL chosen, which was 5 � 107 cm2 s�1, this can be accomplished only
at a temperature near 500 eV and an electron density of 1019 cm�3. Such a product
of U and L is challenging to achieve in most high-energy-density experiments.

10.4 Alfvén and Magnetosonic Waves

The MHD plasma supports three wave modes, and these do come up in experiments
with magnetized plasmas in high-energy-density devices. As for the other waves
we considered, in Chaps. 2 and 9, one needs equations for mass and for momentum
density, but in the MHD cases we also need an equation for B. Drawing from earlier
in this chapter, the three relevant equations are

@�

@t
C r � .�u/ D 0 (10.48)

�
Du
Dt

D �rp � B � .r � B/
4

; and (10.49)

@B
@t

D r � .u � B/ � cr � .�J/: (10.50)

Here we retain the resistivity to enable calculations of damping. There are several
ways to work with these equations, or equivalent ones, and find the dispersion
relations. One of them proceeds as follows. We linearize the relevant variables and
assume the pressure to be barotropic, so that

� D �o C �1I rp D c2s r�I B D Bo C B1; (10.51)

and u is first order. The equations become, to first order

@�1

@t
C �or � u D 0; (10.52)

�o
@u
@t

D �c2s r�1 � Bo � .r � B1/
4

; and (10.53)

@B1
@t

D r � .u � Bo/C c�

4
r2B1: (10.54)

We use the first and third of these to simplify the time derivative of the second,
which we then rearrange.



450 10 Magnetized Flows and Pulsed-Power Devices

�o
@2u
@t2

D �oc2s r.r � u/ � Bo

4
�
�

r � @B1
@t

�
; from which (10.55)

�o
@2u
@t2

D �oc2s r.r � u/C .Bo � r/
4

@B1
@t

� r
�

Bo

4
� @B1
@t

�
: (10.56)

Here we can note that the first term involving the magnetic field represents the
restoring force due to field-line tension, which drives Alfvén waves, while the
second such term introduces a compressive response. Also, (10.54) can be rewritten
as

@B1
@t

D .Bo � r/u � Bo.r � u/C c2�

4
r2B1: (10.57)

Combining (10.56) and (10.57) gives

@2u
@t2

D c2s r.r � u/

C .Bo � r/
4�o

�
.Bo � r/u � Bo.r � u/C c2�

4
r2B1

�

� r
�

Bo

4�o
�
�
.Bo � r/u � Bo.r � u/C c2�

4
r2B1

��
: (10.58)

We define unit vector b D Bo=Bo, and define kjj D k �b and k? D b� .k�b/. We
similarly define ujj and u?, and the component of velocity in the third orthogonal
direction as u� D u�b. Also let Bo define the z direction with associated unit vector
Oz. Define the Alfvén speed as vA D p

B2o=.4�o/. Seeking plane-wave modulations
proportional to ei.k�x�!t/, and assuming � to be small enough to ignore, we find

!2u D .c2s C v2A/k.k � u/C kjjv2A
�
kjju � Oz.k � u/

� � kv2A

�

kjj.Oz � u/
��

D .c2s C v2A/k.k � u/C v2A

h
k2jju � kjj.k � u/ � k.kjj � u/

i
; (10.59)

giving

.!2 � k2jjv
2
A/u D c2s k.k � u/C kv2A.k? � u/ � kjjv2A.k � u/

D c2s k.k � u/C k?v2A.k? � u/ � kjjv2A.kjj � u/: (10.60)

This is three equations:

.!2 � k2jjc
2
s /ujj � c2s kjjk?u? D 0; (10.61)

c2s k?kjjujj � .!2 � k2v2A � k2?c2s /u? D 0; and (10.62)



10.4 Alfvén and Magnetosonic Waves 451

.!2 � k2jjv
2
A/u� D 0: (10.63)

These have the right limits for kjj D 0 or k? D 0, as one can confirm by doing the
homework. The � direction is not coupled to the others and supports only Alvfen
waves having !2 D k2jjv

2
A. This solution is sometimes called the “intermediate

mode”, because its phase speed is intermediate to those of the fast and slow modes,
found below.

To find the dispersion relation for the other two modes, one constructs the
determinant of the coefficients of (10.61) and (10.62), obtaining

.!2 � k2v2A � k2?c2s /.!
2 � c2s k2jj/ D c4s k2jjk

2?: (10.64)

Solving for !2 gives two roots,

!2 D k2
.c2s C v2A/

2

2
41˙

s
1 � 4k2jjc2sv

2
A

k2.c2s C v2A/
2

3
5 : (10.65)

These roots are the slow and fast magnetosonic waves. Figure 10.5 shows the

behavior of the phase velocity for these waves, normalized to
q

c2s C v2A. Parallel to
the magnetic field, the faster wave moves at the faster of the two speeds, the Alfvén
wave is purely transverse, and the sound wave is purely longitudinal. At oblique
angles both modes are mixed, including both transverse and longitudinal elements.
Perpendicular to the magnetic field, only one mode remains, and it is longitudinal
and moves rapidly. There is a connection between cs; vA, and the plasma ˇ that
can be useful to know. Specifically ˇ D 2c2s=v

2
A. Thus, low-ˇ plasmas are Alfvén-

c v

c cv vA A

(a) (b)

Fig. 10.5 Polar plot of phase velocity of fast and slow MHD waves as the angle of propagation
varies. (a) vA D 1:3cs. (b) vA D 0:7cs. This type of figure, introduced by K.O. Friedricks in 1957
in a Los Alamos report, is often described as a Friedricks diagram
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dominated and high-ˇ plasmas are sound-wave-dominated. In the ˇ � 1 plasmas
so often of astrophysical interest, and sought in experiments on magnetized flows,
both the sonic and the Alfvénic aspects can be important.

10.5 Magnetized Rayleigh-Taylor Instability

We saw above that magnetic pressure can apply force to an ionized fluid. This makes
it relatively easy to create conditions in which a magnetized, lower-density plasma
opposes the motion of a higher-density plasma. This in turn produces the opposed
gradients of pressure and density that we found in Chap. 5 imply the excitation of the
Rayleigh-Taylor instability. But because magnetic field lines resist being bent, we
can expect that the magnetic field might in some way alter the behavior of surface
modes, including those produced by the Rayleigh-Taylor instability. Here we revisit
this instability in the presence of a magnetic field. In the case that arises most often
in experiments, the magnetic field is transverse to the direction of the acceleration,
g. In addition, the background field may be excluded from the conductive plasma,
and may be acting to decelerate it. This is the case we will explore. There are also
effects if the magnetic field is aligned with the direction of acceleration; one good
treatment can be found in Chandrasekhar (1961).

10.5.1 Differential Equation for Magnetized Rayleigh-Taylor
Instability

The useful form of the Ideal-MHD equations for this purpose is

@�

@t
C r � .�u/ D 0 (10.66)

�
Du
Dt

D �rp � B � .r � B/
4

C �g; and (10.67)

@B
@t

D .B � r/u � B.r � u/ � .u � r/B: (10.68)

As usual, we let g define the �z direction. We also let Bo define the x direction
but allow the amplitude Bo to vary in z. Thus, k will lie in the x–y plane. This
geometry and labeling is shown in Fig. 10.6. Such a geometry is not uncommon
in experiments, where expanding plasmas may encounter and be slowed by pre-
existing magnetic fields. We write u D .u; v;w/ as in Chap. 5. We also, as in
Chap. 5, take the fluctuations to be incompressible, and assume the medium to
initially be stratified so that the background density and pressure vary in z only.
The initial hydrostatic balance is then �og D rpo C r.B2o=.8//.
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Surface

B1 || x̂

g || -ẑ
r2

r1 << r2

B2 << B1

Fig. 10.6 Geometry for analysis of magnetized Rayleigh-Taylor instability. The subscripts cor-
respond to the value at the interface when approaching from the side indicated. k lies in the x–y
plane

We need to analyze these equations using a notation that works for surface waves,
for which we will need to designate regions below and above the interface as 1 and
2, respectively. Accordingly, we linearize these equations as

� D �o.z/C ı�I p D po.z/C ıpI B D Bo.z/C h; (10.69)

and take u to be first order. For later convenience, we define

r? D
�
@

@x
;
@

@y
; 0

�
and D D @

@z
: (10.70)

The linearized equations become

@ı�

@t
C u � r�o D 0 (10.71)

�o
@u
@t

D �rıp � Bo � .r � h/
4

C ı�g; (10.72)

@h
@t

D .Bo � r/u; and (10.73)

r � u D 0: (10.74)

Our first problem is just that of previous surface waves: to extract, from these
equations, a differential equation that describes the vertical structure. We first work
on the x and y components of the momentum equation. To this end, note that the
second term on the right hand side of (10.72) has no x component. Taking @=@t of
(10.71) and using (10.69) and (10.72), one finds

�o
@2u
@t2

D �r @ıp
@t

� Bo � .Bo � r/.r � u/
4

� gw.D�o/; (10.75)

If we take the curl of this equation, we find

�o
@2.r � u/

@t2
D C .Bo � r/2.r � u/

4
C g � r.wD�o/: (10.76)
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Note that the z component of the final term is zero. The other two terms will
support stable, propagating Alfvén waves having a z component of r � u, but not
the exponentially growing, Rayleigh-Taylor modulations of interest here. For these
modulations we can thus take the z component of r � u, and hence also r � h, to
be zero. This implies that the second term of (10.72) has no y component either.

Now (10.74) can be written as r? � u D �Dw. With this, one can dot r? with
(10.72) to find

�oD
@w

@t
D r2?ıp: (10.77)

This is the first result of primary interest. Next we work on the z component of the
momentum equation. Taking the x-derivative of (10.74) and the y-derivative of the z
component of the vorticity, we have

@

@x
r? � u D �D

@w

@x
and (10.78)

@

@y
.r � u/ � Oz D @2

@y@x
v � @2

@y2
u D 0; (10.79)

implying that

r2?u D �D
@w

@x
: (10.80)

We also note that

�
Bo � .Bo � r/.r � u/

4�o

�
� Oz D B2o

4�o

@

@x

�
Du � @w

@x

�
(10.81)

Recall that the Alfvén speed is given by v2A D B2o=.4�o/. The z component of
(10.75) is then

�o
@2w

@t2
D �D

@ıp

@t
� �ov

2
A

@

@x

�
Du � @w

@x

�
C gw.D�o/: (10.82)

We now eliminate u by operating with r2?, to obtain

�or2?
@2w

@t2
D �Dr2?

@ıp

@t
C �ov

2
A

@2

@x2


D2 C r2?

�
w C g.D�o/r2?w; (10.83)

We now eliminate ıp by operating on (10.77) with D@=.@t/ and substituting, which
yields

�or2?
@2w

@t2
C D

�
�oD

@2w

@t2

�
��ov

2
A

@2

@x2

r2? C D2

�
w D Cg.D�o/r2?w: (10.84)
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This is the differential equation we were seeking, which is a function of only
w, derivatives, and known parameters. Seeking plane-wave solutions of the form
entCi.k�x/, we obtain

n2D .�oDw/ � �ok2n2w C �ov
2
Ak2x



D2 � k2

�
w D �gk2.D�o/w: (10.85)

This is the equation we need in order to determine the vertical structure in specific
cases.

10.5.2 Magnetized Rayleigh-Taylor Instability When k ? Bo

When one has k?Bo, kx D 0 and (10.85) reduces to

n2D .�oDw/ � �ok2n2w D �gk2.D�o/w: (10.86)

This is identical to (5.21) for zero viscosity, and so the magnetic field has no effect
on the instability for modulations in this direction. This may seem strange, but it
reflects the fact that flux tubes frozen into plasma do not resist motion. For k?Bo,
the flux tubes move up and down with the fluid but they do not have to bend. It
is bending that the field lines actively resist. Thus B does not inherently stabilize
Rayleigh-Taylor instability. The boundary conditions also do not change, one finds
that the growth rate for this instability is identical to that of the purely hydrodynamic
case when k ? Bo.

10.5.3 Magnetized Rayleigh-Taylor Instability When k Is Not
? Bo

Here as a specific example we consider the case of two uniform fluids separated by
a surface that is horizontal relative to g. Fluid 2 is the upper fluid and fluid 1 is the
lower fluid. When we add a subscript with a number to a given variable, we refer
formally to the value of that variable taken in the limit that the surface is approached.
The properties of the two fluids may differ.

The basic boundary conditions is that w be continuous across the interface. We
take its value at the surface to be wo. As before, in Chap. 5, we integrate (10.85)
across the surface to obtain another boundary condition:

n2 .�2.Dw/2 � �1.Dw/1/C k2x
2

�

�2v

2
A2 C �1v

2
A1

�
..Dw/2 � .Dw/1/

�

D �gk2wo.�2 � �1/: (10.87)
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Electrodynamics also requires that the normal component of B at the surface be
continuous. In our initial condition Bo � Oz D 0, so there is no initial normal
component. Yet (10.73) seems to imply that we generate one, which would not
be continuous across the surface if Bo were not continuous. indeed some of the
interesting practical cases are ones in which magnetic-field pressure resists the
acceleration of a denser medium, and Bo need not be continuous. The solution to
this conundrum is that the surface becomes rippled such that Bo � Oq remains zero,
where Oq is the surface normal.

Returning to the main problem, the differential equation, (10.85) becomes for
this case

�o.n
2 C v2Ak2x/



D2 � k2

�
w D 0; (10.88)

so just as in the simpler, field-free case the solutions for unbounded fluids are

w D woekz for z < 0 and w D woe�kz for z > 0; (10.89)

while the case of finite-depth fluids requires combinations of these functions. This
lets us evaluate (10.87), finding

�n2kwo .�2 C �1/ � 2kwo
k2x
2

�

�2v

2
A2 C �1v

2
A1

��

D �gk2wo.�2 � �1/; (10.90)

so that

n2 D gk
.�2 � �1/
.�2 C �1/

� k2x



�2v

2
A2 C �1v

2
A1

�
.�2 C �1/

; (10.91)

which also can be written

n2 D gk
.�2 � �1/
.�2 C �1/

� k2x



B22 C B21

�
4 .�2 C �1/

: (10.92)

As it should, (10.92) reduces to the hydrodynamic growth rate of Chap. 5 for
B1 D B2 D 0, and independently for kx D 0 as was noted above. When these are not
zero, though, the magnetic field is stabilizing. The effect is much like that of surface
tension, for the same reason. The surfaces of fluids with surface tension resist
bending. In practice, this stabilization of Rayleigh-Taylor in some directions matters
for experiments. If one hopes to see the modulations produced by Rayleigh-Taylor,
one had better be looking along B. At small enough kx (long enough wavelength),
the magnetic field becomes ineffective. Consider where this might be. A rough look
at the numbers is as follows. For �1 � �2, g � 10 km/s/ns, and a 60�m wavelength,
the hydrodynamic growth rate is �1 inverse ns. For a magnetic field of 100 kG and
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a mass density of �2 � 0:001 g/cc, vA is about 10 km/s. Modes with k D kx will
be stabilized for wavelengths below about 60�m. As �2 decreases, progressively
longer wavelengths can be stabilized.

10.6 Magnetized Shocks

High-energy-density systems tend to produce shock waves, in natural consequence
of releasing an initial high pressure against matter. This applies just as much to
magnetized flows as it does to any others. But, just as the properties of waves in
a plasma are affected by the presence of a magnetic field, so is the behavior of
shock waves. To explore the behavior, we proceed as we did with oblique shocks
in Chap. 4, defining a unit vector n, which is normal to the shock front and in the
direction of the normal flow into the shock front (thus, n points from right to left
in our standard orientation). Then the component of u in the normal direction is
un D n.u � n/ while the transverse component of u is u? D .n � u/ � n. If the
magnetic field is parallel to n, then the shock is said to be a “parallel shock,” while
if B �n D 0, the shock is said to be a “perpendicular shock.” Any perpendicular field
may have components in the direction of u? and also in the direction of n � u. It is
also helpful to work with the conservative form of the momentum equation,

@.�u/
@t

C r �
�
�uu C

�
p C jBj2

8

�
I � BB

4

�
D 0: (10.93)

Here for simplicity we assume an isotropic pressure tensor. Using the subscript n
for the normal direction, (2.41), (10.93), and (10.26) give us the following jump
conditions, obtained by recognizing that the direction these equations must be
integrated to fully capture the jump conditions (see Chap. 4) is that of n. We have

�2un2 D �1un1; (10.94)

�2u2un2 C
�

p2 C jB2j2
8

�
n � B2Bn2

4

D �1u1un1 C
�

p1 C jB1j2
8

�
n � B1Bn1

4
; (10.95)

which has components parallel and transverse to n, and from the energy equation
we have

un2

�
	p2
	 � 1 C �2

u22
2

C jB2j2
4

�
� Bn2.u2 � B2/

4
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D un1

�
	p1
	 � 1 C �1

u21
2

C jB1j2
4

�
� Bn1.u1 � B1/

4
: (10.96)

and from r � B D 0 we have

Bn2 D Bn1: (10.97)

Finally, one can integrate Faraday’s Law across the shock transition, using the
Ohm’s Law for ideal MHD. This implies that �n � E D n � .u � B/ is constant
across the shock, or

un2B2 � Bn2u2 D un1B1 � Bn1u1; (10.98)

which can also be written

un2.B2 � n/ � Bn2u2? D un1.B1 � n/ � Bn1u1?: (10.99)

This expression may have two components if .B � n/ is not parallel to .u � n/.
Now consider some simple cases. For a pure parallel shock, with Bjjn, (10.96)

implies that the magnetic field does not change across the shock, so the field-related
terms drop out of (10.95) and (10.96), while (10.98) and (10.99) are reduced to the
condition that the transverse velocity is unchanged.

For a pure perpendicular shock, with B?n and ujjn, (10.98) implies that the
magnetic field increases by the same factor as the density, from (10.94). At the
same time (10.99) implies that the direction of B does not change. In this case, there
is simply compression of the magnetic field. The energy cost of field compression
is high, though, as it scales as jBj2, so when ˇ . 1, it will take comparatively more
pressure to produce a strong shock.

Shock waves in unmagnetized fluids are associated with an upstream Mach
number, and the piston speed must exceed the sound speed in order to drive a
shock. This creates some confusion for magnetized plasmas, where there are two
“sonic” waves in addition to Alfvén waves. Certainly a piston moving faster thanq

c2s C v2A will drive a shock and this can be strong. But there is also the potential
for more complex behavior at slower speeds, including shock waves that switch a
component of the magnetic field on or off. Here we leave the pursuit of this subject
to other books or articles, but we note that there is the potential for some interesting
laboratory experiments, once facilities can access the necessary regime.

There is also a third type of transition that is not a shock, known as a tangential
discontinuity. Here a localized current sheet creates a rotation of B transverse to
the flow. In the pure case, neither density nor velocity change. These are observed
within the Heliosphere.

The discussion above said nothing about the shock transition itself, and produces
results that relate the plasma properties on opposite sides of the transition. In dense
enough plasmas, the shock is produced by collisions and the shock transition is a
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few ion-ion mean-free-paths. One can calculate its microstructure by including ion
viscosity in the hydrodynamic equations.

However, as the density drops low enough to have ˇ . 1 for a magnetic field
of hundreds of kG, the collisional mean free path becomes quite large. The relevant
densities are below 1020 per cc. One can produce supersonic flows at these densities,
or lower ones, in the plasmas blown off of laser-irradiated targets or produced by
pulsed-power devices. In astrophysics, one encounters supersonic flows at much
lower densities. As one example, the collisional mean free path within the solar wind
near the Earth is about one astronomical unit. Yet shock waves are still observed in
these natural systems. Such shocks are known as collisionless shocks. Such shocks
have been observed in space, and in some laboratory experiments, since the 1960s.
In the early twenty-first century they have seen renewed interest, because of the
ability to produce and diagnose them by several new methods.

The shock transition in any collisionless shock is produced by local, fluctuating,
electric and/or magnetic fields. These arise via several mechanisms. In unmagne-
tized plasmas, the simplest is the electrostatic, two-stream instability, which has
been observed in both ICF-scale and relativistic experiments. The latter case is
discussed further in Chap. 13. More complex, but potentially important in systems
such as gamma-ray bursts, is the development of a structured magnetic field via
the ion-ion Weibel instability. Ion-ion Weibel is driven by counterstreaming ions,
and produces filamentary magnetic structures that eventually become tangled. At
this writing (2017), the instability has been observed in experiments; in simulations
shocks have been seen to develop on timescales and spatial scales not far from
experimental conditions.

In magnetized plasmas, there is a very wide range of phenomena associated with
collisionless shocks. Balogh and Treumann (2013) discuss many of them. In pure
perpendicular shocks, the particles are trapped by the magnetic field, so the natural
scale for structure ahead of the shock is the gyroradius of ions reflected from the
shock. These ions are an energy source for a number of instabilities that produce
and sustain shock structure. In pure parallel shocks, reflected electrons and ions can
stream freely ahead of the shock. One instability, among many, that can contribute
to developing shock structure is the firehose instability, discussed next.

10.7 Firehose Instability

When ion reflection or other phenomena create a plasma with a pressure distribution
that is anisotropic, the anisotropy can provide the free energy to support an
instability. Like the instability of an actual firehose at high pressure, in this case flux
tubes will begin to oscillate. This can be a step in leading to the field structures that
sustain parallel collisionless shocks. We will briefly visit the theory of this instability
here.

Suppose that the pressure tensor can be written as

P D p?I C .pjj � p?/bb; (10.100)
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in which again b D B=B is a unit vector in the direction of the field B. Note that the
rightmost term establishes the pressure as pjj in the direction of b. Then we have

r � P D rp? C .pjj � p?/r � bb C b.b � r/.pjj � p?/

D rp? C .pjj � p?/ Œ.b � r/b C b.r � b/�C b.b � r/.pjj � p?/; (10.101)

noting that r � b ¤ 0.
It will be helpful to note that r � P has components both jj and ? B. Using a

subscript to designate jj and ? parts, we have

.r � P/jj D rjjpjj C .pjj � p?/b.r � b/C b.b � r/.pjj � p?/ (10.102)

and .r � P/? D r?p? C .pjj � p?/.b � r/b: (10.103)

A key term for the firehose instability is that which resists field-line bending, .b�r/b.
This provides a restoring force here, just as it does for Alfvén waves. We then find,
from (10.25) for u?,

�
Du?
Dt

D �r?
�

p? C jBj2
8

�
C .B � rB/

4
C .p? � pjj/.b � r/b: (10.104)

Linearizing with B D Bo C B1, zeroth-order �o, and first-order u gives

�o
@u?
@t

D �r?
�

p? C 2BoB1
8

�
C .Bo � r/B1

4

�
1C 4.p? � pjj/

B2o

�
: (10.105)

The other needed equation is (10.57) which, linearized and for zero resistivity, is

@B1
@t

D .Bo � r/u � Bo.r � u/: (10.106)

We seek modes in which the flux tubes oscillate, and to the simplest case of
interest has k? D 0 and involves only u?, so that these last two equations imply

@2B1
@t2

D .Bo � r/2B1
4�o

�
1C 4.p? � pjj/

B2o

�
; (10.107)

implying via the usual plane-wave decomposition (B1 or u / ei.k�x�!t/) that

!2 D k2
�
v2A C .p? � pjj/

�o

�
: (10.108)
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One can see that the condition for instability is

pjj > �ov
2
A C p?: (10.109)

If we approximate p? D �oc2s , then the condition is pjj > �o.v
2
A C c2s /. If pjj

exceeds the threshold by �ov
2
A, then the growth rate will be of order the Alfvén

wave frequency � kvA, which is quite fast.

10.8 Reconnection

In the case of ideal MHD, field lines are always frozen into the plasma and can
never break. In real plasmas, in contrast, field lines always diffuse and can break
and reconnect to form new topologies. Reconnection occurs when ions converge on
a current sheet, flowing inward from both sides. This flow can be driven or can be
in response to J � B forces, a difference that will not be our focus here. The plasma
must then divert the ion flow away from the region where it converges while also
reconnecting the field lines so they can escape. Resistive MHD provides a first way
to describe this behavior and sets the stage for more complex descriptions when
needed.

Figure 10.7 shows the geometry that corresponds to the early descriptions
of Sweet (1958) and Parker (1957). One imagines two regions of oppositely
directed, dominantly horizontal field lines, separated by a current sheet in which
the reconnection occurs. This is the gray rectangle in the figure, of length 2L and
thickness 2d. The plasma flows into this region at speed u. Within it, the field lines
diffuse and reconnect, becoming vertical where they cross the reconnection layer.
The reconnected field lines then move away laterally at the Alfvén speed.

u

vA vA

u

2L

2d

Fig. 10.7 Geometric structure of a reconnection region in the Sweet-Parker description
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This geometry is relevant to any system in which a current sheet forms, as
happens in any magnetotail including that of the Earth. Through its interaction with
the solar wind, the dipole field of the Earth gets dragged into a long tail behind the
Earth, in which a current sheet separates regions of oppositely directed magnetic
field. The field lines continually (though not steadily) reconnect through the current
sheet; the inner ones are drawn back toward the Earth and the outer ones escape
downstream.

Suppose the current sheet in Fig. 10.7 extends into and out of the page, so that
we can analyze the system in two dimensions. The incoming speed of the field lines,
uSP, is often referred to as the “reconnection rate,” despite the disparity with what
one would expect as the units for a rate. Conservation of mass then implies that

uSPL D vAd: (10.110)

Suppose that the inward convection of the field lines balances their diffusive outflow,
so that locally B does not change. Then (10.36) implies that

r � .u � B/ D � c�

4
r2B; (10.111)

so for a thin, dissipative layer, where r � 1=d, we approximate (ignoring signs)

u D c�

4d
: (10.112)

These equations give

uSP D c�vA

4uSPL
D vA

r
c�

4vAL
D vAp

S
and (10.113)

d D c�L

4vAd
D L

r
c�

4vAL
D Lp

S
; (10.114)

in which the newly defined Lundquist number is S D 4vAL=.c�/, comparing
Alfvénic convection with resistive dissipation. The Lundquist number is often very
large, so that the resistive layer is predicted to be thin and the incoming velocity is
a small fraction of vA. Here d represents the dissipative-layer thickness necessary to
produce the reconnection while all the ions flow into and then out of the dissipative
layer.

The model as just given is not self-consistent, because along with the resistive
field-line diffusion there is resistive dissipation. So one must ask whether the heating
might be so large as to cause the expansion of the resistive layer beyond the value
just calculated. This was considered and the short answer is no. (See Kulsrud (2005)
for further discussion.)

What proved more important is that the timescale, �SP, for reconnection in
the Sweet-Parker model just described is far too slow for many circumstances.
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Table 10.1 gives two examples discussed by Kulsrud. The Sweet-Parker reconnec-
tion timescale, �SP, is often a few orders of magnitude faster than resistive decay, of
timescale �decay but yet a few orders of magnitude slower than the observed value
�obs. Even so, the observed timescale is longer than the crossing time for Alfvén
waves, �A. We discuss the other parameters and timescales below. The resolution of
the discrepancy between �SP and �obs has several elements.

We can start with a discussion of what has to be true for the Sweet-Parker model
to be a valid application of MHD theory using classical resistivity. In the jargon
of the field, this case corresponds to “slow reconnection.” First, the geometry of
Fig. 10.7 has to be accurate. Specifically, the length L must include all the ions
whose inflow needs to be redirected. Second, the length d must remain large enough
that MHD theory remains accurate. This requires that d > ıi, the ion skin depth,
also shown in Table 10.1. The ion skin depth, ıi D c=!pi is the scale to which low-
frequency external fields can penetrate a plasma, and is also the scale below which
electron and ion behavior can differ significantly. (The ion plasma frequency is !pi.)
In laboratory experiments in which d > ıi, which corresponds to a requirement that
the collisional mean-free-path is � ıi—all turn out to break down in various cases
of interest. Petschek realized that reconnection events can be local, and need not
occur throughout the full extent of a current sheet, and that the actual length of the
reconnection layer need not include all the ions needing to be redirected, because
the straightening of the field lines after reconnection would sweep along all the ions
to the left and right of the reconnection layer. Figure 10.8 shows the resulting, new
picture, in which the place that field lines meet is known as an “x-point” and the
field lines connected to the x-point are said to form a “separatrix.” In real systems,
there are often many such x-points, which form and dissipate throughout the current
sheet. The reconnection now occurs throughout a volume of much smaller length,
L0, and the new incoming speed uP is

uP D uSP

r
L

L0 : (10.115)

Table 10.1 The disparity of timescales for reconnection

Solar Earth Solar Earth
Parameter flare magnetotail Parameter flare magnetotail

B (G) 300 10�4 vSP (cm/s) 20 103

Density 10�15 g cm�3 10 cm�3 �A (s) 37 15

vA (km/s) 270 70 �SP (s) 6� 107 105

Te (eV) 100 100 �decay (s) 1014 109

�c
4

(cm2/s) 104 107 �obs (s) 103-104 �100

L (km) 104 103 ıi=vA (s) 3� 10�5 1

ıi (cm) 700 5� 106 S� 108 102

S 3� 1012 7� 107
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u

vA
vA

u

2L

2L´

u u

u u

2d2δi

Pulled by 
field lines

Diverted 
inside δi

Fig. 10.8 The complicated picture that is two-fluid reconnection. Make sense of this sketch as
follows. First, follow the solid black curves. These are lines of magnetic field, which change
direction across the separatrix, shown by the dashed line. The largest gray box, of width 2L, shows
the region over which the ion flow must be diverted. Some of this flow, indicated by the outermost,
four, thick, gray curves with arrows, is frozen in and is pulled sideways by the straightening
magnetic field lines. The middle gray box, of width 2L0, has a thickness of two ion skin depths
(2ıi). The electrons and ions flow into the top and bottom of this box together, but then go separate
ways. The ions are diverted throughout and flow out sideways, as indicated by the innermost, four,
thick, gray curves with arrows. The electrons, in contrast, being much more strongly magnetized
than the ions, are pulled into a much smaller region, shown by the darkest gray box. This region is
of width 2d, and is where the field lines diffusively reconnect. The lateral outflow is at the Alfvén
speed, vA

The Petschek model thus produces faster reconnection, and the ability for the
outgoing ions to flow out in an expanding flow rather than on a narrow sheet is
helpful. But the model does not provide a very clear story regarding how to define
L0, and predicts that shocks will form in the outgoing flow, which have not been
observed. Nonetheless, the basic Petschek geometry has been observed when the
requirements of the Sweet-Parker model are violated.

Now we turn to the second key requirement, relating to resistivity. Within the
context of any model of the plasma, the resistivity can become “anomalous”, by
which one means the following. The resistance to current flow, averaged over
timescales of many ion-acoustic periods, is much larger than the value resulting
from Coulomb collisions alone. One way this can occur is when ion-acoustic
turbulence develops in consequence of the two-stream instability, excited when the
electron drift relative to the ions reaches the ion-acoustic speed. This mechanism
was discussed in Chap. 9 in the context of electron heat transport in mid-Z or high-
Z targets, and also just above in the context of shock formation. It produces local,
fluctuating, electrostatic fields that scatter the electrons and thereby increase the
resistivity.
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If we suppose that there is such an electron drift, at velocity ue, then the corre-
sponding current is J D �eneue and Ampère’s law implies that the corresponding
width of the layer containing the current is

d D ue

vA
ıi: (10.116)

The usual story in such driven turbulence is that the driver is held by the turbulence
to a marginally stable value, so that the necessary instability remains excited. This
requires an electron drift of order the sound speed cs, so we have ue � cs � p

ˇvA,
with ˇ as usual being the ratio of plasma pressure to magnetic-field pressure. Thus,
when the thickness of a current sheet drops below �pˇıi, anomalous resistivity is
likely to develop. Here cs; vA and ˇ are defined using the magnetic field just outside
the resistive diffusion layer and using the temperatures in the heated plasma within
the diffusive layer. With these definitions, one finds typically

p
ˇ � 1. In other

words, when one violates the second requirement given above, one also tends to
violate the third requirement. Let us consider the consequences.

The electrons and ions act separately on scales smaller than the ion skin depth, ıi

(see Fig. 10.8). This takes the description out of MHD proper and now the account
becomes a two-fluid theory. The ions can always flow laterally in a layer whose
thickness is the ion skin depth. (This requires that the ion gyroradius be no larger
than ıi, which implies that the ion speed be no larger than the Alfvén speed, as is
generally true.) In addition, the argument of Petschek still applies, so the global
scale over which the ions must be redirected, L, may be larger than the scale over
which ions and electrons enter the reconnection zone, L0. Figure 10.8 illustrates this
case. One can see geometrically that the distance L0 depends on the opening angle
of the separatrix, which seems not to be determined by simple physics.

The ions now flow out of the reconnection layer in a sheet of thickness 2ıi, so we
have

uPL0 D vAıi: (10.117)

The electrons flow into the reconnection layer. Recall the discussion of Ohm’s law
in Sect. 10.2.3: .J � eneu/ is eneue. When the electrons drift relative to the ions
across the field, the magnetic field lines follow the electron motion. This lets us
recast (10.112) as

uce D c��

4d
(10.118)

for cross-field electron-fluid speed uce and actual resistivity (perhaps anomalous)
��. If uce is of order the marginally stable value � vA, as discussed above, then

d D L=S�; (10.119)

where S� is the Lundquist number evaluated using the actual resistivity.
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We can analyze this situation a bit more as follows. The electrons are drawn
in from the boundary through which they flow with the ions, of length L0, to the
resistive-diffusion region, of length L00. As a result, one has uPL0 D uceL00. In
addition, assuming that the separatrix boundaries are approximately straight lines
in this region, and that the width of the resistive-diffusion region is L00, one has

d=L00 D ıi=L0: (10.120)

In combination, and with uce � vA as discussed above, so that (10.117) implies
d D c��=.4vA/, one has

uP D uce
L00

L0 D vA
d

ıi
D vA

L

ıiS� : (10.121)

Although this does not give us a known expression for the reconnection rate, it does
indicate that the plasma, by adjusting S�, can achieve any reconnection rate it needs.
The required value can be found by taking

�obs D L

uP
D S� ıi

vA
: (10.122)

For our two examples, Table 10.1 shows the required values of S�. In each case,
the resistivity has to be increased by a few orders of magnitude to produce a self-
consistent account. Two-fluid simulations also agree that anomalous resistivity is
required to produce Petschek-type reconnection events and to match observations.

Beyond this question of what rate of reconnection the plasma can sustain lie some
other issues. One of these is triggering. In some cases, and especially in experiments,
reconnection can be driven by relatively steady opposing flows. In other cases, and
often in nature, a system exists that can reconnect, reducing the potential energy of
the magnetic-field configuration, but that needs a trigger to initiate the reconnection.
Two known triggers are a type of instability called an MHD tearing mode, and a
modulation instability in current sheets known as the plasmoid instability, which
produces isolated plasmas contained within closed magnetic-field lines.

Another issue for reconnection is the energy flow. Some of the energy stored
in the magnetic field acts to accelerate the ions, which emerge at more-or-less vA.
But the process of reconnection itself delivers significant energy to suprathermal
electrons. These have been detected from reconnection in laser-driven plasmas,
via the X-rays they could produce. And it is clear from various data that they
produce radio emissions following reconnection in solar flares. Developing a
detailed understanding of energy flow is at the forefront at this writing. It seems
that a combination of improved experiments and improved simulations will be
needed. On the simulation front, researchers are finally now developing codes that
can follow the electron physics at the scale of the dissipation layer using Particle-
in-Cell techniques, map the output to two-fluid codes that can follow the dynamics
on the scale of the ion skin depth, and then map that output to MHD codes that can
follow the global-scale behavior.
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A summary of the story of reconnection is as follows. Reconnection occurs
as plasma flows inward toward a current sheet where the magnetic field changes
direction. In order to reconnect the field lines while also diverting the plasma
flow, the plasma demands that the reconnection occur within a layer of a specific
thickness. If the plasma is sufficiently collisional, this layer remains thicker than
two ion skin depths and the ordinary, resistive MHD theory of Sweet and Parker
describes the behavior. As the layer becomes thinner than an ion skin depth, three
things happen. The length of the reconnection zone contracts laterally, with ions
outside that zone being diverted by magnetic forces as field lines straighten. The
geometry changes from that of an extended layer to that of an x-point and the
outflow becomes more divergent. In addition, the ion flow separates from the
electron flow, with the ions escaping from a layer whose thickness is two ion skin
depths while the electrons remain magnetized and flow into a layer thin enough
to accomplish the needed reconnection. Finally, the cross-field electron currents
required by the geometry become large enough to drive turbulence in the plasma,
increasing the resistivity and enabling the reconnection in a thicker layer than would
otherwise be required. Triggering and energy flow are also issues on which some
things are known and much remains to be learned.

10.9 Dynamos

A dynamo is a system that causes conducting matter to move across magnetic
field lines, producing an electric potential that drives a current which in turn
creates magnetic fields. Dynamos are of great importance in nature, as the universe
was initially unmagnetized and yet now contains magnetic fields under many
circumstances. Examples of dynamos at high energy density include those that
produce the magnetic field of the Earth and that of the Sun. Other examples of
dynamos include the turbulent dynamos throughout the Universe that produce the
observed magnetization of interstellar space and the dynamo that produces the
extremely strong magnetic fields near pulsars. Yet the presence of dynamos in
traditional plasma-physics texts is irregular. Dynamos have not been relevant to
most laboratory plasmas and so have often been overlooked. Today, though, with
the increased emphasis on connecting the laboratory and astrophysics, laboratory
research focused on plasma dynamos has become common.

Here we will discuss key mechanisms involved in magnetic-field generation in
plasmas or other conducting matter—the “˛-effect” dynamo and the “˝-effect”
dynamo. A key aspect is that stretching a magnetic field typically strengthens it.
Consider a tube of magnetized plasma, bounded laterally by magnetic-field lines
and at its ends by two surfaces that are perpendicular to B. For simplicity make
this tube cylindrical, although the point we will make here is general. If the plasma
is close to incompressible, as is typical, and of density �, then the included mass,
which must be conserved, is �A`, with tube area A and length `. In the absence of
currents on the surface of the flux tube, the magnetic flux, BA, is also conserved. As
a result,
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Fig. 10.9 Left: Magnetic field lines for a purely toroidal field. Right: Magnetic field lines for a
purely poloidal field

B

�`
D constant and B / ` (10.123)

in incompressible fluids where density is constant. The upshot is that stretching
magnetic field lines strengthens the magnetic field.

Another necessary element for understanding dynamos is to understand the
geometric description of the field relative to an axis of rotation. Key concepts are
that the magnetic field can have “toroidal” and “poloidal” components, as illustrated
in Fig. 10.9. If the axis of interest defines the z axis in standard spherical coordinates,
then a toroidal field lies parallel to the x–y plane and has only a component in the
� direction. A poloidal field lies in the z–� plane. Note that toroidal fields require
poloidal currents, and vice versa. Dynamo behavior tends to convert one type of
field to the other.

The origin of dynamo behavior is found in the magnetic induction equation,

@B
@t

D Cr � .u � B/C �c2

4
r2B: (10.124)

We can see that the term involving the velocity has the potential to cause B to
increase. Even so, finding ways that this could actually happen proved challenging.
The reason for this became more clear once Cowling, in 1934, proved his theorem
that no axisymmetric velocity field could generate new magnetic field.

The ˛-effect can be understood using a statistical analysis of turbulent flow,
similar to the Reynolds decomposition we discussed in Chap. 5 for fluid turbulence.
One takes B D Bo C QB and u D U C Qu, in which Bo and U are constant averages
while QB and Qu vary in time but average to zero. The average in time of (10.124)
becomes

@Bo

@t
D Cr � .U � Bo/C r � h Qu � QBi C �c2

4
r2Bo; (10.125)

where hi represents the taking of the average. Under appropriate assumptions (see
Kulsrud 2005), one finds
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h Qu � QBi D ˛Bo � ˇr � Bo; (10.126)

leading to the mean-field dynamo equation

@Bo

@t
D Cr � .U � Bo/C r � . ˛Bo/C

�
ˇ C �c2

4

�
r2Bo; (10.127)

The second term on the right here describes the ˛-effect dynamo. What is most
important is that it can generate poloidal magnetic flux from toroidal magnetic flux.
The factor ˇ increases the diffusion of magnetic flux, and so is often described as
the turbulent resistivity.

As one example, suppose Bo is along the z axis in Cartesian coordinates. There
can be an Alfvén wave having k jj Oz, B1 jj Oy, and u jj Ox. In ideal MHD, this wave
will have hu � B1i D 0. But in resistive MHD, B1 will be shifted relative to u, so
that hu � B1i ¤ 0 and it will become possible to generate magnetic field in the x � y
plane. This would represent a conversion of poloidal into toroidal flux.

The ˝-effect dynamo describes how differential rotation can convert poloidal
flux into toroidal flux. Suppose one begins with a dipole field like that shown on the
right in Fig. 10.9, produced by a current loop within a conducting body. For both the
Earth and the Sun, this is an accurate global, large-scale description of the magnetic
field. Such a field is purely poloidal—it lies entirely in the r-� plane. If the body
in question rotates as a rigid rotor, then the field remains poloidal. But if there is
differential rotation, as is the case in the interiors of the Earth and the Sun, then the
field lines at some radius are pulled ahead of those at another radius. This creates a
toroidal component to B. In the limit of long times and small resistivity, most of the
magnetic flux can become toroidal. At that point, if not before, the ˛-effect dynamo
can act to produce new poloidal flux from the toroidal flux.

If the signs work out so that the new flux is in the opposite direction of the original
flux, this sequence of ˝-effect and then ˛-effect dynamos can lead to a reversal of
the field, as is indeed observed for both the Earth and the Sun. But since the ˛-effect
dynamo depends in detail on the properties of the turbulent flow, the field reversals
are not strictly periodic. One also observes this in both the Earth and the Sun.

We now turn to the turbulent dynamo, responsible for the generation of magnetic
fields at small scales throughout the Universe. The key mechanism thought to be
at work is the ˛ effect, but the geometry is different. Recall that fluid turbulence
generates vortices at all scales above the dissipation scale and at all orientations.
Also recall that the field is frozen in. So if an eddy develops within a patch of
uniform field, it will strengthen the field by winding it into a spiral, as Fig. 10.10
illustrates. Complementary turbulent motions can twist and fold the resulting loop-
like magnetic field structures (Schekochihin et al. 2004). In three dimensions (but
not two), this can result in amplification of the average field. (Reconnection may
also contribute by isolating loops of increased field.) At this writing, simulations
have observed such MHD dynamos, and find that the threshold value of Rm for
dynamo behavior is �50–200, depending on Re. Recent experiments have obtained



470 10 Magnetized Flows and Pulsed-Power Devices

Fig. 10.10 Magnetic field
lines can be wrapped up and
lengthened when a vortex
develops within a field

B

Fig. 10.11 A loop of hot
plasma, held in place by a
magnetic field, near the
surface of the Sun. Credit:
SOHO—EIT Consortium,
ESA, NASA

the first observations of magnetic fields attributed to the turbulent dynamo. But
much remains to be learned, and dynamo behavior in collisionless plasma remains
especially challenging to understand.

10.10 Creating Dense Magnetized Plasmas

Figure 10.11 shows a loop of magnetic field near the surface of the sun, visible
in soft X-rays because the plasma it contains is much hotter than the surrounding
plasma. One contributor to such heating is the pinch force, which has the amazing
effect of causing any channel of plasma that carries current to contract. As we will
see, the pinch force is one consequence of the J � B force. Since most astrophysical
systems include magnetic fields, whose motions induce the flow of current, this
force is present at some level in many circumstances. In the laboratory, modern
pulsed power devices can deliver voltages of >1MV for >100 ns. As we will see,
this is ample to produce high-energy-density conditions. We will first discuss the
traditional approach to this end, known as the Z-pinch. Later, we will discuss an
alternative use of the same type of pulsed-power system—the magnetically launched
flyer plate. After that, we discuss the direct use of (pulsed) magnets for producing
magnetized plasmas at high-energy-density facilities.
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10.10.1 Z-Pinches for High-Energy-Density Physics

André-Marie Ampère showed that current-carrying wires exert forces on one
another. We can revisit this briefly to set the stage for the more complicated
discussions that follow. Imagine an infinitely long, straight wire carrying a steady
current. If one integrates Ampère’s law over the area of a surface centered on the
wire and bounded by a circle, and applies Stoke’s theorem, one finds, using SI units,

�oI1 D �o

Z
A1

J1 � OndA D
I
`1

B1 � d` D 2r1B1; (10.128)

where On is a unit vector normal to the surface and the subscript 1 represents the
properties produced by the wire. One can show, from symmetry and the absence of
magnetic monopoles, that B1 is purely azimuthal. The direction of B1 is given by
the right-hand rule because the line integral is by convention always taken in the
counterclockwise direction as viewed from the direction toward which On points. If
there is a thin, parallel wire some distance R from the first wire, the force per unit
length on this second wire, F2, due to the magnetic field from the first wire, is

F2 D
Z

A2

.J2 � B1/ dA D �o
I1I2
2R

.�Or12/ ; (10.129)

where subscript 2 refers to the second wire and Or12 is a unit vector from the first wire
to the second wire. The minus sign means that the force is attractive (for J1jjJ2), as
one can verify from the right-hand rule. The general point is that parallel currents
attract. This has the implication that any compressible medium carrying current will
tend to contract.

This fact enables one to create a type of device known as a Z-pinch. A Z-pinch
uses an axial current (in the z direction in a standard Cartesian coordinate system)
to create a pinch force, with the aim of producing a high-temperature plasma. Some
of the early approaches to magnetic fusion were based on this principle. One can
find equilibria in which the inward pinch force, produced by current in a plasma,
balances the outward pressure of the plasma. Unfortunately, these equilibria are
not stable; if they were stable then we might indeed have had fusion power plants
in the 1960s. Most modern Z-pinches are so-called fast Z-pinches, in which a
rapidly rising current causes the implosive contraction of material. The imploding
material is accelerated and then converts the kinetic energy of implosion to heat
when the material stagnates on axis. Such implosions can occur with varying relative
amounts of heating versus acceleration. As we shall see, the implosions of interest
to high-energy-density physics are violent indeed. Such implosive pinches avoid the
slowly growing instabilities that plague equilibrium pinches. However, they create
the transient growth of the Rayleigh–Taylor instability, discussed in Chap. 5, and
this imposes some limitations on their operating range. Here we discuss the basic
aspects of the implosion of a fast Z-pinch. More extensive discussions of Z-pinch
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physics can be found in the book, Physics of High-Density Z-Pinch Plasmas, by
Lieberman et al. (1999), and in the article in Reviews of Modern Physics by Ryutov
et al. (2000).

We begin by considering the self-consistent behavior of a long cylindrical shell
with a uniform current density in the z direction, given initially as a function of
radius r by

J D Jo for r1 < r < r2I J D 0 otherwise: (10.130)

Such a current produces no magnetic field in the z direction, and one can show from
this and the absence of magnetic monopoles that there is no radial component of
magnetic field. Applying Ampère’s law to the interior of the cylinder, there is also
no azimuthal magnetic field inside the shell, so B D 0 there. Within the shell itself,
Ampère’s law in SI units implies

I
B � d` D 2rB D �o

Z
J � OndA D �oJo



r2 � r21

� � �oJo .2rır/ ;

(10.131)

where ır D r � r1. The equation of motion relates the acceleration of the fluid to
the inward force density F , and is

�
@u
@t

D F D J � B D �Or�oJ2o
2



r2 � r21

�
r

� �Or�oJ2oır; (10.132)

where Or is a unit vector in the radial direction. From this, the equation of motion for
the radial acceleration of a fluid element is

�Rr D ��oJ2o
2



r2 � r21

�
r

� �oJ2oır; (10.133)

in which � is the mass density. One can integrate this over the cross-section of the
shell to find the total inward force per unit length and thus the approximate equation
of motion for the entire shell

OmRr D ��oI2

4r
; (10.134)

in which I is the total current and Om is the mass per unit length, and again this is in
SI units. For constant current, one can integrate this equation to obtain

u2r D �oI2

4 Om2 ln
h ro

r

i
(SI) D I2

c2 Om2 ln
h ro

r

i
(cgs) D u2Alf2 ln

h ro

r

i
: (10.135)

in which, uAlf is the velocity of Alfvén waves at the initial outer edge of the pinch.
One can in turn integrate (10.135) to find the time timp at which the implosion
reaches a radius r, which is
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Fig. 10.12 Behavior of a
constant-current Z-pinch
implosion, showing radius as
a fraction of ro, and with
inward velocity normalized to
uAlf, versus time, normalized
to ro=uAlf
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where uAlf is defined by (10.135) and erf is the error function. In practical units,

uAlf D 3:3 � 106IMA=
p

Om(mg/cm) cm/s; (10.137)

where IMA is the current in MA and the units of Om are shown. The behavior produced
by (10.135) and (10.136) is shown in Fig. 10.12. One can see that the shell of current
moves inward slowly at first, and that only late in the implosion does the acceleration
greatly increase. The development of an actual pinch implosion, which has a slowly
increasing pinch current, is even more gradual. An essential phenomenon, included
in the equation of motion only by the boundary condition that ur D 0 at r D 0,
is that the pinch material must stagnate before it reaches the axis of the cylindrical
shell, where the incoming matter will accumulate. In the simplest conception, the
pinch material is accelerated inward, gaining kinetic energy, and is shocked and
compressed as it stagnates when it symmetrically reaches the axis, converting the
kinetic energy into thermal energy and later into radiation and an outward expanding
plasma.

The convergence, ro=r, enters into these equations. We can estimate a plausible
radius at stagnation rs in order to determine the maximum convergence. If, for
example, one used a metallic shell whose density was 10 g/cm3, with an initial mass
of 1 mg/cm, and the imploded and shocked material on the axis had a density of
40 g/cm3, all of which are plausible numbers, then the radius of the imploded pinch
would be about 30�m. If the initial radius of the shell were 1 cm, then one would
have ro=rs � 300. In actuality, instabilities limit the degree of implosion, which
typically ends at ro=rs �10–20. Note that differences of a factor of 2 in ro=rs have
a very small effect on the final implosion velocity because the convergence enters
into the logarithm. Indeed, even increasing the convergence to ro=rs � 300 would
increase ur by less than 50%. Pinch research in the 1950s was focused on creating
a high-density matter where fusion would occur, for which high convergence is
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essential. Modern applications of Z-pinches to high-energy-density physics more
often depend primarily on energy (and on its efficient conversion to radiation), and
so are less sensitive to convergence.

Returning to the simple model of (10.136), and using ro=rs D 10, one can find
the kinetic energy of the pinch material just at stagnation. Remarkably, this quantity
depends only on the pinch current. It is

K.E. D 2:3 Omu2Alf D 2:3
�oI2

4
(SI) D 2:3

I2

c2
(cgs) D 2:3I2MA kJ/cm: (10.138)

With the currents above 20 MA that are now feasible, this energy can exceed 1
MJ/cm. The total energy of the pinch material may be higher than this, because it has
been heated by Joule heating (i.e., J � E) and by compression (i.e., pdV work), but it
also may lose energy to radiation before the end of the implosion. Assuming that the
heated material stagnates symmetrically, all the remaining energy is momentarily
converted to heat. The energy of stagnation initially develops in the ions, as they
carry the kinetic energy, and is then transferred by collisions to the electrons. Once
the temperatures have equalized, the heating produced by the kinetic energy of
(10.138) gives a temperature in eV, TeV, of

TeV D K.E. � Amp

kB Om.Z C 1/
D 20

I2MA

Om (mg/cm)

�
A

Z C 1

�
eV. (10.139)

In evaluating this equation, one may have to allow for the dependence of Z on Te

(Chap. 3). Such dense matter, at typical stagnation temperatures above 1 keV, is a
very intense radiator. Note that one can adjust this temperature, to seek an optimum
for some purpose, by adjusting the mass per unit length.

As was mentioned above, the current in an actual pinch is not constant. In
fact, it often has a sinusoidal profile in time. This leads the implosion to develop
more gradually than Fig. 10.12 shows. However, there are only limited analytic
solutions for the motion of the pinch with more realistic, time-dependent current
profiles. To make matters even more complex, the current is not fundamentally
independent of the pinch and its dynamics. The pulsed-power machine provides
a time-dependent voltage pulse to its load, which in this case is the pinch and the
supporting structures for the pinch. The principal limitation on the current through
the pinch is the inductance of the pinch itself. Thus, more-accurate pinch modeling
specifies the time-dependent voltage supplied to the pinch, determines the current by
calculating the instantaneous induction of the pinch and solving a circuit equation,
and simultaneously solves an equation like (10.134) for the implosion of the pinch
itself. One result of such circuit modeling has been that pinches have become shorter
in recent years, and often now have a height that is only a fraction of their initial
radius. By reducing the height, one can decrease the inductance and thus increase
the current.

This has an application when one considers the duration of the pinch implosion.
In actual Z-pinches the implosion time must be matched to the duration of the
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Fig. 10.13 Sketch of
structure at the core of a
modern Z-pinch. The part that
matters for the physics is the
wire array. The return current
at the height of the wire array
flows through a canister that
has holes in it for diagnostic
access and for radiation
escape
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voltage pulse that can be produced by the pulsed-power system. Using (10.136)
and (10.137), for initial radii of a few cm, masses within a factor of five times
1 mg/cm, and currents within a factor of 3 of 10 MA, one can see that the implosion
time is within an order of magnitude of 100 ns. Of course, the reasoning actually
must be done in reverse. Given the ability to deliver a voltage pulse of some duration,
one must choose the mass and radius of the Z-pinch load to obtain an implosion of
the same duration with the current that results. Let us explore this further.

Figure 10.13 shows a sketch, roughly to scale, of the hardware at the core of a
modern Z-pinch. The inductance L of a current-carrying cylinder of height H and
radius r, with the return current carried at some larger radius rret, is easily found to
be

L D �o

2
H ln

� rret

r

	
: (10.140)

With an available voltage V of duration � , we solve V D LdI=dt � LI=� with
� D timp from (10.136) to find

IMA D 10�4

vuutVMV

p Om.mg/cm/p
2�

3=2
o

� ro

H

	 Erf
hp

ln.ro=rs/
i

ln.rret=r/

D 1:47 . Om(mg/cm)/1=4
r

VMV
ro

H
; (10.141)

in which ro and H must be in the same units and the second result is obtained using
rret=r D 10 and ro=rs D 20 but depends weakly on the exact values of these ratios.
We see that multi-MA currents are straightforward to achieve.

The options for increasing the current are limited. The simplest is to decrease
H. It seems from (10.141) that one could increase ro. However, in order to keep
timp � � , (10.136) implies that one must keep the ratio IMA=.ro

p Om/ constant, so
this would require decreasing Om. Z-pinches that drive their currents through puffs
of gas accomplish this, obtaining small Om and very large ro. This has produced
implosion velocities near 1000 km/s for the production of intense, K-shell radiation.
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Ultimately, one can rebuild the machine to increase V (or more accurately V� ). This
is the only path that can produce substantial increases in current.

One application of Z-pinches that is most relevant to high-energy-density physics
at present involves the production of radiation. (Ryutov et al. (2000) discuss some
other possible applications in their review paper, and Chap. 11 discusses their
application to inertial confinement fusion.) The first such application is to use the
pinch to produce the largest possible soft X-ray energy by blackbody radiation
from hot, dense matter. For this purpose one implodes a high-Z material, typically
tungsten (W). After the stagnation, the plasma both radiates and expands. We can
evaluate the ratio of the blackbody radiation, 
T4, to the power involved in plasma
expansion .�=Amp/kBTcs as follows:


T4

ŒZ�=.Amp/�kBTcs
D 35

T2:5keV

�

�
A

Z

�3=2
; (10.142)

where TkeV is the temperature in keV. This implies that radiation will be strongly
dominant above some temperature of order 1 keV. Such Z-pinch radiation sources
are often produced within high-Z hohlraums, similar to those discussed in Sect. 9.3.
These hohlraums can confine the pinch radiation and sustain for some time a
high-temperature, thermal radiation environment. They have been used to irradiate
packages either mounted on their walls, to study ablatively driven phenomena or
radiation flow, or mounted within the hohlraum, to study radiation transport or
photoionization effects. They have also been used to irradiate capsules for inertial-
confinement-fusion research.

A second radiation-related application of Z-pinches is to use them to produce X-
ray line radiation. For this purpose, one uses wires of a material whose K˛ X-rays
have an energy of a few keV, such as titanium. The radiation balance is not as easy
to estimate as it is in the case of blackbody radiation. The efficiency is large enough
to produce useful yields for practical applications.

In order to maximize the power radiated by a Z-pinch during stagnation, one
must maximize the stagnation power, Ps. Because the plasma expands during the
implosion, the duration of the stagnation can be expected to scale with the implosion
time, which by design one makes equal to the duration � of the voltage pulse. Thus,
since the kinetic energy is proportional to I2MA,

Ps / HI2MA

�
/ HIMAVMV

L
/

V3=2
MV

�p Omro

	1=2
H1=2

/ V2
MV

H
; (10.143)

so for fixed pulsed-power parameters one can increase the stagnation power only by
decreasing H. There are limits to this, as the implosion will be compromised near
the ends of the pinch. Nonetheless, at around the turn of the century pinches less
than 1 cm high were imploded with good results on the Z-device.

For many years the ability of Z-pinches to actually produce X-ray radiation fell
far below the expectations one would have from the scalings discussed above. This
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changed dramatically during the 1990s, with the development of Z-pinches that use
a load composed of hundreds of fine wires (typically �10�m dia.). All the previous
approaches, which included wire arrays with fewer, thicker wires, solid cylindrical
conducting shells (known as liners), and various schemes involving gas, performed
far less well. It is tempting to infer that the use of many wires finally produced
a structure resembling the uniform plasma shell of our simple modeling, while
all the previous methods produced a less uniform plasma that did not stagnate as
effectively. The success with arrays of fine wires led to a large increase in the X-ray
yield from such devices.

The observed implosion time of pinches using arrays of many wires, determined
from the timing of the X-rays produced at stagnation, is typically in excellent
agreement with the time predicted by modeling of a uniform plasma shell. This led
some authors to conclude that the wires in such wire arrays do expand and merge
so as to produce such a plasma shell. Further support for this conclusion has come
from MHD modeling, which can reproduce the stagnation time and the size of the
resulting plasma, although to do so one must assume very large initial perturbations
to seed the Rayleigh–Taylor instability. However, the issues are not so simple and the
evidence is rather complex. There are two ways that an array of wires can develop a
comparatively uniform implosion. The simplest notion is that the wires explode into
small plasmas and that if the wires are close enough then these plasmas will connect
and the current will flow uniformly in azimuth. However, the evidence indicates that
the wires, and especially those of materials such as Al and W that perform well, do
not initially explode.

Instead the wires ablate because the current flowing on their surfaces heats them
so strongly that plasma flows away from their surfaces. This can create a structure
in which the plasma and magnetic field have merged but the wire cores remain. The
likely behavior of the magnetic field is complex—the field is not frozen in. The
magnetic diffusion time, from (10.37) and Fig. 10.2, for distances of fractions of
a mm, with electron temperatures that are not so many eV, may be of order 1 ns
and certainly is much smaller than the implosion time of order 100 ns. The field
is initially strongest near the wire surfaces and will tend to diffuse outward into the
developing plasma, where it can merge (via reconnection) to form a more symmetric
structure. The diffusion of the field also corresponds to a diffusion of the current, so
the plasma experiences a J � B force that accelerates it inward. In typical cases it
appears that of order half the wire mass may be accelerated inward before the final
phase of the implosion. Some magnetic field will be carried with such plasma, and
more may diffuse into it.

It is unclear at this writing how much force is actually delivered to the wire
cores, and whether the cores themselves actually move. On the one hand, if the wire
cores eventually become small enough to explode into plasma, then they probably
do move. On the other hand, there is some evidence that the wire ablation ceases
once the wires develop gaps, which are likely the result of MHD instabilities in
the wires themselves. After that, there is no longer a source of plasma to sustain
the current and magnetic field at the edge of the array, and the outer edge of the
plasma will implode inward, sweeping up the interior mass in what is usually
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described as a snowplow implosion. There may be a fundamental underlying cause,
but at the moment it seems amazing and fortuitous that modeling of this more
complicated process produces implosion times that are nearly identical to those
produced by a uniform plasma shell. Whatever these details turn out to be, the
important consequence is that wire-array implosions can be efficient sources of X-
rays for high-energy-density experiments.

10.10.2 Magnetically Driven Flyer Plates

As another application of the pulsed-power technology that drives Z-pinches, we
consider how such a source of current and voltage can be used to isentropically com-
press and/or accelerate samples. The traditional Z-pinch uses the fact that nearby
conductors carrying parallel currents attract, as we discussed in the beginning of
Sect. 10.10. By running parallel currents through an array of low-mass conductors,
one can make them implode. There is a return current in a Z-pinch, but it is placed at
a large radius so that it has little effect on the implosion, as we discussed. However,
it is also true that conductors carrying opposing currents repel one another. By
placing the opposing currents in close proximity, one can create a large force that
drives them apart. If one makes one conductor quite massive and gives the adjacent
conductor a much-lower mass, then the low-mass conductor will be preferentially
accelerated. This is the key to what is sometimes known as magnetic drive.

The reason for this name becomes more clear if one thinks about the magnetic
fields that these currents generate. The two conductors generate a magnetic field
between them, perpendicular to the currents and with a direction given by the right-
hand rule. One way to think of the resulting drive is to consider that each conductor
experiences a J � B force, just as we did when we discussed the Z-pinch. A second
way to think about magnetic drive is to note that the magnetic pressure drops to zero
across a thin layer at the surface of the conductor where the current flows, so that
one can say that the magnetic pressure is applied to the conductors. This magnetic
field can be enormous.

Thus far this description shows how to apply a large force to accelerate an object.
There is an additional aspect of this possibility that gives it more value. By adjusting
the increase of the current with time, one can control the time dependence of the
force. In particular, one can increase it slowly enough to avoid launching a shock
into the driven material. Observing the response of the material to such an isentropic
compression can provide substantial insight into the equation of state. Beyond this,
by isentropic compression and acceleration one can launch a cold flyer plate at a
higher velocity than can be produced by traditional flyer-plate launchers such as gas
guns. At this writing, Al flyer plates have been launched isentropically at velocities
above 30 km/s. See Chap. 4 for discussions of the hydrodynamics of flyer plates and
of their use in making equation-of-state measurements.
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10.10.3 Direct Use of Magnets

Another way to study plasma in a magnetic field is to use some energy source
to create a magnetic field and then to produce the plasma within it. There is a
conceptual limitation to such experiments, though, not always well understood. The
plasma is very nearly a superconductor, so it cannot be penetrated by new magnetic
field on timescales shorter than the diffusion time discussed above, unless the Nernst
effect becomes substantial. If the flow becomes turbulent then the diffusion time
might be shortened, but there is scant evidence for this, or reason to expect it, in
simple plasmas blown off of surfaces. If one injects plasma along the magnetic field,
then one can get the plasma into the field. If one creates the plasma from matter,
such as a gas, already in the field, then it will contain the field. But if one tries
to inject matter across the field lines, then the simplest physics says the field will
not penetrate the plasma, and the full physics is complex enough that knowledge of
the field penetration must be based on measurements. Despite this limitation, much
physics of interest can be done and has been done using a combination of magnetic-
field sources and plasma sources. There are at least three approaches in common use.

The first approach is to build a coil or wire, not much larger in scale than the laser
target, to use some source of pulsed power to drive a current through it, producing
the field, and then to use a laser (or other source) to produce a plasma that interacts
with the field. This approach is necessary in laser facilities with limited access to the
central area of the target chamber, such as Omega. The Omega facility has built a
device they call MIFEDS, containing powerful small capacitors that can be carried
in close to the chamber center, within a diagnostic insertion tube. It can produce
fields approaching 10 T, depending on the application. The facility is supporting the
upgrade of this device, seeking to enable fields of several times this value. Variations
on this approach have been common also at the Magpie pulsed-power machine at
Imperial College, with some structures used to produce fields and others to launch
plasma at or into such fields. The Z machine operates a larger set of coils that can
also bring its central volume to fields of order 10 T, for a variety of applications.

The second approach, applicable to smaller laser facilities where one can access
the volume near the focus of the beam, is to devise a small magnetic coil with holes
in the structure that provide laser and diagnostic access to a central volume, usually
a few mm in diameter. Such magnets can produce magnetic fields of some tens of T
over this volume. They have been constructed in both the US and Europe, and have
been used in experiments on lasers having hundreds of Joules of available energy.

The third approach is to use one set of laser beams to drive a current loop and
another set to create the plasma of interest, as Fig. 10.14 illustrates. One places two
conductors close enough to one another, and then irradiates one of them (perhaps
through a hole in the other). Some of the electrons escaping the irradiated conductor
are captured by the second conductor, creating a voltage difference between the
two of them. Connecting the two conductors to a current loop enables this voltage
difference to produce a magnetic field. This technique has been measured to produce
fields of tens of T near the center of the coil.



480 10 Magnetized Flows and Pulsed-Power Devices

Fig. 10.14 Sketch of
structure used to produce a
high magnetic field using a
laser plasma as the voltage
source
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Finally, some experiments have emerged, working at lower energy density, that
inject plasma blobs from laser targets or other sources into large plasmas created in
kG-scale fields, produced by steady solenoids. This has begun to enable experiments
on collisionless shocks and other phenomena that can complement the science that
can be done at higher energy density.

Homework Problems

10.1 Find the sizes and directions of the orbits of protons and electrons. Explain
from fundamental laws of electromagnetics why their direction is as it is. Show
pictorially why the E � B drift moves particles in the same direction.

10.2 The MHD equations assume charge neutrality, yet MHD plasmas may contain
electric fields. Explore this seeming contradiction by, first, evaluating the electric
field and relative charge imbalance for a steady electric field in an isothermal
plasma having a density gradient (so that eneE D �rpe), for reasonable choices
of parameters. Compare this to the electric field produced in an electron plasma
oscillation for which the amplitude of the electron-density fluctuations is 10%.
Express the magnitude of the electric force as eV/�m.

10.3 Begin with (10.48)–(10.50), keeping the resistivity. Derive the dispersion
relation for damped Alfvén waves, starting with the assumptions that k is parallel
to B and that u is purely transverse. (You should find this much simpler than the
general case just discussed.) For reasonable choices of plasma parameters, plot the
ratio of damping rate to real frequency as a function of electron temperature.

10.4 Begin with (10.48)–(10.50), assuming small resistivity. Derive the dispersion
relation for cross-field sound waves, starting with the assumptions that k is
perpendicular to B and parallel to u. (You should find this much simpler than the
general case just discussed.)

10.5 Show that when the field evolves as (10.73) describes, the quantity B � Oq
remains zero to the first-order accuracy of the present model.
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10.6 While one can vary the properties of a Z-pinch load from one experiment
to the next, one can modify the pulsed-power device itself on a somewhat longer
timescale. Such devices are typically characterized by the number of Volt-Seconds
they can produce, and operate so that V� D constant. First, consider and then
explain why Volt-Seconds is a reasonable way to characterize a pulsed-power
device. Second, using the scaling relations developed in Sect. 10.10.1, discuss how
to optimize the stagnation power for a device with V� D constant.

10.7 Revisit the derivation at the beginning of Sect. 10.10. Consider two infinitely
wide, plane parallel conductors carrying opposing currents. Find the force per unit
area between them and express it in terms of the magnetic field magnitude. Discuss
how the force per unit area compares to the energy density of the magnetic field.
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Chapter 11
Inertial Confinement Fusion

Abstract This chapter begins by discussing the nuclear physics that makes possible
laboratory fusion, and considering on basic grounds the energy gain that might be
possible and what is required for a power plant. Some exploration of the properties
of DT fuel follows, enabling one to identify its behavior under compression and its
response to entropy deposition. The next section describes the capsule implosions
that put kinetic energy into the fuel. After that comes consideration of the stopping
of the incoming fuel capsule and the requirements for ignition, whether via a
central hot spot or via a spark. A discussion of some of the challenges that must
be overcome for targets to actually ignite follows. The final section considers how
the combination of all the constraints affects the potential for Inertial Confinement
Fusion using laser energy sources to succeed.

The early chapters in this book were focused on the physical fundamentals of
high-energy-density physics. Chapters 9 and 10 showed how we could create such
conditions, which in turn makes possible the application of high-energy-density
systems to the pursuit of various goals. This and the next chapter are much more
focused on these goals. The goal that has been and remains dominant in high-
energy-density research is the development of inertial confinement fusion, or ICF.
This is our topic in the present chapter.

Fusion is the joining of two nuclei. This leads to the production of various
reaction products, which often carry significant kinetic energy. Whether or not
nuclear fusion releases energy depends on the masses of the nuclei involved. If the
total mass of the reaction products is less than the mass of the initial nuclei by an
amount�m, then the net energy released by the reaction is�mc2. It is by fusion that
all the elements beyond the very lightest few were created. However, not all fusion
events release energy. Figure 11.1 shows a plot of the nuclear binding energy versus
atomic number. The binding energy is the energy one must invest to disassemble
the nucleus into its component protons and neutrons. This is proportional to the
mass difference between the mass of its constituent protons and neutrons and the
mass of the nucleus. The most-stable nucleus is iron, with an atomic mass of 56.
As a result, energy can be released by combining elements lighter than iron, or
by dividing (by fission) elements heavier than iron. One can see that some light
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Fig. 11.1 Nuclear binding
energy versus atomic number
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elements have relatively large binding energies—these are those with closed nuclear
shells and correspond to elements that accumulate in stars.

Stars begin by assembling a very large mass of light elements. Through
gravitational compression, their cores become dense and hot enough to initiate
fusion burning. Through fusion, they begin to convert their light elements to heavier
elements. Heavier elements require progressively higher temperatures to fuse, as the
heavier nuclei have higher nuclear charge, so that it takes more energy to overcome
the Coulomb repulsion. Low-mass stars like the sun accumulate He by burning H
and eventually are able to ignite He, producing cores of C and O, but they cannot go
further than this. High-mass stars (larger than about eight solar masses) can create
all the elements up to Fe, and accumulate significant amounts of Si in the process.
The Fe proves to be the death of these stars, as it cannot burn, so it cannot sustain
the pressure necessary to resist the gravitational contraction. The eventual collapse
of the Fe core triggers some types of supernova explosions.

All this has much to do with elemental abundances in the universe. Elements up
to iron can be created by stars during their lifetime, and the most abundant ones are
those that represent stable endpoints during stellar evolution. The eventual stellar
explosion creates an environment rich in neutrons and neutrinos, which rapidly
process the material that exists, producing the elements heavier than Fe and altering
the populations of the lighter elements. Arnett (1996) is a good first source for more
details on this.

This context leads to natural questions. We can create conditions of high
pressure and high temperature, if only briefly, using high-energy-density devices.
Any concentrations of matter and energy we produce are confined inertially, not
gravitationally. (That is to say, they blow apart in roughly one sonic transit time.)
Even so, can we perhaps do this in a way that causes light elements to fuse, releasing
energy? Can we perhaps release useful amounts of energy? Let us see. We will
proceed from asking what conditions we have to end up with, moving to how we
might get there and then to what might go wrong. Our approach here will be to use
simple arguments to identify the important issues and resolve them. This will get us
into the ballpark of actual ICF parameters. But real designs for producing ICF must
consider every issue that can be identified, and not just the most important ones.
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Computer simulations are an important tool for including many of these details. A
next level of detail may be found in Lindl (1995) and in Atzeni and Meyer-Ter-Vehn
(2004).

11.1 The Final State

To answer our question about the possibility of inertial fusion, we will proceed from
the end toward the beginning. We start by asking what we might use for fuel. Then
we will ask what physical conditions are required to make this fusion fuel burn and
provide an energy yield. This will lead to the question of how we can produce these
conditions, and what the pitfalls might be in attempting to do so.

11.1.1 What Fuel, Under What Conditions?

A first question, determining much that follows, is what elements we might use
for fuel. This would lead us to examine tables of nuclear reactions, from which
we could find the following few that offer some potential for the easiest laboratory
fusion systems:

D C T ! 4He (3.5 MeV) C n (14.1 MeV); (11.1)

D C D ! 3He (0.82 MeV) C n (2.45 MeV); (11.2)

D C D ! T (1.01 MeV) C H (3.02 MeV); (11.3)

D C3He ! 4He (3.6 MeV) C H (14.7 MeV); (11.4)

and

p C B11 ! 3 4He (8.68 MeV each): (11.5)

The first of these reactions (known as DT) is the focus of nearly all fusion
research at this writing. Any plasma producing these reactions will produce the
next three as well. We will see the advantage of this focus in a moment. The
disadvantage, for applications such as the production of electricity, is that the
energy emerges primarily as neutrons (designated n in the equations). One can only
manipulate energy from neutrons by first converting the energy to heat, and heat
cycles have limited efficiency. (The heat cycle efficiency is �40%, which applies
after the conversion of neutron kinetic energy to heat.) This leads one to look toward
advanced fuels, such as the reaction of p and B11, that produce only charged-particle
reaction products. In the longest run, these offer the potential to escape the need for
heat cycles and to eliminate all the associated hardware from fusion power plants.
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Fig. 11.2 Rate coefficients
for the DT, DD, D–He3, and
p–B11 reactions
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In the shorter run, fusion systems that produce a lot of neutrons may prove more
useful as breeders of fuel for power plants using nuclear fission. But we are not yet
at the point of thinking about power production, so let us return to the question of
whether one could do this at all.

Figure 11.2 shows the dependence on energy of the rate coefficients for these
four fusion reactions, found by averaging the reaction cross section over Maxwellian
distributions of interacting particles, just as we discussed in Chap. 2 for collisional
processes and Chap. 6 for atomic ones. One sees that the rate coefficient for the
DT reaction becomes large at temperatures far below those required for the other
processes. A star may not care much about this. It can keep the material in place for
a long time. But to attempt ICF we do care. We have to burn the fuel before it blows
apart—getting the rate coefficient up near its maximum matters. One can see that
DT is clearly the fuel of choice for initial attempts to achieve ICF.

Next suppose we have brought a clump of DT fuel into a final state, with
conditions that encourage it to burn. How much of it burns? To answer this suppose
that the density of deuterium nuclei in the clump is ND, the density of tritium
nuclei is NT, and the density of pairs of reaction products is n. Also, ignore the
DD reactions as we are seeking a simple estimate rather than a complete account.
The rate equation describing the accumulation of reaction products is

dn

dt
D NDNTh
viDT; (11.6)

in which the rate coefficient for the reaction is h
viDT. Next suppose that ND D
NT D 0:5No � n, and define the burn fraction �, given by 2n=No. Then (11.6)
becomes

d�

dt
D No

2
.1 � �/2h
viDT; (11.7)
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Now if we make the approximation that h
viDT is constant as the fuel burns, and
integrate over a time � during which the fuel burns, we find

�

.1 � �/ D No�

2
h
viDT: (11.8)

Next we need to estimate how long the fuel burns. This time should be
proportional to the fuel radius r and inversely proportional to the sound speed cs,
but is clearly less that the ratio r=cs. We account for this by taking � D r=.3cs/,
where the factor of 3 would be only a guess without more-advanced knowledge.
We take the temperature to be 30 keV in order to evaluate the sound speed and
rate coefficient. (This amounts to assuming that self-heating by the burning fuel
will push the temperature to the value corresponding to the maximum of the rate
coefficient.) We also convert No to obtain

� D �r

�r C 6 g/cm2
: (11.9)

Here we meet the quantity �r for the first time. This is the mass per unit area, which
is the areal mass density. We see that this quantity controls the burn fraction. The
transmission of particles or photons through the fuel also depends on �r. Within the
context of the approximations above, one can see that when �r is 3 g/cm2 the burn
fraction is 33%, while �r increases to 6 g/cm2, the burn fraction increases only to
50%. The returns are clearly diminishing, and the cost of �r is high, so let us assume
that our final state before burning has �r D 3 g/cm2, producing a burn fraction of
33%.

The discussion just above applies most closely to uniform burning of an entire
volume of fuel. We will see that actual fusion designs involve a propagating burn.
A propagating burn is like a forest fire, in which the fuel begins burning at one
location, after which the heating of nearby locations causes them to burn too.

We can pin down the final fuel conditions further by thinking about the total
fusion energy released (the yield). The range of a 3.5 MeV ˛ particle (a 4He nucleus)
in DT is �r D 0:3 g/cm2, so the ˛ particles do not typically escape the fuel. Instead,
they contribute to self-heating. This means that the energy released is the energy
carried out of the fuel by the 14.1 MeV neutrons. One easily finds that the neutron
yield, Y , is

Y D �

2

mF

Amp
� 14:1 MeV � 5:6 � 1020 mmg MeV � 90 mmg MJ; (11.10)

in which we have taken � D 0:33 A D 2:5 for DT, and the total mass of the
fuel is mF, also expressed in mg as mmg. Since we are talking about the abrupt
release of substantial energy, we need to place this in context. One ton of TNT is 4.2
GJ. The nuclear device exploded at Hiroshima in 1945 released about 10 kilotons
of explosive energy. In a large laboratory device, we need to keep the yield small
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enough that it can be easily contained. For the present calculation, we will seek to
produce �0.05 ton, or about 250 MJ, which will require 3 mg of fuel mass according
to (11.10). Designs in this range appear to be compatible with laser-based energy
sources. Designs for other energy sources, such as Z pinches, often seem to be more
compatible with significantly larger yields. Even so, one can’t go too far without
blowing up the laboratory.

Thus, we have found that �r D 3 g/cm2 and that the mass of the fuel is
4�r3=3 D 3mg. We assume that the fuel volume is spherical, as this is most
efficient for both the assembly of the dense fuel and for its burning. Substituting for
�r, we find 4r2 D 0:003 cm2, from which we find r D 0:015 cm D 150�m. This
in turn implies that � D 190 g/cm3. However, it turns out that we cannot produce
this state.

11.1.2 Implosions and Energy Gain: Is This Worth Doing?

We just described an ideal clump of fuel as a sphere of density 190 g/cm3 and
radius 150�m. At 190 g/cm3, and considering that the average A for DT is 2.5
while Z D 1, the electron density is ne D 190Z=.Amp/ D 4:5 � 1025 cm�3. In
our discussion in Sect. 3.1 of Fermi degenerate systems, we saw that the Fermi
energy is 7:9.ne=10

23/2=3 with ne in cm�3. This is 464 eV for the compressed DT
fuel. The corresponding pressure p is 13.5 Gbar. Unfortunately, we have no means
to directly create and apply such a pressure. Laser-plasma instabilities limit laser-
driven systems to a pressure of �100 Mbar. Z-pinches and other known energy
sources cannot produce pressures even this high. This leaves us with the quandary
of how to convert pressures well below 1 Gbar into pressures of many Gbars.

One solution to this quandary is a capsule implosion. One concentrates the fuel
in a thin layer at the inner boundary of a thin, spherical capsule. Current designs
make the fuel a layer of DT ice and the capsule that contains it of some low-Z
material. The low-Z material is the ablator, intended to be ablated in the creation of
the ablation pressure. The idea is that the capsule behaves as a “spherical rocket”,
so that the ablation pressure accelerates the fuel to high kinetic energy. The fuel
also compresses via convergence as it moves inward. Then, when the incoming fuel
stagnates on axis, the kinetic energy is converted to the internal energy to produce
the required high density. We will focus on several of the details of this process
below. Here we connect the implosion process to the energy gain.

There are several steps involved in converting the energy from a source (or a
“driver”) to energy of implosion. No known driver can deliver its energy directly to
the ablating surface. Instead, the energy is first absorbed, and then in some way it is
transported to the ablation layer, and then the acceleration to the implosion velocity
vimp occurs. As a result, there is an implosion efficiency, �, of conversion of the
driver energy Ed to kinetic energy of the fuel, and this efficiency is smaller than the
rocket efficiency discussed in Chap. 9. Thus one has
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mf v
2
imp=2 D �Ed: (11.11)

This lets us write the energy gain of the implosion, G, as

G D Y

Ed
D ��

Ampv
2
imp

; (11.12)

in which A is again the average atomic weight of the fuel (2.5 for DT). This result
assumes that the fuel is ignited somehow, a topic we take up below.

The implosion efficiency depends on details of the driver and how it is used. For
all known uses of laser drivers, though, its value and scalings are similar. Here we
will take a scaling from a 1D simulation study by Zhou and Betti (2007), who have

� D 7:4 � 10�4v3=4kps

�
I14�

2
�

	�1=4
; (11.13)

where vkps is the implosion velocity in km/s and, as in Chap. 9, I14 is the laser energy
flux in units of 1014 W/cm2 and �� is the laser wavelength in �m. Unfortunately, �
is quite a bit below the rocket efficiency, being typically below 10%. We then have,
for DT fuel,

G D Y

Ed
D 4:0 � 105��

I14�2�
	1=4

v
5=4
kps

: (11.14)

Figure 11.3 shows the corresponding curve, along with some regimes we will
discuss later. One can achieve an energy gain near 100 with an implosion velocity
near 300 km/s. This enables us to assess whether power production based on laser-
driven fusion is worth pursuing.

Fig. 11.3 Gain curve from (11.14), for I14�2� D 1. Regimes to be discussed are indicated, although
the precise location of the boundaries (the dashed lines) is not well-known
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Fig. 11.4 Schematic of
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plant. The numbers here
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Figure 11.4 shows the essential elements of an electric plant, generating a total
electric power P, and the associated numbers. We can use it to discuss the key issues.
A plant needs to sell most of the power it generates, and a generally accepted number
for the maximum allowable recirculating power is 10%. Existing viable drivers are
not 10% efficient, but some (KrF lasers) are close. Diode pumped solid state lasers
can be more efficient, and so can fiber lasers. Other driver technology, using pulsed
power or ion accelerators, is potentially more efficient but much less developed. The
question for all these potential drivers is whether they can be scaled to the required
energy and power. If one can make the driver more efficient, without introducing
other losses, then the required gain is reduced proportionally.

Once the driver delivers energy to a target, there is some gain G and then energy
extraction. Using any fusion approach that generates neutrons requires having them
heat matter and then producing electricity via a thermal cycle, whose maximum
efficiency is 40%. If one could use an aneutronic fuel cycle, such as p–11B, one
could replace the thermal cycle with more-efficient, direct extraction of energy and
reduce the required gain by another factor of �2. The net result is that a power plant
requires G � 250 with straightforward extensions of present technology, and that
the required G might be reduced by a factor of 2–10 by means of improvements
in technology and performance. To work in the regime of Fig. 11.3 labeled “self-
ignited” would require a several-fold improvement in driver efficiency beyond that
available today.

11.1.3 Energetic Considerations for Ignition

The discussion above did not focus on how to assure that the fuel becomes hot
enough to ignite. Here we consider ignition from an energetics and conceptual
perspective. Later, in Sect. 11.3, we will address the more detailed physics.

The simplest way to assure ignition would be to compress all the fuel so that its
final temperature was �5 keV. Suppose that the fuel at high temperatures behaves
as an ideal gas with 	 D 5=3. And suppose that we decide, from more detailed



11.1 The Final State 491

calculations, that a temperature of 5 keV will suffice for ignition. The specific energy
of DT fuel at 5 keV temperature is 5:7 � 108 J/g. If we assume 100% conversion
of kinetic energy to internal energy, which is optimistic, the required implosion
velocity would be >1100 km/s. The resulting energy gain would be < 20. The
discussion above showed this to be impractical for power production. The minimum
required energy and implosion velocity would be for Fermi-degenerate fuel. The
actual compressed fuel density may be higher than the value of 190 g/cm3 we found
above, as a result of the behavior of the implosion that we will explore later, but will
end up in the range of 200–1000 g/cm3. The specific energy of Fermi-degenerate
DT fuel, for this density range, is (1–3) �107 J/g. If we assume 100% conversion
of kinetic energy to internal energy, which is optimistic, the required implosion
velocity would be 140–250 km/s, corresponding to significantly larger energy gains.

We seem to be in another quandary here, as we have to ignite the fuel but
apparently cannot afford to heat it. All the solutions to this quandary revolve around
the range of the alpha particles in compressed DT fuel. We mentioned above that the
alpha particles do not escape the fuel. In fact, their range is about 0.3 g/cm2, or 10%
of the �r of the entire compressed fuel. This corresponds to 0.1% of the fuel volume.
If one could magically heat only such a volume to 5 keV, then it would begin to
create fusion products, the alpha particles would heat the surrounding, cold fuel, and
the fusion burn would propagate. The energy cost would still be 5:7� 108 J/g in the
fuel that ignited, but averaged over the entire capsule the extra cost of ignition would
be only 5:7 � 105 J/g, which is much less than the cost of compression. Thus, some
sort of hot-spot ignition is the key to obtaining enough gain from fusion to make
fusion-powered electricity viable. In consequence, the fuel will not burn throughout
its entire volume all at once, but instead one will have a propagating burn.

Several approaches to producing such a hot spot have been proposed. The
simplest and most thoroughly explored is to tailor an implosion so as to create
the hot spot at the center of a fuel capsule. We will call this self ignition. In other
approaches, which we will call spark ignition, some source of energy is deposited
in a small volume of fuel after compression. When this is done via local delivery of
energy, it is known as fast ignition. The most studied option for doing this, usually
called the fast ignitor, involves using a short-pulse laser of very high energy flux to
create relativistic particles that penetrate the compressed matter and heat it. Spark
ignition can also be accomplished by driving a shockwave through the compressed
fuel so as to ignite a small region when it converges. This is known as shock ignition.

11.1.4 Properties of Compressed DT Fuel

We have seen that the compressed DT fuel will have a pressure of many Gbars and
a density above 1000 times the density of solid DT. Creating the necessary pressure
costs money, and any increase in the required final pressure will increase the cost
or decrease the performance of an inertial fusion system. For this reason we need
to understand the relation of the pressure in DT fuel to the heating that may occur
during compression. It is specifically helpful to understand the relation of pressure
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to entropy, because in practice compression by a factor of 1000 must involve shock
waves, and shock waves increase entropy (see Sect. 4.1.4). This leads us to explore
further the fundamental properties of DT fuel. It is straightforward to consider the
fuel as a collection of fundamental particles. We do this here, ignoring collective
effects such as ionization and dissociation.

We will examine the properties of DT fuel with equal numbers of deuterons and
tritons. Following Lindl (1995), we consider the initial state of the fuel to be solid
DT at 11 ıK and 0.25 g/cm3. The electrons and the tritons are fermions while the
deuterons are bosons. Applying (3.15) to the initial state, we find that the Fermi
energy for the electrons is 5.6 eV. This is more than three orders of magnitude above
the initial temperature, with the implication that the electrons must be treated as
fermions until conditions change greatly. In contrast, the initial Fermi energy of the
tritons corresponds to a temperature of 7.4 ıK. This implies that the tritons may
be treated as a classical gas throughout the compression and heating, based on the
discussion in Sect. 3.1.3.

As bosons, the behavior of the deuterons is not among the topics we discussed
in Chap. 3. Upon referring to a statistical physics text such as Landau and Lifshitz
(1987), we find that the behavior of bosons varies across three temperature regimes.
In the lowest temperature regime, particles accumulate in the lowest-energy state,
which must be treated separately from the other states. The temperature, To, below
which this occurs is

To D 3:31

g2=3
h2

42
n2=3D

2mp
; (11.15)

in which h is the Planck constant, mp is the proton mass, nD is the number density of
the deuterons, and g is their degeneracy (equal to 3, as they have spin 1). Evaluating
To for the conditions given above, one finds that it is 3.7 K. The implication is that
the deuterons in fusion fuel do not collect in the lowest energy quantum state but are
instead distributed across many energy states. They are in the second temperature
regime, in which the deuterons must be treated as bosons and an analysis involving
integrals similar to those of Sect. 3.1.3 is valid. At some higher temperature, whose
value depends on the accuracy one needs, the behavior of the deuterons becomes
like that of a classical gas. Thus, to determine how to treat the deuterons for fusion
fuel, we do need to evaluate their behavior as bosons.

The properties of bosons can be conveniently expressed in terms of
integrals similar to those used for fermions. We define Gn.�/ D R1

0
xn
�
exp.x�

�/ � 1��1dx, in which � D �=.kBT/. Then we have

nD D 12
p
2

h3


2mpkBT

�3=2
G1=2; (11.16)

from which
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� D 1=.6305G2=3

1=2/; (11.17)

where for convenience we again define � D T=Td, in which Td is the degeneracy
temperature of the electrons given by kBTd D �F. Equation (11.17) defines the
relation between the chemical potential (which is negative) and �. The deuteron
pressure, pD, is given by

pD D 8
p
2

h3


2mp

�3=2
.kBT/5=2 G3=2; (11.18)

while the specific entropy of the D in DT fuel, sD, is given by

sD D kB

5mp

�
5

3

G3=2

G1=2

� �
�
: (11.19)

Note that to obtain the specific entropy for the DT fuel we divide the entropy per
particle by the average mass per D particle in the DT fuel (5mp). One can compare
the results of these calculations with the classical partial pressure of D in DT fuel,

pDcl=pF D 5�=4; (11.20)

and the classical entropy

sDcl D kB

5mp

�
5

2
C ln

�
5mp

�

�
C 3

2
ln .kBT/C 3

2
ln

�
22mp

h2

��

D 0:191 � 108
�
15:1C 3

2
ln.�/

�
: (11.21)

One finds that the classical pressure and the boson pressure are identical to high
accuracy for any � above 0.001, while the classical entropy remains 5–20% below
the boson entropy for all � of interest here.

One can put this all together as follows. The total pressure of the DT fuel,
normalized to the Fermi pressure of the electrons, is the sum of the electron pressure
from Sect. 3.1.3 and the classical pressures of the deuterons and the tritons (each
equal to 5�=4). Figure 11.5a shows the resulting pressures. The total specific
entropy is the sum of the specific entropy of the electrons, based on (3.40), the
specific entropy of the deuterons, from (11.19), and the classical triton specific
entropy, given by

sTcl D kB

5mp

�
5

2
C ln

�
5mp

�

�
C 3

2
ln .kBT/C 3

2
ln

�
23mp

h2

��

D 0:191 � 108
�
15:7C 3

2
ln.�/

�
: (11.22)
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Figure 11.5b shows the contributions to the entropy. The comparison of the two
parts of Fig. 11.5 leads to the following conclusion. If one begins with cold, Fermi-
degenerate DT fuel, one can heat this fuel until � � 0:1 before the pressure begins
to increase. This is thanks to the degenerate electrons. Such heating corresponds
to an increase in entropy. Equivalently, one could say that one can increase the
entropy of the fuel, which is dominated by the ions, by some amount before the
pressure begins to increase. This second point of view is useful if the entropy will
be increased primarily by shocks.

By combining the results shown in the two parts of Fig. 11.5 one can obtain
Fig. 11.6. The solid black curve in this figure shows the dependence of the
normalized pressure on the entropy of the fuel. One sees that the pressure is constant
up to some value of the entropy and increases exponentially with entropy at high
entropy. It is a fortunate development for fusion that adding a certain amount of
entropy imposes no cost.

The solid gray line in Fig. 11.6 shows the classical result, whose derivation is
left as a homework exercise. The dashed curve shows the equation given in Lindl
(1995), which is
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Table 11.1 Some parameters
of a model high-gain ICF
system

Parameter Value

Fuel mass 3 mg

Burn fraction 33%

Fuel �r 3 g/cm2

Final fuel density 200–1000 g/cc

Maximum specific entropy 4� 108 J/keV/g

pDT D pFexp

�
0:75

�
�s

108
� 4/

��
; (11.23)

in which �s is the difference in specific entropy from the initial state. We can see
that this expression is a reasonable fit to the result of our calculation in the important
regime where the pressure is a few times the Fermi pressure. The entropy of the
initial state in the present calculation is 1:1�108 J/keV/g. Equation (11.23) describes
the behavior of the pressure and the entropy, for densities above 5 g/cm3, in QEOS
or tabular EOS descriptions of DT that include atomic and molecular binding effects
that we have ignored here. These effects do alter the equation of state at low
densities. Because our calculation matches the results of more-sophisticated models,
summarized in (11.23), one concludes that the behavior of highly compressed DT
is dominated by the behavior of the individual particles (electrons, deuterons, and
tritons). One also concludes that it is acceptable to increase the entropy during the
creation of the final fuel state, but that ideally the increase (�s) should be kept
no larger than 4 � 108 J/keV/g. Above that level, the pressure required to obtain a
desired state increases exponentially with increasing entropy.

We have thus defined our task. Take 3 mg of DT fuel, make a layer of it within
a capsule, and implode the capsule at some hundreds of km/s without adding too
much entropy, and then start it burning. Table 11.1 summarizes the properties of
this final state to the extent we have determined them. This set of parameters poses
two difficulties. First, the initial density of solid DT is 0.25 g/cm3. Thus, to achieve
fusion energy by ICF without blowing up the lab, we must implode the DT fuel so
that it reaches thousands of times liquid density. Second, the problem of igniting the
fuel is nontrivial. We will take up these issues in turn.

11.2 The Physics of Capsule Implosions

At this point we have some knowledge of the final fuel state, but without considering
how we will create it, how we will ignite it, or how the final state might be modified
so it can ignite. Here we discuss how one can create such a state. In the next section
we will consider what is required to ignite it, and what is required for self ignition
or spark ignition. Figure 11.7 illustrates the evolution of the density and pressure
profiles during a typical implosion of a CH capsule containing DT fuel. The DT/CH
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Fig. 11.7 Properties of an imploding capsule, with fusion reactions suppressed (which only
matters in the final frame). This design, relevant to the National Ignition Facility, is illustrative
of how implosions work but includes less fuel (1.1 mg) than would be needed for electric power
production. This is from a 1D simulation using 1.5 MJ of laser energy at a 0.35�m wavelength.
Credit: Steve Craxton. Adapted from Craxton et al. (2015). The scale on part (e) has been corrected.
(a) t D 5:2 ns; (b) t D 8:9 ns; (c) t D 10:1 ns; (d) t D 10:8 ns; (e) t D 11:05 ns; (f) t D 11:4 ns

boundary is indicated in each panel. We will refer to this figure as we discuss the
details.

To be able to accelerate a capsule to the highest possible momentum, we want
the largest feasible ablation pressure, Pabl. As discussed above, for laser drivers
this is about 100 Mbar. Applying this pressure to a surface will launch a shock.
If one were to use a single shock to take DT from solid density to 100 Mbar,
the entropy generated (Lindl 1995) would be �9 � 108 J/keV/g. This would then
represent the minimum entropy of the fuel as it implodes. The consequence, shown
in Fig. 11.6, would be that the pressure was about ten times the Fermi pressure.
Since a given driver and target can produce only a limited pressure, this implies
that the density would be reduced by a factor of 103=5. This is why all ICF target
designs use multiple shocks, which reduces the entropy generation as discussed
in Chap. 4. One could also attempt to achieve a shockless compression, using a
precisely tailored pressure approach, but slight variations from the ideal pressure
profile then launch unintended shocks at uncontrolled times. It appears that the use
of multiple, controlled shocks is more reliable.

In practice the first shock is generally chosen to be �1 Mbar. One might hope that
a side benefit would be to push the target material into an ionized state, making the
equation of state simpler and more knowable. Unfortunately, for the plastic capsule



11.2 The Physics of Capsule Implosions 497

material used first on the National Ignition Facility, this first-shock pressure was
not sufficient to make the equation of state tractable. The entropy generation is
�3 � 108 J/keV/g. The increase from 1 to 100 Mbar is then accomplished in two
to three more steps by shocks that are not in the strong-shock limit. The density
increases to a value near 6 g/cm3 once the final pressure is reached. Panels (a) and
(b) of Fig. 11.7 show these shocks. Laser pulses for ICF are generally described as
having a foot followed by a main pulse. The foot is what launches the shocks that
precede the final shock. In the design of the target for Fig. 11.7, the foot included
three laser pulses of short duration. As a result, the shock strength decayed as it
moved through the capsule, producing the telltale decrease in density behind each
shock. This approach had the advantage that there was more entropy generated
near the ablator surface, where it helped limit the Rayleigh-Taylor instability (see
Sect. 11.5.1), and less generated within the fuel. Most current designs also use three
shocks in the foot.

The use of a sequence of shocks introduces a new issue known as shock timing.
If one is going to use a sequence of shocks to increase the ablation pressure
to 100 Mbar, then one must time these shocks so that the later, stronger, faster
shocks do not overtake the earlier, weaker shocks too soon. Otherwise the resulting,
stronger shock produced when two shocks coalesce would produce too much
entropy (and would also produce an internal rarefaction). In order to compress the
entire fuel layer, without placing any of it into a high-entropy state, it needs to be
compressed by all the shocks and yet they must not coalesce within the fuel. The
implication is that the shocks must be timed so that they coalesce just as they reach
the inner surface of the fuel. Yet the shock behavior is extremely sensitive to the
equation of state of the capsule and the fuel. As a result, the shock behavior must be
observed and the driver pulse must be adjusted in order to achieve the required shock
timing. Diagnostics and techniques for doing this were implemented on the National
Ignition Facility, and were one of the major early successes of that research team.
On panel (b) of Fig. 11.7, one can see the shock that emerged into the interior gas
in the capsule after coalescence, followed by the rarefaction from the inner surface
of the capsule. Remarkably, most of the laser duration is involved in pushing the
shocks through the capsule. In the case shown, it requires nearly 9 ns from the time
of the first picket (and about 4 ns from the start of the main pulse) to do this, and
then less than 3 ns to finish the implosion.

Once the entire capsule has been shocked, the acceleration begins, by the
rocket effect discussed in Chap. 9. The specific driver and target produce some
exhaust speed, Vex, corresponding to a mass ablation rate Pm D Pabl=Vex. During
the acceleration, the rest of the ablator material is removed (ideally). The final
remaining mass fraction for the rocket equation is

fm D mF

mF C mabl
D e�vimp=Vex ; (11.24)

in which mabl is the ablator mass present at high density at the start of the
acceleration, and not at the start of the laser pulse. In the case of Fig. 11.7, one
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can see in panels (b) and (c) that fm � 0.5 or somewhat more. For the model below,
we assume a laser energy flux of 1015 W/cm2 and a laser wavelength of 0.35�m.
Using the standard scalings, this gives Vex = 740 km/s for laser irradiation of the
capsule and Vex = 180 km/s for X-ray irradiation using a hohlraum. We use these
values in the scalings that follow.

We now know that we will ablatively accelerate the fuel, using up about half the
total mass. This must be accomplished before the capsule has moved too far, or it
will begin to decelerate before we have injected the energy. We will suppose that
we can accelerate it over a distance of rs=2. Here rs is the initial inner radius of the
capsule. Assume this acceleration occurs at a constant pressure Pabl. Also assume
that the mass per unit area of the fuel plus the ablator is mo D �i�ri=fm, where
the initial compressed fuel density when the acceleration starts is �i and the initial
thickness of the compressed shell of fuel is �ri. (The thin-shell approximation for
the geometry is valid for the compressed shell but not for the initial, uncompressed
capsule.) Then we integrate the rocket equation to find

rs

2
D Vex

Z ta

0

ln
hmo

m

i
dt D �Vex

Z ta

0

ln

�
1 � Pmt

mo

�
dt; (11.25)

where the integral proceeds until Pmta D .1 � fm/mo. Defining � D Pmt=mo, one has
�a D .1 � fm/ and finds

rs

2
D �moV2

ex

Pabl

Z �a

0

ln Œ1 � �� d� D mf v
2
imp

4r2s Pabl
g.fm/ where (11.26)

g.fm/ D
�
1 � fm C fm ln.fm/

ln2.fm/

�
:

The function g.fm/ has a value of �0.3 at fm D 0:5 and increases from �0.2 to �0.4
as fm increases from 0.2 to 0.8. In the plots below, we evaluate fm from (11.24).

Solving (11.26) for rs gives

rs D
 
1

2

mFv
2
imp

Pabl
g.fm/

!1=3
: (11.27)

The implosion time total implosion time ttot is

ttot D ta C rs

2vimp
D mf

4r2s

�vimp

Pabl ln.fm/
C rs

2vimp
: (11.28)

Note that ttot is the time from start of the main pulse, not of the foot. Figure 11.8
shows ttot for mf = 3 mg and �i = 6 g/cm3. With these constraints, laser drivers need
longer pulses than X-ray drivers.

One can determine the initial thickness of the unshocked fuel layer,�o by solving
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Fig. 11.8 Implosion time from ( 11.28), for laser or hohlraum drive as indicated

Fig. 11.9 Properties before acceleration begins. Left from bottom to top: inner fuel radius, outer
fuel radius, outer ablator radius. Right: properties of the implosion as indicated. Solid curves are
for laser irradiation and dashed curves are for hohlraum irradiation

mf D 4

3
�or3s

"�
1C �o

rs

�3
� 1

#
: (11.29)

for the ratio �o=rs. One can then use the same solution to find the thickness of the
ablator. The left panel in Fig. 11.9 shows the inner and outer radii of the fuel and the
ablator prior to the laser pulse, for fm as indicated.

The initial thickness of the shocked shell of DT fuel is

�ri D mf

4r2s�i
D mf

4�i

 
1

2

mFv
2
imp

Pabl
g.fm/

!�2=3
: (11.30)

The right panel in Fig. 11.9 shows rs and �ri for mf = 3 mg and �i = 6 g/cm3.
One sees that the inner fuel radius is near 1 mm and the shell thickness is tens
of �m. We will see in Sect. 11.5.1 that the key parameter determining the growth
of Rayleigh-Taylor instabilities is the in-flight aspect ratio, known as IFAR. The
instability growth is larger when IFAR is. One has
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IFAR D rs

�ri
D 2�iv

2
imp

Pabl
g.fm/: (11.31)

Figure 11.9 also shows IFAR, which is in the range of several tens. One would like
IFAR to be smaller, but can see that this is a challenge. To make a given capsule
design work, one needs some value of vimp. One already plans to operate at the
maximum feasible value of Pabl; increasing this would require changing the driver
in some way. A given driver, producing a given Pabl, also produces a specific Vex.
Obtaining the required vimp for that Vex sets fm. Decreasing �i requires that the
fuel converge further to reach the required density, which would impose stricter
requirements on the symmetry of the implosion. The bottom line is that decreasing
IFAR will reduce the yield from a given driver and will not come cheap in a new one.

11.3 Stagnation and Ignition

We have next to consider how the implosion comes to an end, and what the
consequences are. Every ICF capsule develops a central hot spot, whether or not
it is used for ignition. At minimum, the material released from the inner surface
of the fuel after the shocks coalesce is compressed and heated as the implosion
continues. If one desires to have more interior density than this, one can arrange for
the capsule to contain gas. The capsule design used to generate Fig. 11.7, intended
to produce self-ignition, included interior gas at a density of 0.6 mg/cm3. This
interior material is compressed and heated in two ways. When the leading edge
of the hot-spot material, or the leading shock in the interior gas, converges at the
center, a return shock processes and heats the hot-spot material, and this shock may
reverberate more than once between the center and the incoming fuel. But its heating
of the matter in the hot spot turns out to remain modest. This shock is present and
indicated in panels (d) and (e) of Fig. 11.7. In that case, it slows the incoming dense
fuel somewhat, but the amount of slowing will vary with details of the design.

The larger source of compression and heating of the hot spot is pdV work from
the incoming fuel. The energy for this comes from the imploding shell of cold fuel.
In the process, the shell converges and compresses further, until the shell comes to a
stop. At that point the fuel must in some way be caused to ignite. We first consider
the general requirements for ignition and then the specifics of possible approaches.

11.3.1 Hot Spot Power Balance

The challenge for ignition is to keep a volume of fuel hot enough to sustain fusion
despite the energy losses that are present. As a result, our problem boils down to
a question of power balance. The net heating of the hot spot must be positive. We
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discuss this here. This subsection and the next two follow closely the treatment of
Atzeni and Meyer-Ter-Vehn (2004). We use the subscript h for the properties of the
hot spot. The equation for the internal energy of the hot spot, �h, assumed to remain
at constant density is

Vh�h
d�h

dt
D PdepVh � QSh � FRSh � phuhSh; (11.32)

in which the hot-spot volume is Vh, the hot-spot surface area is Sh, and the hot-
spot density and pressure are �h and ph, respectively. This equation assumes that the
kinetic energy of the hot spot material remains negligible. The rate at which fusion
deposits energy in the hot spot is Pdep, while the radiation energy flux and thermal
heat flux leaving the hot spot are FR and Q, respectively. As the hot spot expands
with radial velocity uh, it does pdV work on the cold fuel, and this is represented
by the final term. We now consider these terms in turn, assuming that in this dense
matter Te D Ti D Th.

The fusion energy deposition is

Pdep D dn

dt
Efus fdep D NdNTh
viDTEfus fdep

� C˛�
2
hT2h

�
1 � 0:3

4�hRh

�
; (11.33)

where dn=dt is from (11.6) and Rh is the hot-spot radius. To obtain the numerical
expression for Pdep, we use here a standard fit to h
viDT for the range of 8–25 keV,

h
viDT Š 1:1 � 10�24T2h cm3=s; (11.34)

with Th in eV; one notes that in hot-spot ignition only the alpha particles provide
significant heating, so Efus D 3:5MeV; and one defines fdep as the fraction of
the alpha particle energy deposited in the hot spot. Equation (11.34) overestimates
the rate coefficient for temperatures below 8 keV. For a first calculation, we could
assume that we must make the hot spot large enough to absorb nearly all the alpha-
particle energy, and take fdep D 1. In more detail, energy deposition by charged
particles in matter is complicated and is not represented by simple exponential
functions. We will leave that as a detail, but do represent fdep by the quantity in
curved brackets, which accounts for the first departure from full absorption as �r
decreases. Then with ND D NT we find C˛ D 3:8 � 1011 ergs cm3 s�1 g�2 eV�2.
Atzeni and Meyer-Ter-Vehn (2004) provide more detail.

The heat flux Q is the Spitzer–Harm heat flux, which we derived in Chap. 9. One
has

Q D ��thrTh � �th
Th

Rh
Š CQ

T7=2h

Rh
: (11.35)
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Using (9.10) and (9.36), and including the factor of .1 C 3:3=Z/�1 due to
electron–electron collisions, one can evaluate CQ, finding, with Th in eV and Rh

in cm, CQ D 5:9 � 108 ergs eV�7=2 cm�1 s�1.
The radiation flux is the result of bremsstrahlung emission from the plasma in the

hot spot. If the hot spot were optically thick, this would evidently be 
T4h . However,
the hot spot is typically not optically thick. In the optically thin limit one has

FR Š �BRh
T4e D CB�
2
h

p
ThRh; (11.36)

in which �B is the spectrally averaged absorption coefficient [i.e., the Planck
mean opacity of (6.59)]. Properly, one would determine the characteristic distance
by integrating over the solid angle, accounting for the path length through the
source volume. Here we assume that this gives a distance close to Rh. One finds
CB D 3:2 � 1021 ergs cm3 g�2 s�1 eV�1=2. During the implosion, Zhou and Betti
(2007) argue that much of the energy removed from the hot spot by conduction and
radiation come back into it within ablated fuel. During the ignition phase, however,
these losses represent real potential limitations.

The approach to ignition determines whether and how much the hot spot expands.
On the one hand, the implosion might be designed to produce a central hot spot. In
this case the cold fuel and the hot spot are all at the same pressure at the moment of
stagnation. This is described as an isobaric configuration. In this case, uh is initially
zero in (11.32). The hot spot will expand as it heats up, but because the rate of fusion
increases strongly with temperature it is the initial heating that matters. So we can
use (11.32) with uh D 0 to find an ignition threshold for an isobaric configuration.
On the other hand, the implosion might be designed to assemble all the fuel, at the
end of which a hot spot will be created by some other means. In this case the cold
fuel and the hot spot will initially have the same density. Such a configuration is
described as isochoric. The hot spot will expand as it heats, and it is a reasonable
estimate to take uh to be the velocity of the fluid behind a strong shock entering the
cold fuel. Then from (4.23) one has ph D .	 �1/�su2h=2, which determines uh. Here
�s is the density of the shocked, cold fuel �s D �c.	 C 1/=.	 � 1/ with �c being the
cold-fuel density. In addition, ph D �hTh.Z C1/kB=.Amp/. In this case with �h D �c

one has

phuh D Ch�hT3=2h ; (11.37)

in which Ch D 5:8 � 1017 ergs cm g�1 eV�3=2 for DT.
Returning now to (11.32), one can show that none of the four terms is always

small throughout the regime of interest. As a result, the power of Th of a given term
determines where it will have its impact. One sees that the bremsstrahlung cooling
term scales as the lowest power of Th, so this will dominate at low temperatures.
The pdV work term is next, scaling as T3=2h , so when significant this term will
increase the minimum temperature needed for ignition. Next is the fusion energy
production term, scaling as T2h , so that eventually fusion energy production can
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Fig. 11.10 Thresholds for
ignition. Hot spots in the gray
area will produce net heating
and will ignite
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overcome these first two losses. However, lurking at high temperatures is the heat-
conduction term, scaling as T7=2h . At high enough temperatures, heat conduction will
quench the ignition.

The ignition threshold occurs when the right-hand side of (11.32) equals zero.
Figure 11.10 shows this condition for isobaric and isochoric configurations. The
qualitative shape of the boundaries shown is correct. However, the lower boundaries
of the ignition regimes are too low in this figure because (11.34) overestimates
h
viDT at these temperatures, the actual lower boundaries straddle 5 keV. For the
isobaric case, one indeed finds that �r � 0:3 g/cm2 and Th � 5 keV is the minimum
ignition condition. For the isochoric case, relevant to spark ignition, one sees that
one will need twice this �r and a bit higher temperature. This may change the
optimum properties of the cold, dense, fuel, because doubling the �r of the hot spot
at fixed density requires eight times the energy invested in the hot spot. Depending
on the cost of this energy, it might or might not make more sense to compress the
cold fuel further.

It turns out that capsules that do not satisfy the threshold condition may ignite,
if they are at temperatures where heat conduction quenches ignition initially. In this
case the hot spot may cool, heating a surrounding region, and in effect creating a
modified hot spot with smaller temperature and larger �r. This modified hot spot
may then ignite. In addition, the fact that ignition occurs does not guarantee in
principle that the resulting burn will propagate. If the heated region expanded too
quickly relative to fusion energy production, then expansion cooling could quench
the ignition. However, for the regime relevant to ICF the parameters work out
favorably, and ignited capsules typically continue to burn. These last two effects are
discussed further by Atzeni and Meyer-Ter-Vehn (2004). They can be summarized
as a condition for successful ignition and burn, given by



504 11 Inertial Confinement Fusion

�hRhTh > 6
p
�h=�c g cm�2 keV; (11.38)

in which �c is again the density of the compressed, cold fuel. (A typical value of
�h=�c for an isobaric case is 1/16.) This condition is the analog for ICF of the well-
known Lawson criterion for MFE, expressed in that case as a threshold value of
density times confinement time.

11.3.2 Igniting From a Central Hot Spot

It seems natural to try to get some benefit from the work done stopping the
imploding capsule, by making the central gas become the hot spot that initiates
the fusion burn. This places a constraint on the final �r of the hot spot, which must
be �0.3 g/cm2 to localize the alpha particles. It also places a constraint on the final
temperature of the hot spot, which needs to be above 5 keV. If this were too low, the
fuel in the hot spot would not ignite, but if it were too high the hot-spot fuel would
begin burning too soon.

During the implosion, the hot spot obtains energy from pdV work and eventually
from fusion burning, while losing energy through electron heat conduction and
radiation. One can analyze the energy balance during the implosion using an energy
balance equation similar to (11.32), except that �h is no longer constant. Just as in
the case of ignition, relatively cool hot spots lose more energy to radiation while
relatively warm hot spots lose more energy to heat conduction. There is an optimum
path in density and temperature to minimize the energy cost of assembling the hot
spot. The further the hot spot is from that path during the implosion, the more energy
will be required. This can affect the details of optimizing the shock timing and initial
gas fill of the capsule. We will not examine this level of detail here.

Even so, the formation of the hot spot is complicated, as it involves whatever
gas is inside the capsule, the material blown off of the fuel layer, compression, and
reverberating shocks. Here, in order to have a tractable model that can show us some
main trends, we will ignore internal shocks and the specific sources of matter. We
also assume a strictly isobaric model, to that the pressure in the compressed fuel
equals that in the hot spot. (Figure 11.7 shows that this is not quite correct.) We
assume that the energy of the incoming fuel goes entirely to pdV work and to the
internal energy of compression of the cold shell. We also assume the material at
radii smaller than rs begins at some initial, uniform density �o and pressure po.

We do need to account in some way for the structure of the central gas (the matter
interior to the inner radius of the cold fuel, Rc), because the initial fusion burning is
not uniform. The final panel in Fig. 11.7 shows that the pressure in the interior peaks
in a broad central region while the density has a minimum at the center. As a result,
the temperature is peaked on axis. In Fig. 11.2 we can also see that h
viDT increases
more rapidly than T2 at low temperatures. As a result the hot spot, defined as the
region where neutron production is within some reasonable fraction of its maximum,
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is significantly smaller than Rc. Here we approximate Rh D Rc=2, which compares
well enough with results of simulations. Similarly, we approximate Th D 2 NT , where
NT is the temperature implied by the stagnation pressure ph and the averaged density
of the interior matter, N�. We also account crudely for the shape of the density profile
by converting the requirement, �hRh D 0:3 to N�Rc D 0:75.

Then we have three equations that we can work with, which must be satisfied to
achieve ignition. They are

�
Z

pdV C Efuel D mf v
2
imp=2; (11.39)

�c�Rc D 3 g/cm2; and (11.40)

N�Rc D 0:75; (11.41)

where the compressed cold fuel is in a shell of density �c and thickness�Rc, and has
an internal energy Efuel. We will see that these relations imply �o, po, and the shell
convergence, Cs, and that from these and known information we can infer N�; ph,
and Th. Then we will see whether Th is high enough to ignite and whether N� is in a
plausible range. We proceed now to carry through the calculation.

The convergence for some central-gas density � is given by C D .�=�o/
1=3, and

has a final value Cs. We can find the density of the cold, stagnated fuel because
ph D poC5

s also equals the pressure in the stagnated, Fermi-degenerate, cold shell,
assuming the stagnated structure to be isobaric. The density is

�c D A

Z

� ph

9:9 Mbar

	3=5 D 1:25C3
s

� po

9:9 Mbar

	3=5
(11.42)

D 2:0 � 10�8C3
s Œpo.cgs/�3=5 g/cm3;

where we ignore any departure from Fermi degeneracy (again in the spirit of doing
a model that captures the main physics). The internal energy of the dense fuel is

Efuel D 3 � 1012�2=3c mf D 2:2 � 107mf C
2
s Œpo�

2=5 in cgs units; (11.43)

so we have

p D po

�
�

�o

�5=3
D poC5 and dV D �Mhd�

�2
D �MhdC

�oC3
so

�
Z

pdV D poVs

Z Cs

1

C2dC D 1

3
poVs



C3

s � 1� D mf v
2
imp

2
� Efuel;

so
poVs



C3

s � 1�
3mf

C 2:2 � 107C2
s Œpo.cgs/�2=5 D v2imp

2
; (11.44)
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in which the mass at radii smaller than Rc is Mh and the initial volume at radii
smaller than rs is Vs D Mh=�o D 4r3s =3.

The shell thickness relates to the fuel mass as

mf D 4

3
�c
�
.Rc C�Rc/

3 � R3c
� D 4

3
�cR3c

"�
1C �Rc

Rc

�3
� 1

#
; (11.45)

from which

�Rc D rs

Cs

�
1

�



3�2 C �3

�1=3 � 1
�
; in which (11.46)

� D 4�cR3c
mf

D 4�cr3s
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where quantities in the final term are in cgs units. Now (11.39) becomes
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and (11.47) and (11.44) imply po and Cs.
The requirement (11.41) on central-gas �R turns out to determine only the initial

density and final temperature, based on Cs and po. Using (11.41) and Rc D rs=Cs

gives

N�Rc D 0:75 D �orsC
2
s so �o D 0:75

C2
s rs
; (11.48)

from which N� D �oC3
s . Then Th D phAmp=Œ.1C Z/ N�kB�.

Solving these equations by computer produces the results shown in
Figs. 11.11, 11.12, and 11.13 for the parameters indicated. One can see in
Fig. 11.11a that the final fuel density is hundreds of g/cm3, the central, stagnation
pressure is a few hundred Gbars, and the final hot-spot density (plotting N� from
the calculation) is of order 100 g/cm3. In this model, the final hot-spot density
rises above the final fuel density as vimp drops below about 250 km/s. There is no
inherent physical problem with this, but this circumstance corresponds to very high
convergence and so the implosion is less likely to remain spherical. If pdV work
fails to stop the imploding fuel, then upon stagnation additional shocks will be
launched within the cold fuel. This might not cause any problems if ignition occurs
quickly enough. In Fig. 11.11b one sees the values of initial density �o and initial
pressure po from the model, but recall that these are approximations to the state of
the matter that would be equivalent to the processing of the gas by the initial shock
wave combined with the injection of matter from the inner surface of the cold fuel.
The main point here is that the values shown are not obviously crazy.

The second figure, Fig. 11.12, has more to tell us. The figure shows the
convergence of the dense, cold shell of fuel. The convergence of the hot spot
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Fig. 11.11 Parameters, as labeled, for ICF capsules intended for power production, having a fuel
mass of 3 mg, Pabl = 100 Mbar, and Vex D 740 km/s. The magnitude and shape of these parameters
are not strongly sensitive to Vex, except that initial pressure increases as Vex decreases

Fig. 11.12 Convergence and hot-spot temperature for ICF capsules intended for power produc-
tion, having a fuel mass of 3 mg and Pabl D 100 Mbar. (a) Laser drive, Vex D 740 km/s. (b)
Hohlraum drive, Vex D 180 km/s

is roughly twice this value. We find in Sect. 11.5.2 that increased convergence
demands increasing uniformity of the drive on the capsule. This might be costly.
But the significant question for a power plant is the total cost, which involves
many factors of which this is only one. The important question about the hot-
spot temperature is when it reaches �5 keV, to enable ignition. For both curves
shown here, this occurs at about vimp D 400 km/s, Our evaluation of the hot-spot
temperature is approximate, and we have included no effect at all of heating by
˛ particles during the implosion (so called ˛-heating), which can contribute some
heating during the final phases of the implosion, before ignition. The consensus
appears to be that ignition by a central hot spot becomes unfeasible below about 300
km/s. This is the boundary shown above in Fig. 11.3. It also should be mentioned
that the discussion here has ignored the consequences of entropy production in the
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Fig. 11.13 Capsule energies,
as labeled, for ICF capsules
intended for power
production, having a fuel
mass of 3 mg, Pabl =
100 Mbar, and
Vex D 740 km/s. The
magnitude and shape of these
parameters are not strongly
sensitive to Vex

fuel, whether by shock heating or in other ways. One can hope these will be small
but they will not be zero.

Figure 11.13 shows the energetics of the capsule. On can see that the internal
energy of the central gas is usually larger than that of the compressed fuel, and
becomes much larger at high implosion velocities. From this perspective, central
hot spots represent an inefficient way to ignite fuel. In contrast, at low implosion
velocities the energy in the central gas becomes negligible but the convergence
required to get 3 mg to fuel to a state with �Rc > 3 becomes very large. People who
design implosions for drivers that naturally produce lower ablation pressures than
lasers do tend to decide to work with smaller vimp and increased yield. This choice
creates some difficulties in power-plant design, but as for other issues the tradeoff
might be worth it. Table 11.2 shows numerical values of a number of parameters for
the conditions corresponding to the figures, for an implosion velocity of 400 km/s.

The cases evaluated here are relevant to power production. In the context of
the early twenty-first century, some remarks on the differences of these cases with
those for the National Ignition Facility (NIF) are in order. NIF has only 1.5–2 MJ of
energy, which is not enough to ignite an ICF implosion using 3 mg of fuel. Various
designs for NIF use from 0.2 mg to �1 mg. (The design of Fig. 11.7 used 1.1 mg.)
At lower fuel masses, one requires a significantly higher convergence, leading to
higher final pressures and higher compressed-fuel densities, than would be needed
for a power plant. Thus, producing ignition on NIF is significantly more demanding
than producing ignition using the larger driver one might need for a power plant.
The driver for a power plant that used ignition by a central hot spot would need to
be in the range of 5–10 MJ, depending on details. Some studies suggest that one
might be able to pull this down some for the case of laser drive. But at least in its
early years, NIF has done only X-ray-driven experiments.

(This brings up a historical aside on the real limitations that major research
programs must deal with. The author happened to be sitting, in the mid 1980s,
in a room where a panel doing a review for the National Academy of Sciences
was discussing the sensible path forward for ICF. There was a strong consensus
that the thing to do would be to build a 10 MJ driver, since this would be virtually
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Table 11.2 A model high-gain ICF system ignited by a central hot spot

Parameter Laser drive X-ray drive

Fuel mass 3 mg 3 mg

Burn fraction 33% 33%

Fuel �r 3 g/cm2 3 g/cm2

Hot spot �r 0.3 g/cm2 0.3 g/cm2

Implosion velocity 400 km/s 400 km/s

Max. cold-fuel specific entropy 4� 108 J/keV/g 4� 108 J/keV/g

Exhaust velocity 740 km/s 180 km/s

Initial fuel Inner radius rs 1390�m 1000�m

Final fuel inner radius Rc 61�m 64�m

Fuel shell convergence 23 16

Final fuel density 550 g/cc 620 g/cc

Central gas final density 124 g/cc 118 g/cc

Hot spot temperature 5.3 keV 6.8 keV

Fuel pressure 250 Gbar 310 Gbar

Fermi energy 350 eV 340 eV

Fuel kinetic energy 240 kJ 240 kJ

Central gas energy 180 kJ 175 kJ

assured of being able to ignite capsules and would let one then try to optimize their
performance so as to drive down the size of driver required for a power plant. Yet
in the era when NIF was sold to the US Congress, the largest project one could sell
was for a billion dollars. NIF, at 1.8 MJ, was funded at that budget. It turned out to
cost a few times that, which is not unusual for novel projects of any kind. Beyond
that, NIF pushed laser technology very far forward. Doing a 10 MJ driver might
not have been feasible anyway. NIF is accomplishing a great deal, but at the end of
the day may or may not prove able to ignite a capsule based on present knowledge
and technology. The author is firmly convinced that, had it proven feasible to fund
and build a 10 MJ driver, we would be discussing the results of fusion ignition here
rather than its prospects.)

Implosions are the only known way to compress fuel to conditions that enable
fusion, but they are costly. The internal pressure of 3 mg of DT fuel, compressed
to 200 g/cm3 and �Rc D 3 g/cm2, is 13.5 Gbar, and its energy content is 30 kJ.
Compressing this much fuel using an implosion at 200 km/s takes about twice the
energy and produces about four times the pressure. Doing it at 400 km/s takes 8
times the energy and produces about 40 times the pressure. The implication is the
driver needed to produce implosions that ignite with a central hot spot will need to
be two to ten times larger than a driver that assembles fuel for spark ignition. The
implication is that a lot of resources are available to produce a fusion ignitor for
spark ignition.
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11.3.3 Spark Ignition

Spark ignition in general is a much more complicated problem than is ignition by a
central hot spot. There are numerous ways one might do the heating to ignite a spark.
One might use a beam of electrons, or ions, or photons. Or one might use a slug of
dense matter to shock-heat the dense fuel. One also might use a converging shock to
accomplish the same effect. It has even been suggested (by Jim Hammer) that one
might use a bubble of magnetic field. Here we first discuss the hot-spot properties
required to exceed the threshold for ignition discussed in Sect. 11.3, and then some
of the options for producing these properties. The first published discussion of fast
ignition was that of Tabak et al. (1994). Here we draw from work by Atzeni (1999).

Since fast ignition begins from a nearly isochoric state, we draw from the
analysis that produced Fig. 11.10, but using more-precise numbers from more
detailed studies. The minimum value of �Rh required for fast ignition is 0.5 g/cm2,
at a temperature of 12 keV. If we consider this to be the optimum hot spot, we
can estimate the amount of energy (deposited in the hot spot) that is required
for ignition, Eig, assuming that the hot spot is a cylinder of aspect ratio unity, as
Eig D R3h�.1 C Z/kBTh=.Amp/, which is 36.100 g/cm3=�/2 kJ for this case. This
seems quite hopeful, since achieving � above 200 g/cm3 seems plausible and since
our simple scaling calculation indicated that the cost in fuel energy of producing
a central hot spot was above 60 kJ. However, energy losses due to radiation, heat
conduction, and hydrodynamic motion act to increase Eig substantially.

In addition, the assumed parameters are not necessarily the optimum hot spot.
The required temperature decreases as �Rh increases, reaching 4 keV at �Rh D
1:2 g/cm2. If, for example, one can readily and efficiently produce a beam whose
radius is smaller than .0:5=�/ cm and whose absorption depth at the desired final
density is roughly equal to its radius, then one would want to produce the high-
temperature hot spot with the minimum �Rh. In contrast, if the beam one could
efficiently produce had an absorption depth above 1 cm2/g, then the optimum design
would heat a larger-radius hot spot to a lower temperature. To make matters even
more complex, the duration of the heating beam may be constrained or may be
variable, and the beam may be limited in its maximum available power. Moreover
we have yet to mention the question of how efficiently the heating energy can be
produced and deposited, yet this is very likely the key technical issue that will
determine the viability of fast ignition for fusion.

One approach to addressing this complexity is to separate the problem into
components. Atzeni did so, asking what the conditions for ignition are for a set
of rather general assumptions. He assumed that a beam of radius rB, power WB, and
energy flux IB, related by WB D IBr2B, and with an absorption depth RB, irradiates
a constant-density fuel. He then used two-dimensional simulations to assess the
parameters required for ignition. For 0:15 � RB � 1:2 g/cm2, ignition required

Eig D 140

�
�

100 g/cm3

��1:85
kJ, (11.49)
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WB D 2:6 � 1015
�

�

100 g/cm3

��1
W, (11.50)

and

IB D 2:4 � 1019
�

�

100 g/cm3

�0:95
W/cm2: (11.51)

The second and third of these relations imply a beam radius of 60�m �
.100 g/cm3=�/0:975, which may or may not prove feasible in practice. The broad
range of absorption depth over which these parameters apply reflects the rough
balance between the fact that the overheated hot spots produced when the absorption
depth is small ignite only after producing a larger volume at a lower temperature by
heat conduction and that increased heating energy is required when the heating is
dispersed because of large absorption depth. The net impact of this more-realistic
analysis is to increase the optimum fuel density for fast ignition, perhaps to of
order 300 g/cm3, so that the deposited energy must be <20 kJ. At the present level
of the discussion this is a guess, since the important question in the end is how
much energy must be expended to produce a given amount of deposited energy. The
smaller the efficiency of energy deposition, the larger one will need to make the hot
spot density. Then the question will be whether the beam radius can be as small as
is required. One can see that fast ignition is a challenging problem involving the
interplay of numerous constraints and of both physics and technology.

Now let us consider some possible methods for delivering the required energy
to the dense fuel, at the required very large energy flux. A simple approach is to
direct a sufficiently intense laser beam at the compressed fuel and hope that this
leads to enough energy coupling. The most likely source of such coupling would be
the generation of relativistic electrons by the intense laser beam. Indeed, beams
of relativistic electrons are generated by intense, ultrafast lasers (see Chap. 13).
Detailed questions follow. Can one generate enough electrons? Can one do so at
useful energies? Can one do so close enough to the dense fuel that they couple
efficiently? The dense fuel is surrounded by a formidable quantity of blown-off
plasma. This leads one to consider various options. One might use a preliminary
laser pulse to drill a hole in this plasma before one introduces the more-intense
laser pulse that does the heating. Alternatively, one might implode a capsule that
includes a high-Z cone, whose purpose is to provide a region free of such blow-off
plasma through which one can introduce the heating beam. Even so, electrons tend
to have large absorption depths (though not as large as those of photons at relevant
energies). Beams of electrons are also subject to disruption by filamentation or other
instabilities. This leads one to consider using heavier particles.

Broadly speaking, the heavier particles might be protons, light ions, or heavy
ions, and one might try to accelerate relatively few particles to higher energy or
relatively more particles to lower energy. In the high-energy limit, beams of protons
have also been observed in experiments with ultrafast lasers (see Chap. 13). If one
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can put enough energy into these beams, and if one can focus them, this might
provide an alternative to the use of electrons. In the low-energy limit, one could
try to drive a slug of solid material toward the target with enough energy to cause
ignition by shock heating. If protons are still not absorbed readily enough, one could
work on devising schemes to deliver a sufficient energy flux of light ions or heavy
ions to the target. At this writing, it is clear that there are many options but not yet
so clear which may prevail.

In 2007, Betti et al. (2007) reported the invention of another alternative approach
to spark ignition, known as shock ignition. In shock ignition, the original driver
creates an additional pulse during the implosion, timed so that the shock arrives at
the center of the capsule just at stagnation. This shock wave is made strong enough
to ignite the fuel where it converges. Since its invention, shock ignition has been
actively explored. Both theory and experiment indicate that it has potential.

Finally, we should not leave the topic of spark ignition without mentioning one of
its major qualitative advantages. We address below the need for ICF implosions to
be adequately spherical, both with regard to the symmetry of the ablation pressure
and to the impact of the Rayleigh–Taylor instability. When using ignition from a
central hot spot, small departures from a spherical implosion can permit the hot spot
to be too cool or too convoluted to ignite. Likewise, the injection of cold fuel into the
hot spot via the Rayleigh-Taylor instability can quench ignition. In contrast, for fast
ignition one typically does not care what the shape of the gas within the imploded
fuel capsule may be. Nor does one necessarily care if the implosion is asymmetric
to some degree. So long as one can deliver the energy where it is needed to ignite
some of the fuel, the fusion burn should be able to proceed.

11.4 Alternative Drivers

Here we briefly discuss some of the alternative possible energy sources for inertial
fusion. Z pinches would require some impressive technology development to be able
to fire at a steady, high repetition rate, but this is not out of the question. They offer
several potential approaches to fusion. By imploding the pinch onto a low-density
foam, the Z device has produced a radiative shock that creates an intense X-ray burst
along the axis of the pinch. This might be developed into a driver for fusion capsules
having a central hot spot (Slutz et al. 2003). The pinch, however, naturally produces
a much longer pulse of lower-intensity X-rays than does a laser-driven hohlraum.
This could enable low-velocity implosions that compress cold fuel, which is then
ignited by some sort of fast ignitor (Vesey et al. 2006).

A more clever approach to ICF using a pulsed-power device as a driver, recently
invented at this writing, is known as magnetized liner inertial fusion, referred to as
MagLIF (Slutz and Vesey 2012). The J � B force is used, as discussed above in
Sect. 10.10.2, but rather than driving a flat plat the driver is configured to implode
a conducting cylinder. Approaches to inertial fusion in which an imposed magnetic
field reduces heat conduction while an imploding material compresses a plasma
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toward fusion conditions have been considered at least since the paper by Lindemuth
and Widner (1981), but have been thought to be unable to achieve high gain. Two
new elements have changed this picture. The first is the addition of a cryogenic
DT layer within a metal cylinder, which then implodes at 100–200 km/s. Although
cylindrical in shape, this is similar to the low-velocity regime of capsule implosions
discussed above. However, rather than somehow engaging in fast ignition after the
implosion, the extra energy needed by the hot spot is now deposited before the
implosion, by laser heating the gas near the axis of the cylinder. This would not
work without the use of a magnetic field to reduce radial heat conduction. The initial
design studies showed gains above 1000 by this approach. As mentioned previously,
these designs tend to use more fuel and have a higher fusion yield than do designs
using higher implosion velocities. Experimental work is underway.

Heavy-ion accelerators have also received significant attention as potential
drivers for ICF, beginning in the late 1970s (Arnold 1978). They, like other particle
accelerators, seem likely to be operable at high repetition rate. Even so, meeting the
requirements for ICF would require some advances in accelerator technology. It has
long been imagined that relativistic heavy ions could drive ICF as follows. They
would be stopped in high-Z material, such as gold, heating it to some hundreds
of eV. The X-rays emitted by the gold would then be transported in a hohlraum
and would irradiate a capsule. This would represent X-ray drive, just using an X-
ray source other than a laser. It might potentially turn out to have an advantage
in efficiency and/or development cost. (Historically, there were at some point also
programs aimed at driving ICF with electron beams or with light ions, but these
approaches were eventually abandoned.)

A more recent approach using heavy ions (Henestroza et al. 2011), not yet
much explored thanks to the vicissitudes of research funding, uses a configuration
known as the “X target.” This has in common with MagLIF the use of a cylindrical
geometry, slow implosions, and high yields. A sequence of ion beams, focused
to cylindrical shells, irradiated a low-Z outer shell filled with cryogenic DT. The
explosion of the outer shell compresses the DT, and is sustained by the sequence of
ion beams until a small, intense beam on axis finally ignites the fuel. One appealing
aspect of this novel idea is that it relies on using heavy ion beams for what they are
good at—depositing energy throughout large volumes of matter, rather than trying
to fit them into an imitation of a miniature fusion bomb.

11.5 Pitfalls and Problems

A pressure of 100 Mbar is fairly easy to produce. One can see from (9.42) that this
requires a laser energy flux of 1:6�1015 W/cm2 of 0.35�m light. The corresponding
laser energy during the acceleration, for a capsule of 2 mm radius, accelerated
for 10 ns, would be about 2.7 MJ. The laser energy required during the formation
and propagation of the shocks would increase the total energy by some factor.
Alternatively, one would need an X-ray temperature of 220 eV in a hohlraum to
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create a pressure of 100 Mbar. This again does not seem very difficult (see Chap. 9).
Indeed, achieving such a pressure is easy enough that in the absence of limitations
one would seek to use a larger pressure. However, there are several major problems
that make ICF a challenge. We discuss three of them here, and then provide a
summary.

11.5.1 Rayleigh Taylor

An ICF implosion is Rayleigh–Taylor (RT) unstable during most of its evolution.
Early on, during what is often called the acceleration phase, the low-density, hot
ablated plasma is at a higher pressure than the cooler, higher-density layer being
accelerated. This creates the condition of opposed density and pressure gradients
that excites the RT instability (see Chap. 5). One could say that the low-density
plasma is pushing on the higher-density plasma. The acceleration phase ends
but before long the deceleration phase begins, when the low-density gas within
the capsule pushes against and decelerates the denser, incoming fuel layer. Here
again the density gradient and pressure gradient are opposed, so one has an RT
unstable system. This necessitates understanding what limits RT may place on ICF
implosions.

The number of e-foldings of RT growth, 	RTt, is straightforward to estimate,
assuming that the growth rate is the value for an abrupt, embedded interface, which
is 	RT D p

Ankg. The density changes are large so we take An � 1. The most-
damaging wavelength is related to the thickness of the capsule during the RT growth,
which we designated �ri above. Wavelengths that are short compared to �ri will
grow and saturate without creating large perturbations in the structure. Wavelengths
that are long compared to the capsule thickness will distort the capsule and may
decrease the compactness of the implosion, but they have less impact and a slower
growth rate than wavelengths of order the capsule thickness, which can break up the
capsule if they grow large enough. So we take k D 2=�ri. If we approximate the
acceleration and deceleration as constant, then we have rs=2 D .1=2/g.t=2/2, from
which t

p
g D 2

p
rs. Altogether, this implies a value for the number of e-foldings,

GF, of

GF D 	RTt D
s
8rs

�ri
: (11.52)

For a variable acceleration, one can generalize GF by integrating 	RT over time.
One can see the relevance of the in-flight-aspect ratio, or IFAR, which we defined in
Sect. 11.2 as rs=�ri, and whose value is given by (11.31). As Fig. 11.9 showed,
its value is typically several tens. Taking the IFAR to be 30, we would expect
nearly 30 e-foldings of RT growth from this calculation. If the noise at such
wavelengths corresponded to atomic displacements (�1 Å), and there were no
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nonlinear saturation and no spherical effects, the implied amplitude would be many
meters. The acceptable growth at such wavelengths is of order several, and certainly
not more than 10, e-foldings. One concludes that ICF would not be feasible in the
presence of RT growth at such a rate.

Fortunately, the RT growth rate is actually smaller than
p

Ankg, because the
interfaces where the growth occurs are not sharp but rather have some scale length
L. The growth is reduced much further during the acceleration phase because
ablation carries away the material in which the modulations are growing. Suppose
the ablation is carrying away material with some characteristic ablation velocity, VA

(this is not the exhaust velocity, but rather the velocity at which material flows away
from the dense interface). Then recall that RT modes are surface waves with an
exponential penetration depth of 1=k. Given that the growth rate without ablation,
	RT, sets a timescale of 1=	RT, we would expect to see ablation quench the RT
growth when 1=k � VA=	RT or kVA � 	RT. This is indeed what is seen, within
small numerical factors, in simulations and in detailed analytic theory. A standard
relation expressing the net growth rate is

	A D
r

kg

1C kL
� ˇkVA: (11.53)

Here the coefficient ˇ is �1 for X-ray ablation and �3 for laser ablation. The
ablation velocity VA is the velocity at which material leaves the RT-unstable region
and equals the mass ablation rate divided by the density in the ablation layer,
Pm=�2, where �2 is the density of the shocked ablator. The ablation velocity can
be estimated from the discussion in Chap. 9. An order-of-magnitude value of the
product ˇVA is 5� 105 cm/s, while the order-of-magnitude of g is 3�107 cm/s per ns,
which is 3 � 1016 cm/s2. For a steep interface, the maximum unstable wavenumber
is k D g=.ˇVA/

2 D 105 cm�1, corresponding to a wavelength of about 1�m.
Since the fuel shell is only a few �m thick during the acceleration phase (after
compression by the sequence of shocks), the wavelengths whose thickness is of
order the shell thickness are strongly stabilized by ablation.

It should be clear that a careful design must consider all possible RT modes in
order to assure control of RT during the ablation phase. If the stabilizing effect of
ablation alone is not enough, one can consider trying to increase the scalelength
L at the ablation surface. Increasing L to a few �m can have an important effect.
One way to try to increase L is to design the outer surfaces in the target so that
they produce preheat that penetrates the ablator but is not energetic enough to reach
and heat the fuel layer. This can be attempted in principle using either electrons
or X-rays. Design work at this writing has focused on using X-rays. An alternative
approach to increasing L is to launch the first shock into the fuel by using a brief
impulsive load that rapidly evolves into a blast wave, as in Fig. 11.7 above. The
blast wave will decay as it moves into the capsule, so that the amount of entropy it
produces will be larger in the outer layers of the ablator and smaller by the time it
reaches the fuel. Either of these approaches, or perhaps another one, could be very
helpful in the context of fusion by direct laser ablation.
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During the deceleration phase there is little ablation, so only L can act to reduce
the RT growth. Fortunately, L tends to be large enough. This happens because the
interior of the capsule has been heated by the coalescing shock waves and is much
hotter than the cold fuel, in response to which the electrons transport heat into the
inner layer of cold fuel, which in turn expands and lengthens the scale length at the
inner fuel boundary. A typical estimate, from Lindl (1995), is that at the inner fuel
boundary L is roughly 15% of the final fuel radius. This has the consequence that
the RT growth during deceleration is limited to about three e-foldings. The initial
amplitudes that grow by this amount are determined both by the roughness of the
inner surface of the fuel and by the perturbation of the inner surface due to the RT
growth during ablation. This coupling of the outer surface to the inner surface is
known as feedthrough.

Taking together the growth during acceleration and deceleration with the sta-
bilizing effects of ablation and gradients, an approximate limit on the implosion
velocity is �600 km/s, before IFAR becomes too large and RT prevents high gain.
The rightmost dashed line in Fig. 11.3 shows this limit. To the extent that the model
underlying Fig. 11.11 is accurate, one might be able to push higher with X-ray driven
capsules. However, as Fig. 11.3 showed, the gain at high velocities becomes small
enough that this may not be of much use.

During the construction of NIF, researchers used extensive 2D and 3D simula-
tions in an attempt to understand the limitations that RT would impose on the design
of capsules intended to ignite. It turned out that capsules predicted to be safe from
quenching by RT were not safe. Instead, the first few years of NIF experiments
produced unambiguous evidence of the mixing of ablator material into the hot spot
when GF exceeded about 7, corresponding to a linear-theory amplification of 1000.
This was significantly smaller than had been expected based on the simulation
studies. The need to keep GF this small limited the neutron yield that could be
achieved. The origin of the discrepancy is not yet clear, but the present author
suspects that the dissipation of vorticity in the computer simulations is at least partly
responsible.

The net result is that it appears that RT can be limited to a low enough level
that fusion can succeed, but that doing so places difficult constraints on the initial
roughness of the target surfaces and on the smoothness of the ablation pressure.
As was mentioned in Chap. 9, the drive to invent ways to smooth the irradiation
of surfaces irradiated by lasers came from ICF. Specifically, one needed to reduce
the seeding of RT instabilities due to structure in the laser ablation. The precise
constraints can be estimated now, but there is a potential to make them less severe
through improvements in design of targets and in understanding of RT. The RT
instability evidently is present in any approach to fusion, whether initiated with
lasers, with a Z-pinch, or with sunlight.
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11.5.2 Symmetry

In any analysis of structure in spherical coordinates, it is natural to describe the
structure in terms of spherical harmonics. These harmonics form a complete basis
set that describes a system by breaking the structure into modes that correspond to
having an integer number of wavelengths over 360ı in azimuthal angle or 90ı in
polar angle. The RT modes that grow to the largest amplitude have mode numbers
of several tens. (Without any stabilization, the most-unstable mode number would
be much larger.) The low mode numbers, such as 2 or 4, correspond to variations in
the structure that can be produced if the ablation pressure is not uniform over larger
distances. For example, if two ends of a target (the poles) are driven more strongly
than the middle of the target (the equator), then the imploded target will be flattened
like a pancake. Such an imploded target is indeed described as pancake-like, or may
be said to have pancaked. In contrast, if the equator is driven more strongly than the
poles, the imploded target will be a long thin tube, for which the common metaphor
is a sausage. In either case, the �r will be smaller than intended over a significant
range of solid angle, and one will obtain less burning than one had hoped. One could
say that ICF, in order to succeed, must not feed one breakfast.

A simple estimate of the required uniformity is straightforward to make. The
fuel radius decreases by a factor of the convergence, C, as the fuel implodes, from
an initial radius rs to a final radius Rc. We can ask what difference in velocity �V
would cause the fuel at one angle to be at twice the final radius when the fuel at
another angle has reached its final radius. To do so, we estimate the implosion time
for the fully imploded fuel as rs=V and we ask what �V will satisfy

rs�V=V D Rc; which is �V D VRc=Rs D V=C: (11.54)

Thus, to keep the asymmetry of the final state smaller than a factor of 2 requires
the variation in implosion velocity to be less than Rc=rs � 5% since the convergence
is of order 20. Since the implosion velocity is proportional to the ablation pressure
we require the ablation pressure to be uniform to the same level. In reality, an
asymmetry of a factor of 2 is far too large. A more realistic limit is that the ablation
pressure must be uniform to 1% accuracy, at least in a time-averaged sense. This is a
demanding constraint. With fusion by direct laser ablation, one can use many beams
but even so only a few beams overlap on any given point on the target. With fusion
within a hohlraum, entrance holes for laser beams or for the flow of energy into the
hohlraum from a Z-pinch create a significant asymmetry in the radiation from X-ray
heated walls. The asymmetry produced by the energy source must be compensated
for by careful design. In all approaches, as the target begins to move (and as the
plasma struck by the laser also moves), the irradiation symmetry may change.
As in the case of RT instabilities, the requirement of symmetry places difficult
constraints on ICF. These constraints are unlikely to be met without measuring
the symmetry and fine-tuning the irradiation of the capsule to produce adequately
spherical implosions.
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A historical and cautionary note is worth making here. During the 1970s portions
of the inertial fusion program in the USA attempted to create fusion within
hohlraums without making any measurements of the implosion symmetry. This
effort failed, as evidenced by neutron yields that were typically 100 times smaller
than predicted. Only on the Nova laser, when implosion symmetry and of the other
essential aspects of the fusion system were measured, was it possible to first achieve
fuel densities above 100 times liquid density and to begin to see neutron yields
not very far below those predicted by one-dimensional simulations. This required a
close collaboration between experiment and simulation, measuring the details and
using simulations to assess the implications of what was seen. Prior to that era, there
was far too much reliance on simulation codes without verifying measurements,
and far too much belief that the codes were the reality. A good scientist who does
simulations understands that the simulation is an essential tool but cannot fully
represent reality. In the view of the present author the fact that much of ICF was
classified also contributed to its failures in the 1970s. A major benefit of presenting
results at open scientific meetings and of publishing in the refereed literature is that
these activities force an improvement in the quality of the science being done.

11.5.3 Laser–Plasma Instabilities

We saw in Chap. 9 that laser–plasma instabilities can scatter laser light and can also
produce populations of high-energy (suprathermal) electrons. (In Z-pinch-driven
fusion, these instabilities are not present but there is also some potential to produce
populations of energetic electrons.) We saw that these instabilities, in particular
stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS), can
in some circumstances convert most of the laser light into scattered light or energetic
electrons. We also saw that another instability, filamentation, can break the light into
filaments, which can potentially change where the light goes or can trigger other
instabilities. These processes have three types of adverse consequence. We discuss
these first, and then the question of how to control the amount of such scattering.

First, stimulated scattering processes reduce the efficiency of the laser-
fusion target. If half the laser light is scattered back toward the source,
then one will need to start with twice the energy to produce fusion. The
energy sources (or drivers) are expensive enough that this would be a major
problem.

Second, stimulated scattering and filamentation both may alter where the light is
deposited, both in a directly driven capsule and in a hohlraum. This can affect the
symmetry of the implosion, since ablation pressure or soft X-rays would then be
produced in unintended places. If these processes were consistent in the amount and
direction of the scattering that they produced, then one could tune out the resulting
variations through a sequence of experiments that measured the symmetry. This
would be fine, but these processes are observed to behave reproducibly in some
regimes and irregularly in others. So one cannot count on being able to tune them
out.
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Third, SRS and the decay instabilities produce energetic electrons. Some of the
energy of these electrons reaches the fusion fuel, which heats it and adds to its
entropy. We can recall that the entropy limit is then 4�108 J/keV/g, but that most of
this limit must be used in the process of compression. For purposes of estimates, let
us suppose that the limit on the entropy from preheat is 108 J/keV/g. The amount of
entropy produced depends on the temperature when the preheat occurs, since ds D
dq=T . Thus, a serious design must address preheat in a time-dependent context.
For purposes of a crude estimate, suppose that the preheat occurs when the final
shock is being produced, so that the pressure is already �30 Mbar, the fuel density is
�5 g/cc, and the Fermi energy is �40 eV, and also suppose that the fuel temperature
is �40 eV. Under these assumptions, an entropy of 108 J/keV/g develops if the 3 mg
of fuel absorbs 12 kJ of energy. If the final capsule energy is 140 kJ, the rocket
efficiency is 10%, and the delivery of energy to the rocket fuel is 50% efficient, then
the driver energy is about 3 MJ. Thus, an estimate is that if of order 0.3% of the
driver energy is deposited in the fuel as preheat, the fuel entropy would increase
above the desired value, the total compression would be less than desired, and the
gain would decrease.

This seems like a rather difficult constraint, but it in fact is less severe than it
seems. The only energy that does damage is the energy that heats the fuel. But to
get to the fuel the electrons must first penetrate the ablator. Those that penetrate the
ablator without much attenuation (at energies well above 30 keV) will also penetrate
through the (lower-Z) fuel without depositing much energy. Those that cannot
penetrate the ablator cannot heat the fuel. A suprathermal electron distribution with a
30 keV temperature has a mean range of about 3 mg/cm2, which is of order the initial
areal density of the ablator. Thus, electrons below this energy will not tend to reach
the fuel. In addition, because the electrons transport diffusively in the dense matter
and can scatter out of the vicinity of the capsule, many of them may deposit their
energy somewhere else, especially in fusion using hohlraums. Depending on details,
one would expect that an ICF high-gain target could succeed even if the fraction of
the driver energy in suprathermal electrons were of order 1% or perhaps more. By
the time this ratio reaches 10%, efficiency is becoming as much of a concern as
preheat. In summary, the production of suprathermal electrons must be limited but
need not be completely quenched.

It is clear that, if ICF is to succeed, then none of the laser–plasma instabilities
can be allowed to grow to a large amplitude. There are at root two approaches
to control these instabilities. The first approach is to use short-wavelength (UV)
lasers for fusion. This helps in two ways. The growth rate for all the instabilities
is proportional to the oscillation velocity of the electrons in the laser light wave,
as shown in Table 8.1. The square of this oscillation velocity is proportional to
the laser energy flux times the square of the laser wavelength (9.9). Thus, one
reduces the growth rate by shortening the laser wavelength. In addition, shorter-
wavelength laser light makes collisional effects more important; because critical
density increases, all processes occur at higher densities. An added benefit of higher
densities is that the laser energy is shared by more particles so the plasma is
cooler. This further increases the importance of collisions. Furthermore, the strong
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collisionality of plasmas made with UV lasers leads to the absorption of the laser
light at densities well below the critical density, so that processes at critical density
become unimportant. The need for short-wavelength lasers was determined the
hard way. Fusion programs using infrared lasers (at �1 and �10 �m wavelength)
experienced severe problems with energetic electrons, leading, in the long run, away
from such wavelengths as serious candidates for ICF.

The second approach to control laser–plasma instabilities is to actively suppress
them or at least to reduce their saturation level. If high density and collisions are
effective enough, this will not prove necessary. The myriad options for control are
beyond our scope here but are also often not realistic possibilities for specific ICF
facilities. Fundamentally, one can suppress instabilities involving ion waves, such as
stimulated Brillouin scattering, by adding bandwidth to the laser beams. This is not
practical for decay instabilities or stimulated Raman scattering. One can limit SRS
by creating a smooth, steep density profile in which SRS finds it difficult to grow.
Two-plasmon decay, which occurs only near the quarter-critical density, may or
may not be a problem. One other option that has recently emerged is the use of spike
trains of uneven duration and delay (Afeyan and Huller 2013), which may prevent
the instabilities from reaching and sustaining large, damaging levels. Ultimately,
laser–plasma instabilities limit the energy flux that can be used for ICF. At this
writing, it is unclear whether active control of the laser–plasma instabilities will be
needed for ICF.

Early experience on NIF underscored the challenges and importance of limiting
the laser–plasma instabilities. A key challenge, especially for hohlraums, is to
understand the actual plasma conditions. The hohlraum targets for early experiments
on NIF were designed so that the simulated plasma conditions would produce low
levels of SRS and SBS. But the program decided to ignore the advice of review
committees and did not prioritize the measurement of plasma conditions in the
hohlraums or extensive measurements of the instability behavior. In actual fact, we
do not at this writing have codes that are predictive regarding plasma conditions,
even from flat targets, let alone hohlraums. And indeed, the SRS spectra showed
that the plasma conditions were not as predicted. In the experiments, some of the
NIF beams converted more than half of their energy into SRS light and energetic
electrons. (This is not so easy to detect in the publications, which tend to focus on
the total amount of reflected energy, which was near 15% in those experiments.)
There are indications that these instabilities were one of the factors limiting the
performance of those early experiments. In some other, non-ICF experiments, a
small change in the distribution of energy across laser beams, which would have
no significant effect at any of the smaller laser facilities, caused SBS to grow
large enough to damage some expensive optics. It is unfortunately clear that laser–
plasma instabilities on MJ lasers are dangerous to both experiments and the lasers
themselves.



Homework Problems 521

Fig. 11.14 Whether ICF
with laser drivers is feasible
depends on whether the gray
window shown here actually
exists

Laser Energy Flux

L
as

er
 W

av
el

en
g

th Rayleigh-
Taylor
prevents 
fusion

Damage
prevents fusion

Laser-plasma
instabilities 
prevent fusion

Does
this 
window
exist?

11.5.4 Can Laser-Driven Inertial Confinement Fusion
Succeed?

Figure 11.14 illustrates the fundamental constraints on ICF using laser drivers.
There is some laser energy flux below which IFAR becomes too big and Rayleigh
Taylor prevents fusion from succeeding. There is some laser wavelength, increasing
somewhat with laser energy flux, below which damage to the laser optics prevents
fusion from succeeding. And there is some laser energy flux, decreasing as laser
wavelength increases, above which laser plasma instabilities prevent fusion from
succeeding. The question, for some combination of technology and target design,
is whether the gray area exists or not. If it does, then perhaps one can produce
implosions that will generate high gain.

Homework Problems

11.1 Plot the burn fraction versus �r. Discuss the impact of the assumptions made
in deriving the burn fraction on this curve, and on the size of a system designed to
produce a certain quantity of fusion energy.

11.2 Evaluate the classical pressure and the boson pressure for deuterium as a
function of temperature. For pure deuterium at a density of 0.1 g/cm3, plot the ratio
of the pressure for deuterium treated as bosons to that for deuterium treated as a
classical gas, as a function of temperature. Discuss the comparison.

11.3 For DT fuel, derive the classical relation between entropy and pressure
(normalized by the Fermi pressure of the electrons).

11.4 Suppose that one could apply a pressure p for a time t, using some energy
source. With this source, we could accelerate some amount of mass per unit area,
�o�r, to vimp D 300 km/s. Define a fusion capsule using the reflected pressure
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due to sunlight for 12 h as the pressure source. Approximate sunlight as light with
a wavelength of 580 nm and an energy flux of 1 kW/m2. How long would such a
capsule take to implode?

11.5 Derive the spectrally averaged absorption coefficient for bremsstrahlung in
DT. Check your value against the value found in the NRL plasma formulary.

11.6 Evaluate the appropriate integral of the radiative transfer equation over solid
angle to obtain FR from a spherical volume of optically thin, spatially uniform
DT. Find the value of the characteristic distance. Compare your result to the result
in (11.36), which assumes that the integral over solid angle of the distance across the
fuel gives Rh. Extra credit: generalize this calculation to include arbitrary optical
depth and discuss the results.

11.7 The Lawson criterion is generally written as n� > 1014 s/cm3, with density n
and energy confinement time � . Find a way to relate this to (11.38) and comment on
the comparison.

11.8 Because the density in a central hot spot is less than that of the cold fuel, a
larger fraction of the total energy must be expended to heat it than was estimated
above. Revisit the discussion above of the relative energy content of the fuel and the
hot spot, and develop an expression for the scaling of the hot-spot energy content
with hot-spot density. Find the result as an absolute energy and as a fraction of the
energy used to compress the cold fuel.

11.9 Using the equations of this Sect. 11.3.2 and others as necessary, build yourself
a computational model of a fusion target that ignites from a central hot spot. Use
it to explore target designs for the National Ignition Facility, using fuel masses of
1 mg or less, a fuel �Rc of 1.5 or less, and other parameters of your choice. Make
some relevant plots and comment on what you find.

11.10 Evaluate the amount of Rayleigh Taylor growth for the sunlight-driven fusion
system of the problem11.4.
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Chapter 12
Experimental Astrophysics

Abstract This chapter begins with a discussion of the general problem of scaling
between laboratory systems and astrophysical ones, identifying issues of physical
consistency, of what we call the Ryutov scaling of the key parameters, and of the
specific scaling for a given experiment focused on a specific astrophysical process. It
provides a thorough illustration of how to address these issues using hydrodynamic
systems and applies the results to experiments to study instabilities during supernova
explosions and the crushing of clouds. It then considers how to scale radiation
hydrodynamic systems, with the example of radiative jets. Next it shows how one
can analyze MHD systems, taking an example from jet-launching studies. Finally
it considers experiments seeking to observe collisionless shocks, in which kinetic
effects are essential but where one is more concerned with observation of a process
than with scaling of a complete astrophysical system.

In Chap. 1 we looked forward to potential connections between high-energy-
density physics and astrophysics. Some of these connections arise because one
can produce in the laboratory circumstances that actually exist in astrophysics and
can measure the properties of these systems. We have seen examples of this in
the areas of equations of state, in Chaps. 3 and 4, and opacities, in Chap. 6. Other
connections arise because high-energy-density experiments can produce dynamic
behavior under conditions that are relevant to astrophysical systems. By this means,
one can explore dynamic processes in ways that allow precise reasoning from the
experimental results to the astrophysical process. Even so, astrophysical phenomena
involve spatial and temporal scales that are many orders of magnitude (sometimes
25) greater than the scales encountered in laboratory experiments, so one may
wonder whether a valid comparison is possible. The issue of whether and how
one can make this comparison is the issue of scaling. The focus of the present
chapter is to discuss how one can establish scaling that relates laboratory processes
to astrophysical ones.

We begin with some historical remarks specific to this area. As applications
of lasers were first developed, one of the great minds in plasma physics, John
Dawson (1964), suggested that they might be useful in the context of astrophysics.
With the lasers and instruments of that era, one could have blown up a speck of
matter, taken a picture, and marveled at the exploding “star”. But such a picture,
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then or now, would have no relevance to actual exploding stars. The advances
in lasers and experimental technique from that time through the 1980s set the
stage for the use of lasers to study the astrophysical properties and processes.
Effort in both areas began in the early 1990s. Work relating to equations of
state and opacities was discussed in Chaps. 3 and 6. Among the early work in
astrophysical processes were laser experiments at the Naval Research Laboratory
relevant to blast waves in magnetospheres (Ripin et al. 1987) and in astrophysics
(Grun et al. 1991). The first publication to specifically suggest the use of lasers to
address hydrodynamic processes in supernovae was by Takabe (1993), in Japan.
B.A. Remington simultaneously initiated research on this topic in the US. There
are several review articles describing the early years of such work (Drake 1999;
Remington et al. 1999, 2000, 2006; Takabe 2001).

Our task here is to discuss the fundamental principles that must guide laboratory
experiments seeking to advance our understanding of astrophysical processes. With
regard to an astrophysical system and a laboratory system that might in some sense
represent a scaled model of it, we ask four questions:

1. Can both systems validly be described by the same type of equation?
2. Are the same terms in such equations important in both cases?
3. Can the two systems have good Ryutov scaling?
4. Can the two systems have good specific scaling, with regard to the dynamics of

the process of interest and the differences in structure?

The first two of these address the physical consistency of the two systems. The
physics that is of interest in the astrophysical system must be present, in a
consistent way, in the laboratory. As one example, a purely hydrodynamic laboratory
experiment cannot meaningfully simulate any astrophysical process in which forces
from magnetic-field curvature are important. We will evaluate the implications of
this as we take up various cases below. What we mean, in the third question,
by Ryutov scaling will become evident below. In an ideal case, the laboratory
experiment would be a perfect model of the astrophysical one. The Ryutov scaling
establishes the relationship of the parameters that is a necessary but not sufficient
condition for perfect scaling. Some experiments can produce parameters, in their
regions of interest, that satisfy this scaling. Unfortunately, a parallel requirement for
perfect scaling is that the initial shape (or if you prefer, the boundary conditions)
of the laboratory system match that of the astrophysical system over all space. No
experiment can be perfect in this sense. The limitations of either Ryutov scaling
or boundary conditions leads to a need for a third aspect of the comparison. We
will designate this the specific scaling. This has two aspects. The appropriate
dimensionless parameters that characterize the processes of central interest should
have similar values in the two systems. And there are also constraints associated
with any geometric differences between the two systems. These questions will be
addressed below for specific cases that are purely hydrodynamic, or also radiative,
or also magnetohydrodynamic. There have been and are active experiments in all
these areas.
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Another aspect of the laboratory-astrophysics comparison is that of comparisons
with and validation of codes. In some cases, an experiment can produce conditions
that are consistent with the assumptions of a computational astrophysical simulation
tool. In this case an experiment can provide a useful and meaningful test of the code,
whether or not the experiment is well-scaled to a particular astrophysical system.
The hydrodynamic experiments discussed immediately below are an example in
which the differences among the astrophysical system, the experimental system, and
the computational system are limited enough that one would expect the experiment
to be a good test of the code and that both the experiment and the code would directly
inform one’s understanding of the astrophysics. In contrast, for the plasma dynamos
discussed in Chap. 10, the simulation, the experiment, and the astrophysical system
occupy distinct but complementary regimes with regard to dissipative processes
(Schekochihin et al. 2004). All can inform a general understanding of the process in
question (such as dynamo behavior), but none will be a precise model of any other.

Before proceeding we should note that the laboratory study of processes in
astrophysics is not limited to high-energy-density systems. Processes that do not
require high Mach numbers or radiation can be studied at lower energy density. One
example, at this writing, is the work of a number of groups who are advancing the
study of magnetic reconnection, which is one source of energetic particle production
in magnetized interplanetary and interstellar plasmas. Another example is the study
of the dynamic behavior of magnetic flux tubes. There will doubtless be more
examples in the future.

12.1 Scaling in Hydrodynamic Systems

We first consider the issue of scaling between two systems for processes that
can be described by hydrodynamic (the Euler) equations. The reader may wonder
why one cares about comparing systems whose behavior is hydrodynamic, as the
equations seem so simple. Let us consider this first. It may seem as though we
understand hydrodynamics, but it would be more accurate to say that we understand
the equations that apply to hydrodynamics. We also know that these equations are
nonlinear in ways that produce immediate complexity under many circumstances.
This has two consequences. First, it means that there are questions that are too
complicated to be addressed successfully in computer simulations. We will see
one example of such a question below, in our discussion of supernovae. A second
example involves the onset of turbulence, in the context of Sect. 5.8. The Reynolds
number Re in astrophysical flows is typically far above the value of 10,000 at which
the mixing transition can begin. In contrast, because of numerical viscosity, the
computer simulations cannot achieve even Re � 10;000 when modeling moderately
complicated systems. In addition, turbulence models are too uncertain to know
which approach to an integrated description of turbulence might be best. Another
aspect of the impact of turbulence is that it remains unclear whether fine structures
in an evolving system can significantly affect the large-scale evolution of the system,
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a process described in the literature as “stochastic backscatter” (Leith 1990; Piomelli
et al. 1991). To address the presence and importance of these effects in the context
of astrophysics, experiments that are both clever and well scaled are required.

The complexity of realistic hydrodynamics implies that code validation is
essential even for the processes that may in principle be simulated successfully.
It is unclear how well we understand how to model numerically the very nonlinear
evolution of hydrodynamic systems. Like a series solution to a differential equation,
a computer simulation is only an approximation to the actual solution of the physical
equations being solved. Unlike a series solution, it is very difficult to judge the
error involved in the approximate computational solution. In addition, independent
simulations often produce different results (Glimm et al. 2001), especially on a scale
below about 10% of an initial perturbation wavelength (Kane et al. 1997). Because
of these difficulties, a code that works well for a certain class of problems may not
work well for other problems. Thus, validation that is relevant to the dynamics of
interest is important for each specific dynamical process.

We now turn to the elements of scaling discussed above. Our intent here is to
demonstrate by example the kind of thinking that one must carry through in order to
have an experiment with any significance. The requirement of physical consistency
is that these equations be valid and adequately complete for both systems. For
the systems to behave as a fluid the particles must be well-localized. This may
be accomplished by collisions in laboratory systems, or in dense astrophysical
environments such as supernovae. In less-dense “collisionless” environments, a
hydrodynamic approach may still be valid if the magnetic and electric fields are
sufficiently structured, as one expects in turbulent flows. See Ryutov et al. (1999) for
a more extensive discussion of this point. In addition, the Euler equations represent
the equation of state using a simple, polytropic index 	 . To have absolutely perfect
scaling, such a model would need to apply to both systems with the same value of
	 . However, one still would see any qualitatively important behavior even if the two
systems differed in the value of 	 . However, such a polytropic model is only relevant
in the absence of phase transitions during the period of interest. So these must be
avoided.

The Euler equations are adequately complete if all the other terms in a general
fluid equation are small. This issue was discussed at length in Chap. 2 and requires
that Re and the Peclet number Pe be large and that radiative effects be small. Not
emphasized in that discussion was how to think about magnetic fields. This has
some subtle aspects. The existence of magnetic energy in a turbulent field, on a
small scale, need not invalidate the Euler equations as a description of large-scale
behavior and can, if needed, be included in the internal energy that implies some
value of 	 . However, the sources and impact of global-scale, coherent magnetic
field must be small. The corresponding requirement is that the Biermann number
(see Sect. 12.6) must be large and the averaged plasma ˇ must not be small.

It is often the case that an experiment and a similar astrophysical system meet
these constraints, but that the value of one of the scaling parameters is quite
different between them. For example, high-energy-density experiments tend to have
Reynold’s numbers in the range of Re � 105–107 while for otherwise similar
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astrophysical systems Re is much larger. In such cases it is worthwhile to ask what
the significance of these differences may be. This is not a topic we will explore here
at any length. For the specific case of Re, one would expect that the presence of an
inertial range would matter (see Sect. 5.8), but that the ratio of the Taylor microscale
�T to the Kolmogorov microscale �k would not be important. Thus, we would expect
that systems having any value of Re above about 104 will behave similarly.

Once we have identified an astrophysical system that can be described by the
Euler equations, and have some notion of how to model this in the laboratory, we can
address the question of the Ryutov scaling for hydrodynamics. The reader can find a
more detailed discussion in Ryutov et al. (1999, 2000) and Remington et al. (2006).
We are concerned with systems that obey the Euler equations, (2.1)–(2.3). Now
consider the initial value problem for this set of equations. Let us present the initial
spatial distributions of the density, pressure, and velocity in the following way:

�.t D 0/ D ��f
� r

L�
	
; p.t D 0/ D p�g

� r
L�
	
;

and

u.t D 0/ D u�h
� r

L�
	
; (12.1)

respectively, where L� is the characteristic spatial scale of the problem, and
the other quantities marked by the asterisk denote a characteristic value of the
corresponding parameter; the dimensionless functions (vectorial functions) f ; g;
and h have maximum absolute magnitude of order unity. They determine the spatial
shape of the initial distribution. We note that there are four, dimensional parameters
determining initial conditions: L�; ��; p�; and u�, not necessarily corresponding to
the same location. Let us then introduce dimensionless variables (which we denote
by the tilde) in the following way:

Qr D r
L� ; Qt D t

L�

s
p�
�� ; Q� D �

�� ; Qp D p

p� ;

and

Qu D u

s
��
p� : (12.2)

When one expresses the set of (2.1)–(2.3) in terms of the dimensionless variables,
one finds that the equations maintain their form, with all the quantities being
replaced by their analogs bearing the tilde sign. The initial conditions presented in
the dimensionless variables acquire the form

Q�.Qt D 0/ D f .Qr/; Qp.Qt D 0/ D g.Qr/;
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and

Qu.Qt D 0/ D u�
s
��
p� h.Qr/: (12.3)

Now consider two different systems, say, an astrophysical system and a labora-
tory system. One sees that the dimensionless initial conditions for the two systems
are identical if the dimensionless functions f , g, and h are the same, and the single
dimensionless parameter, u�p��=p�, remains unchanged. In other words, provided
this parameter is invariant, and the initial states are geometrically similar (i.e.,
the functions f , g, and h are the same), one would have the same dimensionless
equations and the same dimensionless initial conditions for any two hydrodynamical
systems. This implies that the systems will evolve identically in a scaled sense.

In the papers of Ryutov et al., the parameter u�p��=p� was named the Euler
number. Subsequently, some fluid dynamicists complained that there are lots of
Euler numbers and another one is not needed. The author here suggests that we
consider this number to be the Ryutov number, defined as

Ry D u�
s
��
p� : (12.4)

We will add some additional Ryutov numbers below, when we consider more
complex physical systems. One aspect of Ry worth emphasizing is that while it
equal the Mach number in some cases, at least within a factor of

p
	 , it need not be.

The values of u; p, and � need not be taken at the same location but instead are best
chosen so that the maximum values of the shape functions are near 1. We will see
below that it can be feasible to produce laboratory systems that have the same value
of Ry as an astrophysical system of interest. And we will say that two systems have
good Ryutov scaling when this is true.

There is only one constraint on the four parameters determining evolution of the
system. For the second system, one can choose the scale length, L�, arbitrarily. One
can then also choose arbitrarily two of the three parameters, p�; ��; and u�. Then
by choosing the magnitude of the remaining parameter so as to maintain u�p��=p�
constant, one can obtain a system which behaves similarly to the first one. It is very
important that this Ryutov similarity covers not only smooth solutions of the Euler
equations, but also solutions containing shock waves or multiple shocks. The proof
can be found in Ryutov et al. (2000).

There is a special case, often present in astrophysical objects (such as SN
explosions) and in the corresponding laboratory experiments, that is much simpler.
Assume that there is a system with an arbitrarily distributed initial density, and with
some initial pressure profile and initial velocities of the order of the sound velocities
or less. Assume then that a planar (cylindrical, spherical) piston is moved into the
system with a velocity much greater than the initial sound velocity. Considering as
an example a spherical piston, we can describe its motion by the equation
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r D L�qp.t=�
�/; (12.5)

where �� is the characteristic time of the piston motion (the time within which it
is displaced by the distance � L�); the dimensionless function qp (with subscript p
standing for the piston) and its argument t=�� are of the order of unity. The initial
density distribution will as before be �.t D 0/ D ��f .r=L�/, with the function f
being of the order of unity.

The strong shock propagating in front of the piston brings the plasma to a new
state; the characteristic pressure in this new state is

p� � ��L�2=��2; (12.6)

and the characteristic velocity is

u� � L�=��: (12.7)

This state is essentially independent of the pressure and the velocity in front of the
very strong shock (see Chap. 4).

If one takes a second system, with the scale factors ��;L�; and �� arbitrarily
changed but with the function f in (12.3) and the function qp in (12.5) remaining
the same (i.e., initial density distributions are geometrically similar, as are temporal
dependences of the piston position), the two systems will evolve identically in the
limit that the shock is strong enough.

For example, if in system 1 characterized by scaling factors ��
1 ;L

�
1 ; and ��

1 , the
density is �1.r; t/ then the function f is �1.r; t D 0/=��

1 . The evolution of the density
in system 2 will then be

�2 D .��
2 =�

�
1 / � �1.rL�

1 =L�
2 ; t�

�
1 =�

�
2 /: (12.8)

In this case (12.6) and (12.7) imply that u�p��=p� has the same value in both
systems, so there is no need to impose this as a separate constraint. The implication
is that all the characteristic parameters (��;L�; and ��) can be varied independently,
and still the similarity exists. This very broad similarity can be extended to include
the case where the piston surface deforms in an arbitrary fashion during the piston
motion; to do that, one should just describe a piston by the general equation for a
surface evolving with time: F.r=L�; t=��/ D 0.

To have perfectly scaled behavior, the shape functions f ; g; and h would have to
be identical in the two systems and over all space. This would guarantee that any
dynamics of interest occurred to the same degree in both systems. But in practice,
this is (probably) never possible. So we need to find a way to assess the relevance
of an experiment to this specific dynamics of interest. This specific scaling has two
elements. One generally needs to assure that one or more dimensionless parameters
have values that place the experiment in the relevant regime. This can be, for
example, the normalized spatial scale for radiative cooling in an astrophysical jet
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(Sect. 12.5), or the energy confinement time in a plasma device (as in Connor and
Taylor 1977). One also needs to assure that the differences between the two sets of
shape functions do not interfere with the dynamics of interest. We will discuss the
specific scaling for each example given below.

12.2 A Thorough Example: Interface Instabilities in Type II
Supernovae

As an example of a well-scaled experiment, we will now discuss experiments
to study interface instabilities in Type II supernovae in some detail. Overall,
Supernovae (SNe) involve a very broad range of physical processes. (The term
supernova is represented by SN, so the plural is SNe.) Their complete description
requires the use of areas of science as disparate as particle physics and general
relativity on the one side, and hydrodynamic stability and turbulence, on the other.
Some aspects of SNe are amenable to study by experiments in the laboratory, while
others are not.

A nice description of the SN phenomenology, as well as existing theories of
their formation, can be found, e.g., in the book by Arnett (1996). Other papers of
general interest include (Bethe 1990; Woosley et al. 2002; Woosley and Eastman
1997). SNe are believed to explode by two fundamental mechanisms: collapse
of the core (in large stars) and thermonuclear explosion (in small stars below 8
solar masses at birth). The classification by types is based on spectra and is too
involved to discuss here. The Type Ia SNe, which will not be our focus here,
are predominantly thermonuclear. They occur when white dwarf stars, composed
primarily of C and O, accumulate enough mass to overcome the pressure of their
degenerate electrons. They then begin to gravitationally collapse, releasing enough
energy to cause explosive fusion burning of their C and O. Our focus will be on the
predominant core-collapse SNe of Type II.

12.2.1 The Astrophysical Context for Type II Supernovae

Any large-enough, pre-supernova star develops shells of material around an iron
core. Iron accumulates in the core because Fe is the most stable nucleus (see
Chap. 11). The inner shell is composed primarily of the elements Si and Ca, the
second shell is primarily C and O, the third shell is mainly He, and the outer
shell is mainly H. One such star became SN 1987A. Any such star is initially
composed primarily of H. It develops the interior shells in succession as the
gravitational pressure compresses and ignites the accumulating material that will
form the next shell. This process stops with Fe, because the star cannot create further
energy by converting the Fe to any other material. But once the star accumulates a
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“Chandrasekhar mass” (1.4 solar masses) of Fe, the gravitational pressure on the
core overcomes the degeneracy pressure of the electrons and the core collapses. The
collapsed core forms a neutron star that might later be detected as a pulsar.

The collapse of the Fe core is accompanied by the generation of a short but very
intense burst of neutrinos (carrying away some 99% of the released energy). Some
of the neutrino energy is coupled to the remaining matter that did not collapse,
primarily near the core. The kinetic energy of the exploding matter in a typical
SN event is �1051 erg. This brief deposition of energy creates an almost classic
point explosion case (except for the small hole in the middle). A blast wave (see
Chap. 4) develops and propagates out through the star, blowing it apart. When the
blast wave emerges from the star, this gives rise to the observed tremendous increase
of luminosity. Only a few percent of the hydrodynamic energy is emitted as visible
light. In more detail, all the elements of the description just given must be present,
but they appear insufficient to explain the actual generation of the blast wave in
models. It may be that some nonsymmetric motions, even perhaps involving the
generation of a jet during the process of core collapse, are involved in the generation
of the blast wave.

Figure 12.1 shows typical light curves for three types of SNe. One should
remember that the light as detected by optical telescopes comes not from the core,
where the energy release has occurred, but rather from a photosphere, to which
the energy is transported by a complex combination of hydrodynamic flows and
radiative transport. Linking the energy release in the SN core to a visible light curve
is a substantial challenge. A correct description of the material opacities and of the
transport of material and radiation is very important. In the present section we are
concerned with the transport of material.

Among the broad array of problems related to SN explosions, we shall con-
centrate on the laboratory simulation of hydrodynamic phenomena in Type II
SN explosions and specifically on the evolution of hydrodynamic instabilities at
the interfaces in the star. We choose this topic because, on the one hand, multi-
dimensional hydrodynamic effects are thought to be very important and, on the other
hand, there already exist experiments of this type, related to the shock breakout

Fig. 12.1 Type I and II
curves are normalized to their
luminosity at the maximum
(reproduced from Dogget and
Branch (1985)). Note the
presence of two sub-classes
of SN Type II, with one of
them (P) having a plateau in
luminosity, with the other (L)
showing a regular decay
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Fig. 12.2 2D simulation of SN 1987A, from Kifonidis et al. (2000)

through the He–H interface. In addition, the analysis of the scalability and other
constraints can be nicely illustrated; this example can serve as a template for similar
analyses of other problems.

Hydrodynamic instabilities arise as follows during a stellar explosion. At each
interface between shells there is a significant density decrease. The interfaces are
not smooth but are structured by convection, rotation, and other dynamics. The
blast wave is likely to be born with structures resulting from neutrino convection
(one model of this leads to the structure seen in Fig. 12.2). In addition, the blast
wave is perturbed by the structure at the interfaces as it propagates outward. Even
though the shock at the head of the blast wave will tend to anneal as described
in Sect. 5.7.1, only small-enough perturbations will anneal completely. As a result,
each structured interface will experience in its turn the passage of a structured blast
wave. That is, the blast wave communicates between interfaces, so that the structure
at inner interfaces produces additional structuring of the outer interfaces. During
the deceleration phase that follows the blast wave, the structures at the interface will
grow first through the Richtmyer–Meshkov process (Sect. 5.7.3) and then through
the Rayleigh–Taylor instability (Sect. 5.1.2). All this had been understood for some
time, but the ultimate nonlinear consequences were not clear before the advent of
SN 1987A.

In observations of SN 1987A, emissions from the heavy elements, and other
indications of their presence in the outer layers of the supernova, were observed
only a few months after the explosion. The observed early appearance of heavy
elements (like Ni56 and Co56) in the photosphere of SN 1987A (see Sutherland 1990,
and references therein) is incompatible with a spherically symmetric expansion and
seemed to indicate that the instabilities have important and observable effects. Even
so, simulations of the explosion in two dimensions (see Arnett et al. 1989; Fryxell
et al. 1991; Kifonidis et al. 2000), which was all that was feasible computationally,
did not produce rapid enough penetration to explain the observations. Partial
simulation studies in three dimensions also indicated that the more-rapid penetration
that would be found in three dimensions was not large enough to make up the
difference.
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In the context of our discussion above, in the introduction to this chapter, these
circumstances created two roles for experiments. The first role is code validation.
It was worthwhile to determine whether systems of this type behave in some way
that existing simulations did not reproduce. A well-scaled experiment with two-
dimensional structures would be sufficient for this purpose. We discuss such an
experiment next. The second role is the direct observation of cases with realistic
complexity. An important question, which cannot be answered by simulations in the
current era, is to what extent in three dimensions the coupling between the interfaces
in a diverging explosion actually manages to increase the outward penetration of the
inner material. This is relevant not only to SN 1987A but also to other cases such as
Cassiopeia A. Laser facilities at the MJ scale are required to carry out this second
role.

The specific design of an experiment involves the specification of the structure
of the target and the parameters of the laser (or other) drive, within the limits of
available target-fabrication and laser-system technologies. This typically involves
conceptual analysis followed by 1D hydrodynamic simulations to establish a viable
approach. 2D or 3D simulations can then evaluate the effects of finite experiment
size on the anticipated dynamics.

Figure 12.3 shows the schematic structure of an experiment relevant to the
behavior of a single interface in an SN, and to instabilities driven at any decelerating
interface. The perspective for the comparison is that the experiment will, for some
period of time, evolve like a small patch, whose lateral dimension is a small fraction
of its radius, at the interface of the exploding star. Section 4.6.4 discussed the
essential, 1D dynamics. The energy input endures long enough to drive a shock
wave roughly half way through the denser layer. Once the energy input ends, the
rarefaction from the left edge of this material moves rightward and overtakes the
shock wave. This forms a blast wave. The shock front moves into the lower-density
matter and the interface between the two layers subsequently decelerates, creating a
Rayleigh-Taylor-unstable condition. An alternate version of this system, somewhat
more relevant to supernova remnants, inserts a gap between the two materials (Drake
et al. 2000). The shock wave in the experiment converts material that is initially
solid into plasma, enabling fluid equations to describe the dynamics. An actual
experimental target is likely to include other structures, including a shock tube
to limit lateral expansion, calibration features for spatial and spectral calibration,
shields, and other necessary elements.

Fig. 12.3 Schematic of an
experiment to study
instabilities at decelerating
interfaces, including those in
supernovae, with some key
dimensions d and densities �
indicated
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12.2.2 The Scaling Problem for Interface Instabilities in
Supernovae

We now turn to the challenge of performing well-scaled experiments to simulate
interface instabilities in SN 1987A, specifically at the He–H interface. This problem
serves as an example for designing scaled laboratory experiments.

As a representative set of plasma parameters in the He–H transition region
(Table 12.1), we consider the set of parameters given in Müller et al. (1991).
These are of course parameters from computer simulations, as observations are
not possible. However, they should be fairly reliable because of the simplicity
of the fundamental blast wave problem. With reference to the table, let h be the
density gradient scale-length, u be the characteristic velocity, T be the plasma
temperature (the electron and ion temperatures are equal), and � be the plasma
density. The characteristic deceleration experienced by a given fluid element at the
He–H interface in the SN following arrival of the blast wave can be estimated
as v=� , with � � h=v, so v=� � v2=h � 5 � 105 cm=s2. The gravitational
acceleration is much smaller and is also negligible in the laboratory experiment to
be discussed. Table 12.1 also shows parameters for the laboratory experiment. These
are again based on simulations, although in this case several measurements support
the detailed numbers given. From the parameters in Table 12.1, we can derive the
scaling parameters given in Table 12.2.

Now we proceed to discuss the aspects of scaling described in Sect. 12.1. First
consider the issue of physical consistency. One can show that fluid equations, with
a polytropic equation of state, are valid for both these systems. The case of the
experiment is straightforward—the plasma is quite collisional and radiation is not
important. The SN is more complex. To be specific, we discuss properties of the
He plasma. At T D 800 eV it is fully ionized. Mean free paths with respect to
electron–ion (�ei) and ion–ion (�ii) collisions are very short, �ei � 10�3 cm and
�ii � 2 � 10�2 cm. The electron–ion energy equilibration time is less than 10�9 s.
Therefore, the electron–ion component behaves as a strongly collisional gas with
equal temperatures of electrons and ions. The particle pressure of a helium plasma

Table 12.1 Fundamental
hydrodynamic parameters for
a supernova experiment

Supernova 1987A Experiment

Parameter (2000 s) (21 ns)

Length scale (cm) 9� 1010 0.0180

Velocity (km/s) 2000 35

Density (g/cm3) 0.0075 0.4

Pressure (dynes/cm2) 3:5� 1013 5:2� 1011

Temperature (eV) 900 7.4

Zi 2.0 0.6

A 4.0 11.4

Density of nuclei (cm�3) 1:1� 1021 2:1� 1022
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Table 12.2 Derived scaling parameters for a supernova experiment

Derived parameter Supernova 1987A Experiment

Collisional mfp (cm) 3:5� 10�3 7:9� 10�8

Kinematic viscosity (cm2/s) 7:0� 107 0.334

Reynolds number 2:6� 1011 1:9� 105

Thermal diffusivity (cm2/s) 1:2� 106 15

Peclet number 1:5� 1013 4:2� 103

Radiation mfp (cm) 6:8� 102 2:0� 10�4

Radiation Peclet number 106 2:5� 109

Ryutov number u�=
p

p�=�� 2.9 3.1

for � D 4 � 10�3 g=cm3, T D 800 eV is p D 2:3 � 1012 erg=cm3 D 2:3Mbar. The
radiation pressure for T D 800 eV is pR D 2 � 1013 erg=cm3 D 20Mbar. In other
words, the radiation pressure dominates.

Despite the dominance of radiation pressure, fluid equations apply because the
matter entrains the photons. The photon mean free path (mfp) with respect to
Compton scattering (Thomson scattering at these low temperatures), `C, is very
short, `C � 103 cm (the mfp for inverse bremsstrahlung is much longer). In other
words, the plasma containing the photon gas can be described as a single fluid,
whose pressure is the sum of the photon and particle pressures, and which can be
characterized by a single velocity of the mass flow u. The energy per unit volume
in the case where the pressure is dominated by photons is ER D 3pR, thereby
corresponding to the polytropic gas with 	 D 4=3. Therefore, fluid equations, with
a polytropic equation of state, are valid for both these systems.

To determine whether the Euler equations as such are valid for these systems, one
must evaluate the dimensionless parameters discussed in Sect. 2.3 and consider their
implications. Table 12.2 shows the values of the relevant parameters for the cases of
interest. First consider viscous effects. Here all sources of viscosity must be added.
Start with the SN. An ordinary (particle) viscosity (from 2.39), for a helium plasma
with T � 800 eV, � � 8 � 10�3 cm�3, and ln� D 10, is �2000 cm2/s. The photon
viscosity (from 2.40) is much larger than the ordinary viscosity, �rad � 7�107 cm2/s.
Accordingly, the Reynold’s number, evaluated for h � 1011 cm, u � 2 � 108 cm/s,
and � D �rad, is 2:6 � 1011.

Now consider the experiment. Assuming based on simulations that the average
charge of the ions is �0.6, and taking the Coulomb logarithm equal to 1, one
finds (from 2.39) that the viscosity of CH2 plasma is �0.3 cm2/s. Accordingly, the
Reynold’s number is Re � 2 � 105. Although smaller than in the supernova, this
is higher than a typical critical Reynold’s number corresponding to the onset of the
instability of the sheared flow (Re � 103) and the mixing transition (Re � 104).
Therefore, it is clear that viscous effects are very small in both systems.

The Peclet number evaluated for thermal diffusivity (from 2.34) of the electrons
(lines 5 and 6 in the table) is very large for the SN. The electron thermal diffusivity
� in the laser experiment is (from 2.34) �15 cm2/s, so that the Peclet number
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corresponding to the particulate heat transfer is high, �4200. (Because the plasma
in these experiments could be considered ideal only marginally, the aforementioned
estimates of � and � should be considered as order-of-magnitude estimates.)

Evaluating the magnitude of radiative effects is more complex. For the SN, the
photon mean free path ` is much less than the characteristic length-scale h. An
estimate (Zel’dovich and Razier 1966) for the thermal diffusivity � of the photons
is � � c`. For the case under consideration, where ` is the mean free path for
Compton scattering, `c, one has � � 2 � 1013 cm2/s. The corresponding radiation
Peclet number is large, �106, meaning that the SN is essentially adiabatic.

Turning to the role of radiative losses in the experiment, this subject is compli-
cated by potential effects of optical depth. (The large value of the radiation Peclet
number shown in the table implies that diffusive heat conduction by radiation is
small but does not preclude large radiative losses from plasma that is not optically
thick.) One can give an upper estimate for the effect of radiation as follows.
The maximum possible energy loss from the surface of the plasma slab is that
corresponding to the blackbody radiation at the plasma temperature, 2
T4. On the
other hand, plasma energy content per unit area of the plasma surface is .3=2/h.ne C
ni/kBT . Dividing the second by the first, one finds a lower-bound estimate for the
characteristic plasma cooling time. Taking parameters of Table 12.2, we find that it
is 1.8 �s, 90 times longer than the characteristic time of the hydrodynamic problem
(h=v � 2 � 10�8 s). In other words, radiative heat transport also does not affect
the plasma dynamics. To conclude this topic: dissipative processes in the problem
of the stability of the He–H interface are negligible, and the Euler equations are a
legitimate description.

Having determined the validity of fluid models and the applicability of certain
equations, the next step in the analysis of scaling is to assess the Ryutov scaling. Ry,
also shown in Table 12.2, is nearly identical in the two systems (and could be made
so by modest adjustment of the experimental densities). Figure 12.4 shows that the
shape functions, along the axis of the experiment or radius of the star, are quite
similar. If these were identical, and if the laboratory experiment were spherical,
then the experiment would evolve identically to the star. We take up the lateral
structure in our discussion of specific scaling, below. In 20 years of practice to
date, experimental systems that produce well-matched values of Ry and similar 1D
spatial profiles are described as “well-scaled”. Here the author suggests being more
precise and identifying such cases as having “good Ryutov scaling.” In the context
of Ryutov scaling, (12.2) implies that 21 ns in the laboratory setting corresponds to
2000 s in the supernova, and 20�m corresponds to 1010 cm. It is then no surprise
that, on these scales, the interface velocity profiles are very similar (see Fig. 12.5).

We turn now to the question of specific scaling. Taken literally, the Ryutov
papers imply that the shape functions f ; g, and h must be identical in the two
systems in order to have perfect scaling. This is (probably) never true and so
the scaling is (probably) never perfect. Addressing this issue is where clever and
thoughtful work is needed for any experiment. In general, one can expect this to
lead to some additional dimensionless parameters that constrain the experiment
or limit its validity. A good guess is that one may have a constraint associated
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Fig. 12.4 Experiment and
supernova profiles from
simulations. (a) He–H
interface in SN1987A at
2000 s. (b) CHBr–Foam
interface in experiment at
21 ns
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with each difference between the experiment and the astrophysical system, and
also one or more associated with the dynamics of interest. We next discuss several
considerations for the present case.

First, the region of interest in the experiment must not be affected by its lateral
boundaries. This establishes a maximum experimental time, tmax, for which the
physics is well-scaled, specified by the condition tmax D Rx=cx, where the radius
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of the experiment is Rx and the sound speed of the shocked matter is cx. One can
write this requirement as a dimensionless parameter, cxt=Rx < 1.

Second, one must assess the consequences of the fact that the stellar explosion is
divergent while the experiment is not (prior to tmax). The corresponding constraint
is that the divergence in the star must not be significant during the evolution time
corresponding to tmax. The corresponding requirement is

�R

Rs
D tsvs

Rs
� vsp

p�
s =�

�
s

hs

Rs

Rx

hx
� 0:3Rx � 1; (12.9)

where the subscripts s and x refer to the star and the experiment, respectively, the
values of p; �, and v are from Table 12.2, Rs is the shock radius in the star (from
Fig. 12.4), and in the numerical term Rx is in cm. In experiments to date, Rx � 1mm,
so this condition is well met.

A third difference between the two systems is that the shock wave in the
experiment is smooth and has not been structured by crossing prior interfaces.
What one can (and should) say about this is that this specific experiment can reveal
single-interface dynamics but will not capture any dynamics that may arise from the
interaction of multiple interfaces.

We now take up the issue of ensuring the same dynamics in the two systems. The
evaluation of this for blast-wave-driven instabilities is as follows. In such systems,
the growth of the instability is driven by the deceleration of the interface, almost
all of which occurs during an the initial phase before the amount of mass in the
shocked, lower-density matter equals the mass of the higher-density matter (Miles
2009). So we desire that tmax defined above is later than this time. If the propagation
direction is z, this condition becomes

tmax >
dL

vs
D dH

vs

�H

�L
; or Rx > dH

cx

vs

�H

�L
� 5dH; (12.10)

with reference to Fig. 12.3, experimental shock speed vs, and the number 5
corresponding to the experimental values with �H � 20�L. This condition is an over-
estimate, as it ignores ablation of the denser layer. As dH � 150�m, typical values
of Rx � 450�m are close to but not quite this large, and so such experiments might
not quite capture the full development of the unstable structure before 2D effects
become significant. Simulations of the experiments indicate that the experiments
manage to squeak by.

Finally, we can consider the initial structure at the unstable interface itself. A
limitation of this sort of experiment is that it can only study large-` modes, for
which the modulation wavelength � is a small fraction of Rs. For those modes,
the experiment with the best specific scaling would match the relative amplitude,
normalized wavelengths, and spectral structure of these modes between the two
systems. Knowledge of the structure in the star is limited. Simulations have found
that convective effects tend to modulate the stellar interfaces, producing amplitudes
of several % of � or more (Meakin and Arnett 2006) and having a broadband



12.2 A Thorough Example: Interface Instabilities in Type II Supernovae 541

spectral structure. This placed the experiments into a very typical tradeoff. They
could do single-mode studies, which could best be measured, would be the most
interpretable, and would represent the best test of computer simulations, or they
could do studies using broad spectra, which might be most realistic but would also
be harder to measure and understand. The actual experiments took a typical, and
sensible, approach. They began with the simplest cases and added complexity over
time.

12.2.3 Experiments on Interface Instabilities
in Type II Supernovae

One of the first attempts to conduct experiments that were a well-scaled study
of an astrophysical process (as opposed to measuring a property of astrophysical
matter) occurred in the years around the turn of the twenty-first century. A team of
researchers conducted the series of experiments whose design and scaling we just
discussed, aimed at the problem of hydrodynamic instabilities at the H–He interface.

The first such experiments (Remington et al. 1997; Kane et al. 1997, 1999,
2000) used the Nova laser to examine the RT growth from a single-mode initial
perturbation at a planar interface. The instability grew until the distance from the
valleys to the peaks in the observed modulations (known as the bubble-to-spike
distance) became equal to the initial wavelength of 200 �m. This is very nonlinear
(see Sect. 5.7). Simulations, using the astrophysical code PROMETHEUS (Fryxell
et al. 2000) and the laboratory code CALE (Barton 1985), reproduced this result, but
the details of the structures did not strongly resemble what seemed to be present in
the rather poor data obtained in this first attempt. Related experiments were also
undertaken during the same period by a French group (Benuzzi-Mounaix et al.
2001).

Subsequent experiments (in a long sequence up to Kuranz et al. 2010) improved
the quality of the data. The scaling parameters used in Tables 12.1 and 12.2 were
taken from these experiments. Figure 12.4 shows the spatial profiles of SN1987A
and these experiments, based on simulations. One can see that these profiles are
similar, or in other words that the functions f and g are similar. (Figure 12.5 showed
that the interface trajectory is similar. One could view this as showing the similarity
of the generalized time-dependence for the strong-shock case or as implying the
similarity of the function h, a scalar here.) One concludes from the tables and
from these figures that the experiment is a well-scaled (though not perfectly scaled)
model of a segment of the exploding star. This will remain true until the interface
in the experiment discovers that it is not a small planar patch on a sphere, when the
interface is affected by disturbances from the edges.

Figure 12.6 shows data from one such experiment. The image is an X-ray
radiograph, taken at 18 ns in the experiment. Darker regions in the image show
smaller X-ray intensity, produced primarily by absorption in the Br dopant that
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Fig. 12.6 Radiographic data
from a supernova simulation
experiment, at 18 ns

was included in a tracer layer within the denser material. In this case, a single
mode with an initial wavelength of 50�m and an initial peak-to-valley amplitude
of 5�m has grown to a very large amplitude. The tips of the spikes in the image
have been broadened in response to the shear flow and will soon begin to interact
(Miles et al. 2005). The experiments just mentioned set the stage for experiments
that proceeded to take up the challenge developed above—the study of how the
instability would develop in well-scaled experiments that employed more-complex,
three-dimensional, and ultimately realistic initial conditions.

Related experiments have explored the effect of coupling between interfaces,
discussed in Sect. 12.2.1, on the RT instability. These are worth mentioning because
they became the explicit focus of an extensive code validation study. The experiment
to examine this (Kane et al. 2001) produced data that were shown in Fig. 1.5. One
can see the Cu spikes, extending to the right, and the modulations in the second
interface, made visible by the tracer strip in the plastic below the interface. Detailed
simulations of this experiment were carried out as part of a validation study (Calder
et al. 2002) for the astrophysical code FLASH, which included adaptive grids and
other advanced features. A detailed comparison of the simulation results with the
experimental images supported the same conclusion as in the previous case. The
simulations reproduced the qualitative features of the data very well. Quantitatively,
several details were not accurately reproduced, including the exact spike length,
the height of the structuring in the interface, and the behavior at the edges of the
system. In the specific case of the FLASH simulations, the length of the Cu spikes
was found to change with the number of levels of refinement in the simulation but
did not appear to be converging toward the experimental value.
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The completes our thorough discussion of this first case. We proceed to a second
case in the realm of hydrodynamics and then on to other cases, albeit with a less
thorough discussion. The reader is cautioned, however, that the kind of thorough
analysis just presented must be carried through to understand the value of any
attempt to study astrophysically relevant dynamics in the laboratory.

12.3 A Second Example: Cloud-Crushing Interactions

The previous section discussed a case in which experiments produced a system that
had excellent Ryutov scaling and adequate specific scaling to address its question
of interest. We also saw in Sect. 12.1 that producing the correct density structure
and very strong shocks would be sufficient to obtain good Ryutov scaling in
many hydrodynamic systems, but leaves open questions of the specific scaling. We
proceed here to examine the second case of cloud crushing, in which blast waves
crush and destroy clumps of material. This is common in astrophysics. Blast waves,
generally produced by supernovae, propagate through an interstellar medium that is
inherently very clumpy. One would like to observe the resulting destruction of the
clumps in laboratory experiments and to develop and test the ability to accurately
simulate this destruction. In the process, one would like to identify whatever regimes
exist, such as regimes in which the dynamics of a given clump may be affected
by the presence of other clumps. One would also hope to identify whether any
processes develop in a scaled laboratory system that cannot be produced in a
computer simulation, such as the onset of turbulence.

In the case we will consider, the experiment and the astrophysical system are
both hydrodynamic and the shock wave that induces the destruction of the clump is
definitely a strong shock. As a result, any system in which a blast wave encounters
a dense clump of some specific shape will have good Ryutov scaling relative to any
other such system, subject to the other limitations discussed in Sect. 12.1. Even so,
the specific scaling includes several considerations. There is a geometric constraint
that the radius of the experimental medium (see Fig. 12.7) must be large enough that

Fig. 12.7 Schematic of
experiment on interaction of
blast wave with clump

Au Grid
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Laser
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disturbances from its boundaries to not interfere with the behavior of interest. The
analysis of this is similar to that discussed above for the previous case.

With regard to the scaling of the dynamics of interest, one can identify two other
parameters that characterize the interaction of a blast wave and a clump in a given
experiment. Suppose the blast wave propagates at a given velocity us through a
medium having a density �m and interacts with a clump having a characteristic
density �cl and radius rcl (and presumed to be spherical). The most-important scaling
parameter describing this interaction is the cloud crushing time, defined as tcc D
.rcl=us/

p
�cl=�m. The corresponding dimensionless parameter in the experiment is

the ratio of the duration of the experiment (as a well-scaled system) to tcc. This must
be large enough to see the dynamics of interest. The second scaling parameter that
describes this interaction is the ratio of the width of the blast wave to rcl. To model a
specific astrophysical system in detail, one would also have to match this parameter
to the astrophysical value. Unfortunately, this issue has been ignored in all work to
date at this writing. Yet it is not obviously unimportant.

Figure 12.7 is a sketch of the geometry used in experiments to address the
destruction of a single clump by a planar blast wave (Klein et al. 2003; Robey
2002). A number of laser beams irradiated a layer of plastic material, driving a shock
into it. After the laser pulses ended, the rarefaction of the front surface overtook
this shock, creating a planar blast wave just as described in the previous section.
This blast wave eventually encountered a dense (Cu) sphere, whose evolution was
observed for several cloud-crushing times. In a fundamental sense, this experiment
was not as well scaled as the one described in Sect. 12.2, because the Cu sphere was
liquefied but not vaporized by the shock and thus had an equation of state rather
different from that of an astrophysical cloud. Later, improved experiments (Hansen
et al. 2007a,b) used lower-density materials that could be vaporized by the shock.
As a result, this specific experiment is of the type in which the experiment is not
completely well scaled but certain key dimensionless parameters are well scaled,
so that it can be instructive regarding the dynamics and perhaps useful for code
validation. This initial experiment is a relevant model of the incompressible fluid
dynamics of cloud destruction.

These experiments observed the evolution of the sphere for several cloud-
crushing times. The interaction of the sphere with the postshock flowing plasma
produces vortex rings (see Sect. 5.8). This is illustrated in Fig. 12.8. The fluid
develops spiral flows around the vortex rings, and may also have shear flow (and
hence vorticity) on the surfaces of the spirals. The vortex rings are subject to
bending instabilities that produce three-dimensional structure by modulating the
rings in the azimuthal direction as described in Widnall and Sullivan (1973, 1974).
The development and properties of these structures can be examined in the data
and in astrophysical simulations of a similar system. Thus one can use these
experiments to test the ability of astrophysical codes to simulate this type of shock–
cloud interaction. The results of these experiments were later used by a group of
astrophysicists (Hwang et al. 2005) to evaluate the morphological phase of a clump
being destroyed by the Puppis A supernova remnant, which they observed with the
Chandrasekhar X-ray telescope.
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Fig. 12.8 Data from an experiment on interaction of blast wave with clump. These three frames
show what has become of the spherical obstacle after the passage of the shock, seen in the first two
frames but beyond the region observed in the third frame. One can see the crushing of the sphere
followed by the development of vortex rings. The squares in the reference grids are 63�m on a
side. From Robey (2002)

Thus, well-scaled experiments can address significant issues in astrophysical
systems that are purely hydrodynamic. The above examples have detailed one
case in which initial experiments were useful for code validation and in which
eventual experiments will address physical questions that cannot be addressed
in simulations of the complete astrophysical dynamics. In addition, the process
of doing such experiments initiated a productive interplay of astrophysical data,
laboratory experiment, and computer simulation whose ultimate outcome, as of this
writing, remains to be seen.

12.4 Scaling in Radiation Hydrodynamic Systems

Radiation hydrodynamic systems are challenging for both theory and experiment.
We saw in Sect. 8.1 how the addition of radiation fluxes to shock waves greatly
complicates their behavior, even without considering the details of actual radiation
emission and transport. We mentioned in Chaps. 7 and 8 a number of examples
of astrophysical systems that are radiation hydrodynamic systems. In comparison
to hydrodynamic systems, radiation hydrodynamics introduces new difficulties in
scaling, in simulation code development, and in experiments. We will consider here
only the radiative-flux regime, leaving the scaling of systems having significant pR

to be developed when such experiments exist.
At minimum, such experiments ought to be able to provide benchmarks for

the implementation of radiation hydrodynamics in astrophysical codes. Beyond
that, one might hope to identify specific processes that matter in astrophysics, that
could be produced in the lab, and that were difficult or impossible to simulate
with computers. In this section we discuss the issues associated with scaling.
While complete scaling is possible in the abstract and perhaps in special cases, it
seems more likely that actual experiments will scale the important dimensionless
parameters well but will not manage to successfully scale all aspects of the radiating
system. In this section we discuss radiation hydrodynamic scaling in general and
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then discuss radiative jets. We discussed radiative shocks in Chap. 8. For them, the
key dimensionless parameters were a shock strength parameter and the optical depth
both upstream and downstream of the shock front.

For scaling, one first must consider the two aspects of physical consistency. For
the conditions we will consider, fluid equations must apply. This requires that the
radiation transport be local. This implies that the system of interest is either optically
thin so that radiation is a pure loss term or optically thick so that a diffusion model
applies. In these two limits, it is not critical whether the radiation is composed
primarily of thermal emission or line radiation. The second aspect of physical
consistency—that the same terms matter in the equations—requires here that only
hydrodynamics plus radiation are important. This again demands the Re and Rm be
large and ˇ not be small. In this context, the discussion of Ryutov et al. (2001) and
Cross et al. (2014) are relevant.

Next we must consider how Ryutov scaling applies here. (Our discussion is
informed by those of Ryutov et al. (2001) and Falize et al. (2009).) In the radiative-
flux regime, the first two Euler equations ((2.1) and (2.2)) remain unchanged. As
a result, Ry D u�p��=p� must be equal in the two systems. But now this is not
sufficient. When radiative energy fluxes matter, a radiative-heating term must be
added to the third Euler equation (2.3), which becomes

@p

@t
C u � rp D �	pr � u � .	 � 1/r � FR; (12.11)

in which as usual FR is the radiation flux.
In the abstract, one may be able to express r � FR as a power law function of

density, pressure, and scale length in some astrophysical system, so that

r � FR D A�˛1p˛2r˛3 : (12.12)

For an optically thin system, ˛3 would be zero, while for an optically thick system
it might not be. This case will serve our purposes here, although even more general
cases are possible. In principle r � FR might be a somewhat more complicated
function of vectorial position r and might also include a dependence on velocity.

If we now perform the variable transformation described in Sect. 12.1, we obtain

@Qp
@Qt C Qu �r Qp D �	 Qpr � Qu�.	�1/ �A��.˛1C1=2/p�.˛2�3=2/L�˛3� Q�˛1 Qp˛2 Qr˛3 : (12.13)

This equation will be invariant between any two systems, such as an astrophysical
system and a laboratory system, if the coefficients ˛1; ˛2; and ˛3 and the quantity in
square brackets are the same in both systems. We designate this quantity the Ryutov
radiation number, RyR,

RyR D A��.˛1C1=2/p�.˛2�3=2/L�˛3 : (12.14)
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It will also be helpful below to note that, defining F�
R=L� as a characteristic value of

r � FR, we have

RyR D F�
R

p�pp�=�� Q��˛1 Qp�˛2 Qr�˛3 � F�
R

p�pp�=�� ; (12.15)

with the last approximation reflecting the fact that the magnitude of the dimension-
less variables is near unity.

In practice the values of �� and L� (if applicable) will be fairly tightly constrained
in an experiment, so the primary adjustment that could be used to obtain a well-
scaled experiment would be in increasing p� to make RyR equal in the experiment
to its value in the astrophysical system and to adjust the composition of the
experimental materials to make the coefficients equal.

As one might expect, one loses some freedom in specifying the parameters
by comparison with the purely hydrodynamic case. But all that matters to have
a well-scaled experiment is the net cooling rate and its dependences on pressure
and density. The microscopic mechanisms are not important. This is significant
because the radiation cooling in optically thin astrophysical systems is nearly always
due to line radiation while the cooling in high-energy-density experiments is more
often dominated by thermal radiation. In an arbitrary experiment modeling some
astrophysical system, one seems unlikely to obtain the same, power-law scaling for
the radiation in both systems in the sense just described. However, it may happen,
and Tikhonchuk et al. (2008) argue that their experiment achieves good Ryutov
scaling in this sense. We will discuss this case below when we look more closely at
radiative jets.

Beyond attempts to do scaling as described above, we have seen in Chap. 7 that
radiation transport is often nonlocal. In such cases, one probably cannot produce an
experiment with good Ryutov scaling to a specific astrophysical system. Even so, the
behavior of the astrophysical system may depend primarily on certain dimensionless
parameters that reflect the processes which control its dynamics. Then one may be
able to observe phenomena in the laboratory with the same values of these essential
dimensionless parameters. In the case of radiative shocks, we saw in Chap. 8 that
the controlling parameters are the optical depth of the upstream and downstream
regions. We consider the case of radiative jets shortly.

12.4.1 Perils of the Boltzmann Number: A Detailed Example
of a General Point

We use this example to show how the process of determining which terms can be
ignored in certain equations has some pitfalls. One often seeks a measure of the
relative importance of radiative cooling in the hydrodynamic evolution of some
system. One way to do this is to non-dimensionalize the equations as we discussed
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in Chap. 2. If one divides any energy equation, such as (2.28) or (12.11), by �U3=L,
one obtains a set of terms that show how important each process is relative to
convective energy transfer. This helps one assess whether one can use the simpler
Euler equations for modeling, but may not tell one what one needs to know about
the relative importance of a specific processes in some system of interest. This can
be misleading in the case of radiative energy fluxes.

If the fluxes are not dominated by optically thin line radiation, then one always
has

r � FR / 
T4e ; (12.16)

with various other coefficients, such as the optical depth for optically thin systems
or 1=.�RLT/, with 1=LT D jrTej=Te, for optically thick systems. (As we saw in
Chap. 6, it is Te that matters in optically thin cases and Te D TR in optically thick
cases.) The non-dimensional term is thus proportional to


T4e
�U3

� 
T4e
pU

� 1

Bo
; (12.17)

taking p � �U2 and ignoring factors of order unity in the standard definition of
the Boltzmann number Bo as �cpTU=.
T4/. Cross et al. (2014) introduce radiation
numbers, also proportional to Bo, to characterize the optically thick and thin cases.
Another standard number, the Mihalas number, is / cBo=U and describes the ratio
of material pressure p to radiation pressure pR. It can be useful, and relevant to the
momentum equation, in the radiation-dominated regime, when pR & p. The issue
discussed next applies to all these radiation-related dimensionless numbers.

In terms of its intended purpose, to determine whether one can ignore the
radiative-flux term in the energy equation, Bo works well. When Bo is very large,
radiative effects are small compared to convective energy transport and this term
in the equation can be ignored. However, the converse is not true. Radiative effects
may not matter much even when Bo is small, and the quantitative smallness of Bo
does not necessarily reflect the relative importance of radiative effects. An example
of the first point is the case when U � 0. Blind evaluation of Bo would indicate that
radiative effects are important, but they might instead be negligible in comparison
with other energy transport processes. In this case, a thoughtful evaluation might
replace U with the sound speed for low-speed flows. An example of the second
point is the case of radiative shocks. One might imagine that Bo would become
very small in strongly radiative shocks, where nearly all the incoming energy flux is
converted to radiation. However, in such shocks the ram pressure sustains p � �U2

so that in fact Bo remains of order 1 and little is learned from its precise value. In
these cases, as we saw in Chap. 8, the useful dimensionless parameters depend upon
the ratio of the radiative flux that would exist, in the absence of radiative effects on
the shock structure, to the incoming mechanical-energy flux.
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The point here is that, in every application, one must use dimensionless numbers
thoughtfully. Just turning the crank on their evaluation, without thinking about the
system under study and the processes of interest, can easily produce misleading
conclusions. We take up this general point again below, in Sect. 12.7. Before that we
discuss radiative astrophysical jets, which illustrate various points discussed above.

12.5 Radiative Astrophysical Jets: Context and Scaling

Many astrophysical jets are purely hydrodynamic, and so the discussion
of Sect. 12.3 would apply to simulation experiments aimed at them. Other
astrophysical jets are inherently magnetized or involve strong magnetic fields.
We discuss these below in Sect. 12.6.2. Our present interest, in the context of
radiation hydrodynamics, is in radiative jets. We proceed to discuss these here.

12.5.1 The Context for Jets in Astrophysics

Jets have been a major theme during the first few decades of laboratory astrophysics
research using high-energy-density facilities. This is no surprise, given their ubiq-
uity across astrophysics. Galactic and extragalactic jets present some of the most
visually intriguing images encountered in astrophysics. One class of such objects
are the stellar jets known as Herbig–Haro (HH) objects (Reipurth and Bally 2001),
thought to be collimated bipolar outflows emerging from accretion disks during the
star formation process. Figure 12.9 shows an image of one such jet, HH 34. The
jet shown emanates, at velocities of �300 km/s, from the pole of a protostar near
the bottom of the image. The protostar itself is hidden; one sees reflections through
the dust surrounding it. Like other HH jets (Hartigan et al. 2000), HH34 includes

Fig. 12.9 Image of the HH 34 jet. This image shows the hydrogen H˛ emission. The protostar is
near the left in the center. From Reipurth et al. (2002)
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multiple bow shocks, suggesting that the bipolar outflow has been episodic. It is
typical that the fastest moving material (at �200 km/s) occurs on the axis, with
slower yet higher luminosity material concentrated at the edges of the jet (Hartigan
et al. 1993). This may reflect differences in the launch velocity of the inner and outer
material, or perhaps entrainment of ambient material due to the Kelvin–Helmholtz
(KH) instability along the edges of the jet, leading to a greater shock excitation
but slower velocities at the edges. The HH jets have typical scales of 1017 cm,
velocities of a few hundred km/s and densities njet of 102–103 cm�3. In terms of
density contrast, this corresponds to � D njet=nambient 	 1, where nambient is the
ambient number density. The bow shocks in such jets are often radiative shocks.
The internal shocks also tend to be radiative, and to have cooling distances of tens
of AU.

Whereas HH jets are thought to be emitted during the formation phase of a
star, another category of jet is formed toward the end of the evolution cycle. A
star of a certain mass can pass into the asymptotic giant branch (AGB) phase and
then to the planetary nebula or proto-planetary nebula (PPN) phase on its way to
becoming a white dwarf. During the AGB-to-PPN transition, it appears that bipolar
jets can again be emitted, one example being He 3-1475 (Borkowski et al. 1997).
The central source for this system is a star at a distance of �2 kpc, which is in
the midst of making the transition from a dust-enshrouded AGB star to a PPN. The
star is surrounded by a torus of molecular material expanding at 12 km/s. The most
spectacular features of He 3-1475 are the optical jets, and three pairs of symmetric
knots, moving in the direction perpendicular to the molecular torus. The knots are
located symmetrically with respect to the central star and are moving radially away
at velocities of 500 km/s. Closer to the star, the jetlike outflows have velocities as
high as 850 km/s. Radiative shocks moving at velocities of �100 km/s are thought
to be the excitation mechanism for the observed emissions.

The basic features of a high-Mach-number jet, present for both radiative and
purely hydrodynamic jets, are illustrated schematically in Fig. 12.10 (Hartigan
1989). A source is assumed to exist that creates a beam or jet of material (labeled
1) streaming into the ambient medium (labeled 2). This launches a forward or bow

Fig. 12.10 Schematic of the
structure of an astrophysical
jet, from Hartigan (1989)
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shock into the ambient medium, moving at speed vBS. The presence of the ambient
medium causes the jet material to slow down, creating a Mach disk in the jet.
Within this description, beam or jet refers to the collimated material streaming from
the source to the so-called “Mach disk.” Shear along the sides of the jet triggers
the Kelvin–Helmholtz (KH) instability, which generates vortices and eddies that
churn up mixing along the contact discontinuity. The region of shocked jet material
between the contact discontinuity and jet (beam) is referred to as the cocoon. The
KH vortices in the cocoon can launch shocks into the jet (beam), which act as a
heating mechanism for radiative emissions from within the jet.

12.5.2 Scaling from Radiative Astrophysical Jets
to the Laboratory

The astrophysical literature identifies three dimensionless parameters that charac-
terize the properties of a jet and the degree to which radiation is important to its
dynamics. The internal Mach number (the ratio of the flow velocity to the sound
speed within the jet), Mint, characterizes the amount of kinetic energy that can
potentially be converted to thermal energy through shocks. The cooling parameter,
�j, is defined by �j D Lcool=Rjet, where Rjet is the jet radius and Lcool corresponds to
the length behind the Mach disk beyond which the jet has cooled to some low value.
This characterizes the relative scale on which radiation can alter the properties of the
matter in the jet. The density parameter is � as defined above. It affects the amount
of pressure in the shocked ambient medium, which interacts both with the head of
the jet in the Mach disk region and with the jet along its length via the pressure in
the cocoon.

It should not be a surprise that these three parameters connect well with the
analysis of scaling above. An experiment with good Ryutov scaling would have
Ry and RyR be the same in the laboratory experiment and a reference astrophysical
jet. We have noted above that Ry has a strong connection to Mach numbers. It can
be one although it need not be. Regarding radiation, a natural definition of a cooling
time is �cool D .	 � 1/2RjetF�

R=.R2jetp
�/ if we define c� D p

p�=��, then it is
natural to take

Lcool

Rjet
D c��cool

Rjet
� p�c�

F�
R

D 1

RyR
: (12.18)

The dimensionless parameter � is connected with what we have called the specific
scaling, as it identifies which feature of the shape functions is important to the jet
dynamics.

The effects of radiative cooling on astrophysical jets can be very large (Blondin
et al. 1990; Stone and Norman 1994). Figure 12.11 shows results of simulations
that assume a very high Mach number jet, having Mint D 20, and an equal density
with the ambient medium, so � D 1. The plasma is assumed to be optically thin,
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Fig. 12.11 Impact of
radiative cooling on jet
structure, for Mach 20 jets
whose density equals the
initial ambient density. From
Blondin et al. (1990)
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so that photons emitted by hot regions of the jet leave the system. The effects
of radiation are included by means of a time-independent cooling function �.T/,
assuming equilibrium conditions (see Sect. 6.3.2 and Fig. 6.5). Here �j is calculated
for cooling to a temperature of 8 � 103 ıK. As the magnitude of radiative cooling is
increased from a purely adiabatic jet, �j 	 1 (Fig. 12.11a), to a strongly cooled
jet, �j D 0:2 (Fig. 12.11b), the jet morphology changes significantly. Radiative
cooling removes heat from the system, lowering the internal pressure of the jet.
The working surface and the cooling zone behind the shock collapse, just as we
discussed in Chap. 8 for radiative shocks. They contract until pressure equilibrium
is reestablished, making the radiatively cooled zones denser and more compact. In
a more detailed description, radiation should be treated as a nonequilibrium, time-
dependent process, and if the medium is not optically thin, full transport (nonlocally
redepositing the photon energy) may be needed.

For simplicity, and because it has been a focus of experiments, the discussion
here focuses on unmagnetized radiative jets. These, however, may be rare in
astrophysics. If the jet plasma contains magnetic field, then the collapse of the
cooling zone will lead to an increase in magnetic pressure, which will limit the
amount of collapse. Astrophysical observations suggest that this is often significant,
creating a potential direction for experiments beyond those discussed next.

12.5.3 Radiative Jet Experiments

High-energy-density experiments offer the means to create high-Mach-number jets
and to diagnose their subsequent dynamics and evolution (Stone et al. 2000). For
example, the effect on jet dynamics of variations in �;Mint; and �j can in principle
be directly observed in laboratory experiments. Here we discuss as an example the
first experiment to produce a radiative jet, done on the Nova laser at LLNL (Farley
et al. 1999; Stone et al. 2000). A schematic of the experimental arrangement is
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Fig. 12.12 A radiative-jet experiment. Schematic (a) and images of self-emission ((b) axial and
(c) side-on) from an experiment producing a radiatively collapsing Au jet. Adapted from Farley
et al. (1999)

shown in Fig. 12.12a. A gold disk had a 800�m diameter cone of 120ı full opening
angle machined into it. Five 100 ps laser beams from the Nova laser irradiated the
inside surface of this cone were symmetric (in azimuth), with an average energy flux
of IL � 3 � 1015 W/cm2. The high-speed, ablated Au plasma thus created expands
in a direction normal to the local surface. The radial velocity component causes
this plasma to implode and stagnate on the axis of the cone. The axial velocity
component brings the imploded plasma out into view as a high-speed jet. Radiation
from the hot, stagnated plasma causes the jet to shrink in size and increase in density.

X-ray imaging diagnosed this experiment. One gated X-ray framing camera
looked directly face-on at the cone. This is illustrated in Fig. 12.12b with the face-
on X-ray image in emission at t D 0:25 ns relative to the peak of the Gaussian
laser drive. The small bright spot near the center of the image is the imploded Au
plasma that has stagnated on the axis, and that is moving at �750 km/s out of the
page, directly toward the recording X-ray camera. Views of this same jet from the
side in soft X-ray emission at 1.1 ns (Fig. 12.12c) show that the radiative emissions
later in time are on the surface of the Au jet. The reason for the forked nature
of the emissions in the side-on image is that the regions of the imploding plasma
that stagnate first on the axis (at �0.5 ns) radiatively cool at first, and appear dark
(cool) later in time. By 1.1 ns, this leading tip region stops emitting in the soft X-
ray band for which the instrument is sensitive, because the electron temperature Te

has dropped dramatically. A side-on radiograph found the densest part of the jet
to be along the cone axis. Simulations of this experiment illustrate the importance
of radiation. As the plasma collides on the axis, it heats up to over �1 keV and
has a high ionization state, Z � 40, but a low density, � � 40mg/cm3. In this
state, the hot Au plasma cools itself rapidly by radiative emissions, since the plasma
is initially optically thin to the keV photons. The temperature was measured by
Thomson scattering at 0.6 ns, at which time Te had already dropped to 250 eV. The
radiative cooling leaves a very compact, highly collimated jet moving axially away
from the cone at �750 km/s. In simulations that do not include radiative cooling,
the jet is an order of magnitude too broad, since the pressure of the stagnated Au
plasma is high, which would stop the implosion (Mizuta et al. 2002).
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Researchers using the Gekko-12 laser at the University of Osaka in Japan
(Shigemori et al. 2000) continued these experiments. They produced jets from
cones of Au, Fe, Al, and CH. The results show a clear correlation: the higher
the Z, the shorter the cooling time and the narrower the jet. The experiment at
Gekko generating a Au jet reproduced very closely the results from the original
experiment, showing that the physics being investigated is reproducible and not
facility dependent. In a complementary experiment, Lebedev et al. (2002) used
plasma expanding from a conical array of wires to drive radiatively cooled,
magnetized, high-Mach-number jets. They did these experiments at the Magpie Z-
pinch at Imperial College in London. They observed similar trends to those just
described, and continued to examine the collision of this jet with an obstructing
object.

These early experiments (on Nova and on Gekko) are a good example of a first
attempt to produce a radiation hydrodynamic system that is relevant to astrophysics.
However, they are incomplete, because they do not include an ambient medium
(thus, � � 1). In addition, the formation mechanism does not manage to produce
an emerging source of material in a consistent initial state. Rather, the first part of the
jet to form (that nearest the target) is the trailing portion of the jet that emerges. Each
part of this type of jet has a unique history of energy input and cooling dynamics.
So if one were seeking a well-scaled experiment that was a direct analog of any
astrophysical jet, these first experiments would not achieve this goal. However, the
experimenters did manage to vary the radiative cooling parameter �j over the range
of 0.7–40 and to vary the internal Mach numbers from 2 to 50. Given the paucity
of radiation hydrodynamic experimental data, these experiments are in fact of real
value for the validation of astrophysical codes.

Some later experiments, using the PALS laser in Prague, produced results that
were more complete in some respects. The researchers irradiated a flat surface, with
a ring-shaped laser beam, causing the flow inward to converge and form a central
jet. They did this within a background gas so that there was an ambient medium.
By tilting the target, they proved able to form a jet that moved out of the region
of gas affected by the laser beam. This let them scale � from �0.1 to �10. In
Tikhonchuk et al. (2008), they closely examined the Ryutov scaling and concluded
that it was good, even with regard to the values of the ˛’s. This is an impressive
result. Unfortunately, despite the control of �, a ring beam also produces a plasma
flow in other directions, and this produced a curved shock wave in the ambient gas.
This likely prevented them from examining the full range of basic jet behavior. In
terms of the analysis above, we would say that the specific scaling was insufficient
to allow this. In the future, there is clearly the potential for someone to take radiative
jet experiments another step forward.
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12.6 Scaling for MHD Systems

To be able to evaluate experiments using magnetized, MHD flows, we need to
understand scaling for this case. Here we will ignore radiation, but it enters simply
into the energy equation, and so, when relevant, brings requirements that add to
those of hydrodynamics and magnetization. As always, we need to begin with the
question of validity. For magnetized flows, the primary additional requirement for
the MHD equations to be applicable is that the plasma be well-magnetized. This
condition also is necessary to justify the application of pure hydrodynamic equations
to magnetized plasmas having small current flow. This requirement is sometimes
expressed in terms of a magnetization parameter, the ratio of system scale, L, to ion
orbit radius, rLi. This parameter, L=rLi, must be large for the MHD equations to be
valid. In addition, the requirements for hydrodynamic fluid equations to be valid
also apply here.

12.6.1 Validity Considerations and Ryutov Scaling for MHD

To assess the validity of the MHD equations, and which terms in them matter, we
need to extend the global scaling arguments of Chap. 2 to the specific context of
MHD. Assuming MHD theory to apply, we can work with the momentum and
induction equations to find the new, relevant dimensionless parameters. Begin with
the momentum equation. If we add the MHD forcing terms from (10.25) to (2.27),
we obtain

�
Du
Dt

D �rp � r jBj2
8

C .B � rB/
4

C r � �
�

C FEM C Fother: (12.19)

This ignores radiative forcing and quantum effects, both small for our cases of
interest. We non-dimensionalize this as before, to see when certain terms are
negligible, by taking r ! 1=L, @t ! L=U, and then dividing by �U2=L. The
r � �

�
term gives 1=Re, the FEM term gives one of the radiation numbers mentioned

above, and the Fother term gives other dimensionless numbers (such as the Froude
number for gravitational forces). We ignore these here.

Continuing the analysis, the left-hand side and the remaining terms on the right-
hand side scale as

1;
1

M2
; and

1

ˇram
twice, (12.20)

with M being the Mach number and ˇram being the ratio of ram pressure, �U2, to
magnetic-field pressure, B2=.8/. In the literature of accretion flow, this quantity
is known as the “ram ˇ”. In some other literature (including Li et al. 2016), this
is called a “magnetization” parameter. (It does scale with the magnetization of the
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ions if they encounter a transverse field of magnitude B, but it is unclear whether the
magnetization of ions, defined in this way, will be of specific interest.)

On the one hand, having these two parameters, M and ˇram is of some use,
indicating when their terms in the momentum equation become unimportant. On
the other hand, much greater importance often rests in the ratio of these two terms,
which is the usual plasma ˇ D 8p=B2. This factor determines whether the dynamic
behavior is dominated by plasma pressure or by magnetic forces, or whether both
may be significant. This is an example of the point made repeatedly here that there
are many cases in which the most relevant dimensionless parameters may not be
those found by the global analysis.

Next we examine the general induction equation. If we use (10.27) to determine
E and evaluate (10.39) for the case that ˛ and Pe are scalars, using the definition of
the Nernst velocity in (10.38), and ignoring the other, less-important, heat-transport
terms, we obtain

@B
@t

D r �
�
.ue C VN/ � B C crpe

ene

�
C �c2

4
r2B: (12.21)

Dividing this equation by UB=L, we find the relative sizes of the terms as

1; 1;
1

Ne
;
1

Bi
; and

1

Rm
; (12.22)

with magnetic Reynolds number Rm discussed in Sect. 10.2.2. We follow Cross et al.
(2014) by defining a Biermann number and Nernst number, though without their
normalization of B, obtaining

Bi D eBUL

ckBTe
D U

vthe

L

rLe
and Ne D U

VN
D UL

ˇ�Te

eB

c
D 1

ˇ�
U

vthe

L

rLe
; (12.23)

respectively. Here the electron thermal speed is vthe and the electron gyroradius
is rLe. We also ignored the difference between ue and u, which might become
important in cases where Hall MHD matters. One sees from (12.23) that the
Biermann term and Nernst term are likely to be important under similar conditions.
If we anticipate that U � cs, then U=vthe � p

me=mi. Thus the Biermann effects
and Nernst effects will be small once the electrons are well-enough magnetized that
L=rLe & 100. Note, though, that L here reflects mainly the scale of the temperature
gradient, which can be quite steep.

We turn now from the question of validity of the MHD equations to the Ryutov
scaling for an experiment. If one includes the magnetic-field terms in the momentum
equation and the ideal-MHD version of the magnetic induction equation, and carries
out the analysis of Sect. 12.1, as done by Ryutov et al. (2001), one finds that there
are two dimensionless parameters that must be kept constant in order to have fully
well-scaled behavior. These are Ry D u�p��=p�, again, and what we will call the
magnetic Ryutov number,
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RyM D B�
p

p� : (12.24)

RyM is clearly related to the plasma ˇ, so that systems with the same shape, the
same ˇ at some common location, and the same value of Ry will have good Ryutov
scaling.

The specific scaling will follow as in the above examples. Geometric differences
will lead to constraints on the experiments, and the physics of interest will
correspond to dimensionless parameters that must lie in the same regime.

12.6.2 Magnetic Jet Launching and Dynamics

A major challenge in understanding astrophysical jets is to understand how they are
launched. Most astrophysical models attribute the launching to magnetic effects. It
would require unique and unlikely circumstances to launch them hydrodynamically,
and the environments where they are launched tend to include dynamically signifi-
cant magnetic fields. A common theme in models of jet launching is that rotational
energy in some system acts to wind up initially poloidal (see Sect. 10.9) magnetic
flux into a toroidal field. This requires a surrounding plasma medium through which
the current corresponding to the field flows. At the top of this system, the resulting
J � B forces act to drive the field and plasma up along the axis of rotation, creating
a structure known as a magnetic tower.

Figure 12.13a shows the schematic structure of a magnetic tower. There is a
magnetic cavity, containing toroidal magnetic field, necessarily surrounded by a
flow of current that must return along the axis. The intense current along the axis
produces current-driven MHD instabilities (specifically the so-called “sausage” and
“kink” modes). One sees the structures they have produced in part (b) of the figure.

Lebedev et al. (2005) and Ciardi et al. (2007) discuss the astrophysical context
more fully, while reporting and analyzing the first experiments to produce and
explore the behavior of this type of system. In these experiments, a pulsed-power
device drove a current radially inward through an array of wires. The plasma
ablating from these wires contained a toroidal magnetic field, and the poloidal
loop of current necessary for the field to exist. Thus, the experiments began at the
phase postulated in astrophysical models where the rotational energy has created
a significant, toroidal magnetic flux. Table 12.3 shows the physical and derived
parameters for this experiment. Observed astrophysical jets are typically pulsed,
and the experiment just described produced only one such pulse. Later experiments
(Suzuki-Vidal et al. 2010) in this sequence found that, by replacing the wires with a
flat foil, one could produce episodic jets.

One can see in the table that the experiment is in the regime where ideal MHD,
with radiative cooling, is a reasonable model. The Mach number and ˇ imply
that compressible effects may matter and that the magnetic field is dynamically
important. The large value of Re implies that viscous effects are negligible, while
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Fig. 12.13 (a) Schematic structure of a magnetic-tower jet. (b) Self-emission from such a jet, of
tungsten, in a pulsed-power experiment. Adapted from Fig. 4 in Lebedev et al. (2005)

Table 12.3 Physical and derived parameters for a magnetic-tower jet experiment

Parameter Physical Derived

Jet parameters
Velocity (km/s) 100–200 Mach number 3–5

Ion Density (cm�3) 1018 Plasma ˇ �1

Temperature (eV) 120 Reynolds no. Re �104

Ionization Z 20 Magnetic Reynolds No. Rm �10

A 184 (W) Peclet number Pe 5–20

Magnetic field B (kG) >500 Cooling parameter � 10�3 to 10�4

Background plasma
Density (cm�3) 1016 to 1017

Temperature (eV) <20

Ionization .Z/ 10–15

Sound speed (km/s) 10–15

Magnetic field B (kG) <50

the modest value of Rm implies that the plasma in the jet would be unable to sustain
magnetic structures at a small fraction of the jet diameter. (Inside the magnetic
cavity, Rm is much larger.) Fortunately, though, Rm is large enough to allow current-
driven MHD instabilities to produce structure on the relative spatial scales that also
appear to be important for similar astrophysical jets. As is discussed in Sect. 12.5.2,
small values of the cooling parameter � correspond to conditions in which radiative
cooling is rapid compared with hydrodynamic timescales. One concludes that the
jet produced in the experiment quickly cools by radiation.
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The initial papers in this sequence thus did an excellent job of evaluating the
parameters relevant to the Ryutov scaling, and showed the relevance and limitations
of an MHD model. They also pointed out that the jet and magnetic bubble could
clearly survive for many instability growth times. Eventually (Ciardi et al. 2009) the
primary authors also addressed the issues of instability growth times and bubble-
ejection times. They noted that the growth time is of order the Alfvén crossing time,
which is a few nanoseconds in the experiment and � a year in relevant astrophysical
jets. We can note that the ratio of Alfvén crossing times, L=vA, for two jets having
the same value of ˇ, is identical to the ratio of timescales implied by the Ryutov
analysis. They also found that, in both the experiment and relevant astrophysical
jets, the ratio of growth time to bubble-ejection time was �10. This completed
the scaling analysis discussed throughout this chapter, by providing an analysis of
dimensionless parameters relevant to the specific process of interest, in addition to
having considered those relevant to the global question of modeling the system.

In another experiment, plasmas initiated in jets of gas produced dynamic,
MHD structures relevant to jet dynamics and to stellar flares (You et al. 2005).
These experiments had the major advantage that they could produce conditions
of interest in a relatively simple and inexpensive experimental apparatus. These
experiments and associated theory focused more strongly on basic physics aspects
of the behavior than on scaled comparisons with astrophysical systems. They helped
illuminate the fundamental aspects of MHD dynamics that drive the behavior of both
magnetically launched jets and of stellar flares.

12.7 Specific Scaling for Collisionless Shocks

In principle, for any intended laboratory analogue of an astrophysical system,
one can address the issues described at the start of this chapter—finding valid
equations, keeping the terms that matter, addressing the Ryutov scaling, and
identifying the specific scaling. However, this may become less important as the
phenomena under study become more complex. For complex phenomena, requiring
kinetic plasma theory and involving complex electromagnetic effects, and perhaps
nonlocal behavior, there is often considerable uncertainty regarding the fundamental
behavior. In these cases it may make the most sense to move directly to specific
scaling, in order to focus on the central dynamics for the process of interest. In such
cases, one must also address other mechanisms that might interfere with the process
of interest. Collisionless shocks are very much a case in point.

It has been argued since the paper by Medvedev and Loeb (1999) that such shock
waves may be important to gamma ray bursts, through the specific mechanism
of the excitation of the (ion-ion) Weibel instability. The Weibel instability is an
electromagnetic instability, in which filaments of magnetic field grow in response to
the existence of a particle distribution function with two peaks that are sufficiently
separated. The first response of the plasma to such a particle distribution is to
produce an electrostatic two-stream instability, which can also matter for electron
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heat transport (Sect. 9.1.5) and for resistivity (Sect. 10.8). The ion–acoustic turbu-
lence that results from this instability also can cause the formation of shock waves
(Forslund and Shonk 1970), and these have been observed (Morita et al. 2010).
However, simulations indicate that these shocks saturate at a fairly low level and
soon dissipate (Kato and Takabe 2010). If new ions entering some region sustain
a two-peaked distribution, then on a longer timescale the Weibel instability can
grow, and eventually evolve to sustain a more enduring shock wave containing a
modulated magnetic field having a moderate average value.

The equations describing this behavior are those of kinetic plasma theory (see
Sect. 2.5) including the collisional effects that may limit the experimental system.
Studies of the formation of this type of shock, using collisionless Particle In Cell
codes, have identified two dimensionless parameters that are important for this
specific process. The growth requires a time of some thousands of ion plasma
periods and a few hundred ion skin depths (Kato and Takabe 2008; Spitkovsky
2008). This gives us two relevant dimensionless parameters:

!pit > 1000 and L > 200c=!pi; (12.25)

for interpenetrating plasmas, interacting of some distance L, and having ion-plasma
frequency !pi. Knowing this, one can assess whether specific experimental systems
will be able to produce such shock waves, as in Drake and Gregori (2012). As
matters have developed, researchers using the Omega facility proved able to observe
the Weibel mechanism (Fox et al. 2013; Huntington et al. 2015) but not yet to see
developed shock waves. Attempts to do so on NIF are ongoing (Ross et al. 2017), at
this writing.

The analysis summarized above is not sufficient, however. It fails to address the
question of which physical mechanisms might interfere with the process of interest.
We discuss one of these here. The design paper mentioned considers several others.
For any experiment, one must always think carefully about this question. One can
benefit from the fundamental theory in assessing this. The most general equation
expressing the kinetic theory, the Boltzmann equation, includes collisional effects.
The most likely effect of collisions in the context of Weibel is magnetic diffusion.
The global scaling parameter that is relevant to this is the magnetic Reynolds num-
ber, Rm. But Rm may not be a good measure of what occurs for a specific microscale
process. In Drake and Gregori (2012), we considered the competition between the
exponential growth rate 	W of a magnetic filament at some scale L and its dissipation
by magnetic diffusion at a rate �D D �=L2. At small scales, this ratio is

	W

�D
D
�
!pi

�ei

V

c

��
L

c=!pe

�2
D 1:5T3=2e Vp

AniZ�ei
; (12.26)

for single-stream speed V , electron-ion collision rate �ei, and electron plasma
frequency !pe. The rightmost term is in cgs units with Te in eV, evaluated for the
smallest scale length for which structure is seen in simulations, L D 10c=!pe. (Here
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-

Fig. 12.14 Ratio of Weibel instability growth rate to magnetic diffusion time for a structure size
of 10 c=!pe, evaluated for a single-stream speed of 1000 km/s. The ratio scales in linear proportion
to V

the atomic weight is A, the ion charge is Z, and the Coulomb logarithm is �ei.)
Figure 12.14 shows curves at specified values of this ratio. One sees that a relatively
low density and high temperature is needed to drive this ratio above �10, which
is required to make diffusion negligible. Increasing V can help, but getting above
1000 km/s by a big factor is a challenge for known experimental methods. When
diffusion is not negligible, a shock might form but its thresholds and behavior could
differ from those found in the motivating astrophysical circumstances.

In this section, we provided a specific example of a mechanism for which our
usual tools of hydrodynamic, MHD (or even fluid) equations have little applicability.
In this as in other circumstances, studies of the mechanism of interest can reveal key
dimensionless parameters, and consideration of what might limit an experiment can
reveal others.

Homework Problems

12.1 Show that the Euler equations are in fact invariant under the transformations
described in Sect. 12.1.

12.2 Design a diverging experiment to address the coupling of two structured,
unstable interfaces that are affected by a blast wave. Beyond the basic requirements
for hydrodynamic scaling, identify other specific parameters that are important to
the dynamics. (Hint: review blast-wave propagation and shock stability as part of
your work.)
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12.3 Determine why tcc as defined in Sect. 12.3 is the relevant timescale for the
crushing of a cloud.

12.4 Suppose that an astrophysical blast wave of interest is produced by a
supernova explosion that is a known distance R from a clump of some radius rcl.
Determine the properties of an experimental blast wave and the duration of the
experiment that would be required to model the shock–clump interaction in this
system.

12.5 An approach that has been used to form hydrodynamic jets is to create an
adiabatic rarefaction by allowing a shock wave to emerge from a material into an
evacuated tube and then to emerge from this tube into an “ambient medium”, at a
lower density. Using the simple scaling results from this book, develop a design for
a similar experiment to produce a radiative jet.

12.6 Magnetized jets must have a ratio of plasma pressure to magnetic field
pressure (usually called ˇ in plasma physics) no larger than about 1. For a low-Z
plasma with a density of 0.1 g/cm3 and a temperature of 10 eV, determine how large
a magnetic field would be required to satisfy this constraint. How does this compare
with the magnetic field of order 1 MGauss that is typically produced in laser–
plasma interactions and that might be produced by very clever field-compression
experiments?
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Chapter 13
Relativistic High-Energy-Density Systems

Abstract This chapter begins with a discussion of what constitutes a relativistic
system at high energy density and how to produce such systems. The primary
focus is on lasers intense enough to create relativistic electron motion. The chapter
proceeds to discuss the motion of individual electrons in laser pulses and then
the problem of producing the interaction of such laser pulses with sold targets,
as opposed to with plasma blown off their surfaces. Topics discussed further
related to laser irradiation of solids include absorption, harmonic generation, and
induced transparency. The discussion then turns to particle acceleration. Wakefield
acceleration of electrons is discussed at length. Ion acceleration by target sheaths,
by laser pistons, and by Coulomb explosions are discussed next. After that, the
chapter analyzes hole drilling by such lasers and the collisionless shocks that may
result. The chapter ends with a brief review of several other phenomena, including
magnetic-field generation, betatron X-ray production, positron production, nuclear
reactions, and phenomena involving intense beams.

In this chapter we address the low-density and high-temperature regime of high-
energy-density physics identified in Chap. 1. While phenomena produced in this
regime often connect with those discussed in the previous chapters, there are real
differences in the underlying physics. A high-energy-density, thermal, relativistic
plasma would have a minimum temperature of 511 keV and a density exceeding
1018 cm�3. At the turn of the century, such plasmas did not exist in the laboratory.
Producing them can be taken as a challenge for the early twenty-first century.
However, plasmas did exist at this density with a mean electron energy exceeding
511 keV. Some such plasmas were made relativistic by the electron oscillations
caused by intense lasers. We will define a relativistic laser beam as one producing
a mean electron kinetic energy exceeding 511 keV. Some of these laser-irradiated
plasmas produce beams of electrons with characteristic energies of many MeV.
In addition, other, denser plasmas existed with a mean electron energy exceeding
511 keV because of the presence of a highly relativistic electron beam in a cold
background plasma.

To place these systems in context, we return to the definition of high energy
density as corresponding to a pressure exceeding 1 Mbar, or an energy density
exceeding 1012 ergs/cm3. Table 13.1 is based on Table 1.1 in the National Research
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Table 13.1 Quantities corresponding to 1012 erg/cm3

Pressure 1 Mbar = 0.1 TPascal

Energy flux of laser or relativistic particle beam 3� 1015 W/cm2

Blackbody radiation temperature 400 eV

Electric field strength 1:5� 1011 V/m

Magnetic field strength 5 MGauss

Ablation pressure by (1 �m wavelength) laser at 4� 1012 W/cm2

Ablation pressure by thermal radiation at 75 eV

Particle density for 511 keV mean kinetic energy 1018 cm�3

Council report (Davidson et al. 2003). From the discussion of Chap. 9, it is clear
that achieving these conditions is not so difficult. Here we consider three specific
relativistic examples.

For lasers, the challenge is to get the kinetic energy of the oscillating electrons up
to 511 keV. This requires I18�2� D 1:37, where I18 is the laser energy flux in units of
1018 W/cm2 and �� is the laser-light wavelength in �m. This is not now difficult. It
requires a laser of 1010–1012 W, assuming the focal spot to be 1–10�m. This is less
than 1 J in 1 ps or 10 mJ in 10 fs. The energy density of the electrons within such a
focal spot remains a small fraction of the energy density of the laser beam.

Electron beams at the turn of the century could produce 50 GeV electrons in a
5�m spot, with bunches of 5 ps duration at a repetition rate of 100 Hz. The bunches
contained 150 J each and thus contained 2 � 1010 electrons. The bunches were long
and narrow, being more than 1 mm long. Their volume was �10�8 cm3, so the
density of these electrons is 2 � 1018 cm�3. When such a beam passes through a
solid with an electron density of 2�1023 cm�3, the resulting average electron energy
is �500 keV. These beams do not deposit their energy very readily, so studies with
them primarily involve ways to affect the beam. This includes the important area of
wakefield acceleration, discussed in Sect. 13.7.1.

Ion beams at the turn of the century (specifically the Relativistic Heavy Ion
Collider) could cause ion bunches to collide at a 50 MHz repetition rate. The ions
had an energy of 100 GeV per amu, or 20 TeV for Au ions; the bunches were of
�500 ps duration, �200 �m diameter, and �3 kJ energy. Each bunch of such ions
has an energy density of about 3 � 1012 ergs=cm3 shared among about 109 ions.
Here again, the ion beams do not deposit their energy very readily, so studies with
them primarily involve ways to affect the beam. In addition, as we mentioned in
Chap. 9, beams of nonrelativistic heavy ions can be used to heat high-Z matter into
the high-energy-density regime.

Most of this chapter is devoted to the behavior of matter in the presence of
electromagnetic fields strong enough to produce relativistic electron motions. The
devices that produce relativistic laser beams are called ultrafast lasers, for reasons
that will become clear. The emphasis on ultrafast lasers reflects both their broad
availability and their potential to produce extremely high electric and magnetic
fields. We also discuss relativistic effects that can be produced using high-energy
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electron beams in the area of particle acceleration. One can expect that more such
applications will develop as the twenty-first century proceeds.

As in the previous chapter, this chapter includes many more references to journal
articles than most of the book does. This reflects the relative newness of work in this
area. However, once again the present chapter is not written as a review. Rather, it
is intended as an introduction to the physics and the issues.

13.1 Development of Ultrafast Lasers

Since about 1980, the challenge of producing high-power lasers has become distinct
from that of producing high-energy lasers. While the laser systems described
earlier can heat cubic millimeters of material to million-degree temperatures, they
cannot produce relativistic electrons or distributions of ions with billion-degree
temperatures. This requires much more intense laser light. One cannot produce such
light by directly amplifying a laser pulse; the amplifying glass would be damaged.
The invention by Gerard Mourou of chirped pulse amplification (CPA) has allowed
laser systems to escape this limitation (Mourou and Umstadter 1992). All intense
lasers amplify a laser beam whose spatial area is much larger than the ultimate
focused laser spot. CPA goes further, also doing this in the dimension of time.
In CPA, one amplifies a laser pulse whose time duration is much longer than the
ultimate duration of the pulse reaching the laser spot. This is done as follows.

Despite the notion that lasers are coherent, single-frequency devices, any laser
pulse in fact has a finite bandwidth. For a laser pulse that is Gaussian in time, with
a frequency bandwidth �! and time profile expŒ�.t=�/2�, one can show by Fourier
transforming the laser pulse that �!� � 1. Thus, very short laser pulses may have
a significant bandwidth. It is now possible to produce laser pulses of order one
cycle in duration (�1 fs for visible light); such pulses have a very broad bandwidth.
There are a number of methods for producing such pulses at low energy and low
irradiance. The contribution of CPA is to provide a way to stretch these pulses in
time, allowing them to be amplified at low irradiance before they are recompressed
to high irradiance, after which they are focused to enormous irradiance.

Figure 13.1 illustrates a simple compressor design that can stretch a pulse in
time. The first grating disperses the incoming, broadband, collimated laser pulse in
angle, so that the angle of reflection of each frequency is distinct. This is illustrated
in the figure by showing a pair of rays one labeled red and one labeled blue. The
grating diffracts the longer wavelength, red rays through a larger angle. A lens pair
is used to cause the angle of incidence on a second grating to equal the angle of
reflection from the first grating. The result is that a collimated laser beam emerges
from the second grating, with different frequencies offset in space. A mirror reflects
the light back upon itself, so that each frequency retraces its path and one obtains
an outgoing beam of the same size as the initial beam. Geometrically nothing has
changed, but temporally each frequency has traveled a different distance, and the
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redder frequencies have traveled less distance. One has dispersed the beam in time,
producing a chirped laser pulse whose frequency varies linearly with distance along
the pulse, with redder frequencies at the front.

At this writing some ultrafast lasers have been dedicated systems with a very
short laser pulse, an excellent quality laser beam, and comparatively little laser
energy. Other systems have been aimed at delivering more laser energy to the
targets, which would be necessary for example for inertial fusion using fast ignition
(Sect. 11.3.3). These higher-energy systems are often adaptations of a high-energy
laser to the task of amplifying short laser pulses. However, none of these lasers yet
produces enough energy to create an isolated, thermal, relativistic plasma.

13.2 Single-Electron Motion in Intense
Electromagnetic Fields

Many of the fascinating phenomena that ultrafast lasers can produce are a conse-
quence of the relativistic motion of the electrons. To develop some insight into what
this makes possible, we consider first the motion of isolated electrons in the fields of
such lasers. To do so, we take the electron velocity to be v, the electron momentum
to be pe, the vector and scalar potentials to be A and ˚ , and we work as in Chap. 9
in the Coulomb gauge. In Gaussian cgs units, the electromagnetic wave equation
is not changed for high velocities, although one must transform the fields properly
between inertial frames of reference. To work complicated problems in relativity,
four-vector notation becomes very convenient, but we will not invest time in this
here. The electromagnetic wave equation is

�
@2

@t2
� c2r2

�
A D 4cJt; (13.1)
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in which as before Jt is the transverse current density. This equation is the same
for relativistic and nonrelativistic systems. It is helpful to take note of some aspects
of the implied fields, useful in what follows. In a plane-wave decomposition, each
spectral component has a distinct k, E, and B, and these are all orthogonal. We let k
define the parallel .z/ direction. Since E D .�1=c/.dA=dt/, so long as the electric
potential ˚ D 0, and B D r � A, one can see that (for any spectral component)
E and B are out of phase with A and in phase with each other. The fact that E and
B are in phase and vanish simultaneously may be counterintuitive if you have not
considered it previously. We allow A and thus E to define the x direction and B to
define the y direction. We define the pump strength of the electromagnetic wave as

ao D eA
mec2

; (13.2)

for reasons that will become clear shortly. In practical units,

ao D
s

IL�2�

1:37 � 1018W �m2=cm2
: (13.3)

We now consider the motion of an electron in a single plane wave (which may for
now include arbitrary spectral components). The equation of motion for an electron
is not changed in its fundamental form: the time rate of change of momentum equals
the force. But the electron momentum, pe, is now relativistic. Given our definitions,
the y component of the electron momentum is constant in time. The equation of
motion for the x and z components of the electron momentum, labeled px and pz,
respectively, are

dpx

dt
D �e

c



cEx � vzBy

�
; (13.4)

and

dpz

dt
D �e

c



vxBy

�
; (13.5)

in which pe D 	rmev and in these Gaussian cgs units Ex D By. To avoid
complications involving products of real quantities in complex notation, we here
assume that Ex and By are real quantities, although (as the particle experiences them)
they may vary arbitrarily in time and space. We allow the momenta and velocities
to be complex.

If one thinks of a given frequency component of the electric field as seen by
the particle, one can see that the detailed motion of the electron has an indefinite
number of harmonic components. The electric-field term in (13.4) creates a second-
harmonic response in the z motion (13.5), which in turn creates a third-harmonic
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response in the x motion through the magnetic-field term, which then creates a
fourth-harmonic response in the z motion, and so on.

Equations (13.4) and (13.5) and the related conventions enable us to derive a
generally useful relation between pz and px, as follows. Defining the total particle
energy as Ee, so that with rest mass me and rest energy Eo D mec2, one has

Ee D
q
E2o C p2c2: (13.6)

The rate of change of the particle energy is due entirely to the work done by the
electric field, so

dEe

dt
D �evxEx; (13.7)

from which by comparison with (13.5) we can see that

Ee � cpz D const � ˛: (13.8)

Here ˛ is defined for convenience. It depends on the state of the particle when the
field begins. If the particle is at rest at that time, then ˛ D Eo. In general, from (13.6)
and (13.8), one finds

E2o D E2e � p2c2 D .Ee � pzc/ .Ee C pzc/ � p2xc2 D ˛ .˛ C 2pzc/ � p2xc2; (13.9)

from which

pz D 1

2˛c


E2o � ˛2 C p2xc2
�
: (13.10)

If the particle is initially at rest so that ˛ D Eo D mec2, then we obtain the well
known result

pz D p2x
2mec

: (13.11)

This equation has some interesting things to tell us. First of all, it says that motions
in both x and in z are always part of the response of an electron to a wave. Second,
recalling that the momenta are complex in this representation, the motion in z
includes a steady drift and an oscillation at twice the frequency of the oscillation in
x. This combination creates a path that looks like a figure eight, elongated along E,
when px is small compared to mec. Third, isolated electrons cannot be permanently
accelerated by light waves. When an electron initially at rest is overtaken by an
electromagnetic wave packet, the electron oscillates in x and drifts in z, but as
the wave packet passes both these motions cease. The electron ends up displaced
but once again stationary. In the absence of collective effects, (isolated) electrons



13.2 Single-Electron Motion in Intense Electromagnetic Fields 573

must be created within the light wave, for example by ionization, to end up with
significant net energy once the wave has passed. Fourth, in the limit of very large
fields, jpzj ! 	rmec, in which case jpxj is smaller, being

p
2	rmec. As a result, vx

decreases, becoming vx D px=.me	r/ ! c
p
2=	r. Finally, the angle of the electron

relative to the z-axis, � , is given by

tan � D
s

2

	r � 1 (13.12)

This has sensible limits, going to 90ı as 	r reaches 1 and approaching 0 degrees as
	r becomes very large.

Thinking strictly in terms of harmonic motion leaves out some aspects of the
electron motion, because as the field of the laser increases the electron motion along
z soon becomes significant on the scale of the laser wavelength. In more detail, the
electric field experienced by an electron within a (z-directed) single-frequency plane
wave in vacuum is

Ex.xp; t/ D OE cos
�
k.zp.t/ � ct/C �o

�
; (13.13)

in which

zp.t/ D zo C
Z t

to

vz.t
0/dt0: (13.14)

Here �o gives the initial phase of the electric field, the z-position of the particle is zp,
and zp at time to is zo. One can see that the particle will experience this plane wave
as a simple harmonic field only if zp is a linear function of t. Yet we have already
seen that this is not the case. Thus, an electron experiences a light wave as a simple
harmonic field only in the limit as the motion of the electron in z vanishes. In the
other limit, as zp ! ct, the electron will experience a nearly constant field. In this
limit the maximum energy the electron can extract from a light wave of finite spot
size d is eELd, where the electric field of the focused light wave is EL.

It is evident that an electron may be introduced into the wave with any phase and
thus may experience any field from zero to the maximum when it is born. If the
electron is born at rest when the electric field is zero, then the electron returns to
rest at the end of each cycle and ends up at rest when the wave has passed. If the
electron is produced at rest when the oscillating field is at its maximum, then the
electron ends up with the maximum possible energy. When ionization creates the
electrons, they may in principle have any phase with respect to the wave. But if the
ionization is produced by the wave itself, then the electron will tend to be produced
when the electric field is maximum and at near zero velocity. In this case most of the
electrons will gain a significant net velocity from their interaction with the wave.
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We can explore the electron motion somewhat further as follows. We write the
Lorentz factor, which we label as 	r, as

	r D
0
@1
�s

1 � v2

c2

1
A ; (13.15)

or

	r D
s
1C p2e

m2
ec2
: (13.16)

Now we consider the solutions to (13.4) and (13.5) as the velocity of the electron
increases. In the event that vz is negligible, one has from (13.2) and (13.4)

	rvx=c D ao; (13.17)

implying

vx=c D ao

1C ao
; (13.18)

and also

	r D
q
1C a2o (13.19)

in this regime. For small ao, this is identical to the result we obtained in Chap. 9
for the oscillating velocity of the electron in a light wave. As ao increases, vx=c
cannot exceed one, as should be the case. Equation (13.19) will fail to be accurate
as vz=c becomes significant (meaning 0.1 for most purposes). To explore this, we
can use (13.18) in (13.5), finding

d

dt

�
vz

c

q
1C a2o

�
D � ao

1C a0

dao

dt
: (13.20)

In the small ao limit, one evidently has vz=c D a2o=2. One can solve (13.20),
using a computational mathematics program, to see when vz=c approaches 0.1. The
additional assumption needed is a specification of a value of vz (e.g., zero) at some
specific phase in the wave (e.g., =4). Figure 13.2 plots the maximum value of RŒvz�

in the small ao approximation and also plots RŒa2o�=4, against the magnitude of ao.
One sees that the above solutions reach their limits when ao becomes a few tenths.

Once vz exceeds about 0.1, the solution to (13.4) and (13.5) for the velocity and
the trajectory becomes much more complex for two reasons. First, one must deal
with both terms on the left-hand side of (13.4), making their solution a nonlinear
mess. Second, one must consider how the variations in vz affect the phase of the
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Fig. 13.2 Electron
oscillating velocity in
direction of k as ao increases.
The dashed curve shows the
small-ao limit
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electron in the wave and change its behavior. To see the essential feature that
determines the qualitative behavior, we now pay attention to the phase of the
electron in the wave.

The outcome of the interaction at very large ao is that the electron moves along k
at nearly the speed of light. One can see from (13.4) that in this case the force in the
x-direction will be greatly reduced. To see how this comes about, we can represent
the pump strength as ao sin�, explicitly writing the phase of the wave as �. For
convenience, we treat all the physical quantities as explicitly real for the present
discussion. Now

� D .k � x � !t/ D .kz � !t/ (13.21)

in which, without loss of generality for our present purposes, we assume the phase
to be zero when z and t are zero. We also take k to be in the z direction, as assumed
above, and choose the signs so the wave propagates in the forward direction. This
is traditional but not necessary. In the discussion above, we assumed that z D 0

throughout. This is reasonable if the electron is essentially stationary in z. However,
as vz increases, the electron now moves and as a result it no longer experiences
a purely sinusoidal field. The position zp of an electron is given by (13.14) with
zo D to D 0. The phase experienced by the electron, �e, is

�e D
�

k
Z t

0

vz.t
0/dt0 � !t

�
D !

�
1

c

Z t

0

vz.t
0/dt0 � t

�
: (13.22)

Recalling that By D Ex D �.1=c/dA=dt, (13.5) becomes

d

dt
.	rvz/ D �!

�
1 � vz

c

	
.vxao cos�e/ : (13.23)

One can see that whether the electron is accelerated or decelerated in z depends
upon the sign of vx and cos�e. But now consider the impact of vz on the duration
of the acceleration. One can see from (13.21) and (13.22) that �e decreases as time
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increases. The question now is what time �t it takes for �e to change by a certain
amount, equal to ���e. Suppose the average velocity during this period is vz=c.
Then ���e D !�t.vz=c � 1/, so

�t D ��e

!

1

1 � vz=c
: (13.24)

The important point is that periods when vz is larger, as will occur if the electron
is being accelerated along k, last longer than periods when vz becomes negative.
The electron rides the wave when going forward but quickly moves through it when
going backward. The result is that the electron is accelerated longer when moving
forward, acquiring a high average forward velocity.

The electron eventually will stop ever moving backward and instead will move
forward at nearly the speed of light, with the changes occurring primarily in 	r rather
than in vz. To take an approximate look at this regime, let vz=c D 1 � ı, where ı
is assumed to be small. One finds vx=c D p

2ı to the lowest order in ı. Then after
defining � D !t for convenience, (13.23) becomes, to the lowest order in ı,

dı

d�
D p

2ı7=2ao cos

�
 C

Z �

�o

ıŒ�0�d�0
�
; (13.25)

in which we have added  to the phase to initialize the electrons moving forward.
One can integrate this equation to see how ı behaves as time (�) increases.

Figure 13.3 shows the value of ı and the value of the cosine in (13.25), taking
ı D 0:01 when � D 0. One can see that the brief periods of deceleration (which
decrease vz and thus increase ı) are not sufficient to greatly increase ı and (allowing
for the logarithmic abscissa) that the duration of a cycle increases as ı decreases.

The simple analysis above is not self-consistent, and it ignores the range of
initial conditions produced when an electron is introduced to the light wave with an
arbitrary phase. Enam Chowdhury, in his Ph.D. thesis at the University of Delaware
(2004), did a numerical treatment of a related problem. He used a tunneling-
ionization model to inject electrons into fields corresponding to a model of a focused
laser beam. It is helpful to review some of his results here.

Figure 13.4 shows the distribution of final momentum states that result from
ionization of various ions in intense fields produced by a focused laser. Even though
the initial laser beam is polarized with the electric field in the x direction, focusing
the beam introduces finite electric fields in the y and z directions. This produces the
finite momentum in y seen in the top set of panels in this figure. The relation between
pz and px is dominated by the behavior corresponding to an electron at rest, shown
as a dashed line in the bottom panels. This is because most electrons are ionized
near the peak of the laser field and are nearly at rest when they are produced. Such
electrons form the most intense peaks in Fig. 13.4f, with momenta along the mean
electric field of about ˙1:5 MeV/c. The other ionization events produce the range
of electron momenta shown.
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Fig. 13.3 Electron acceleration. (a) Deviation from speed of light for ao D 10 (upper curve) and
ao D 100 (lower). (b) Phase �e of electron in wave for ao D 100

Fig. 13.4 Final state momentum plots for the ionization of atoms in a focus having an f -number
of 2.5. The dotted lines represent the relation given in (13.11). (a) and (b) are for Ne7C at
1017 W=cm2, (c) and (d) are for Ar8C at 1019 W=cm2, and (e) and (f) are for Ar15C at 1020 W=cm2.
Credit: Enam Chowdhury
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Fig. 13.5 The electron energy spectrum for the same physical conditions as in Fig. 13.4, with
the left, center, and right columns corresponding to 1017 W=cm2, 1019 W=cm2, and 1020 W=cm2,
respectively. The top panels show the angle of deviation from the z-axis, in the x–z plane. The
bottom panels show the angle of deviation from the z-axis, in the y–z plane. Here again the dotted
lines represent the relation given in (13.11). Credit: Enam Chowdhury

Figure 13.5 shows the angle of the electrons relative to the z-axis. The top panels
show the distribution in the x–z plane. This tends to follow the relation for an
electron initially at rest at the maximum field (13.11), shown as a dashed line. The
bottom panels show the distribution in the y–z plane. These electrons are influenced
by the y-component of the electric field produced by focusing.

Thus, one can produce a beam of energetic electrons, having a distribution of
energies like those seen in Figs. 13.4 and 13.5, from ionization produced during
the laser pulse. This technique can be used to obtain a brief, energetic electron
beam that can be used as a probe or to drive other processes. In contrast, the
production of intense, directed beams of electrons for accelerators tends to require
the interaction of a high-energy-density source with a plasma. We discuss this at
more length in Sect. 13.7.1 after considering some basic aspects of relativistic laser–
plasma interactions.

13.3 Initiating Relativistic Laser–Plasma Interactions

One cannot abruptly initiate a laser pulse of high-enough energy flux to produce
strongly relativistic effects. The very best one can do is to produce a laser pulse
with a Gaussian shape in time, with a pulse width whose characteristic time to reach
1/e from its maximum is �1=�!, where �! is the bandwidth. The problem this
creates is that any target experiences all energy fluxes from zero to the maximum
as the laser pulse arrives. The laser and optical system must have three properties
in order to obtain the cleanest-possible laser–solid interactions. First, the laser spot
size must be close to the diffraction limit, so that the experimental results will not be
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confused by structure within the laser spot. Second, most of the laser energy must be
present in this spot, to avoid large signals from lower-intensity interactions outside
it. Third, the pulse shape in time must be close to Gaussian, without significant
structure early in time. Such early structure is known as a prepulse.

These issues have led laser systems devoted to the pure study of interaction
phenomena at high fields to produce shorter and shorter laser pulses, to minimize
the interactions at lower intensities. Such a laser also needs to use a deformable
mirror as part of their focusing system, to produce a nearly diffraction-limited spot.
These developments lead in their limit to systems described as �3 lasers (� is the
wavelength of the light), whose goal is to obtain a laser pulse of one cycle in the
duration of its maximum irradiance (and thus of length � in space), focused to an
area of approximately �2. For light at a central wavelength of 800 nm, the duration
of one cycle is about 3 fs. In contrast, lasers devoted to delivering large energies to a
target, for example to attempt fast ignition (see Chap. 11), end up using much longer
pulses, of order picoseconds. Some of the consequences of this are discussed below.

In discussing these consequences, it will prove useful to refer to three laser
systems of the early 1990s. The Vulcan laser, at the Rutherford Appleton Laboratory
in Britain, produced at that time relatively high energy in a long (�2 ps) pulse,
by doing chirped pulse amplification within a laser system capable of large output
energies (Danson et al. 1999). The TITANIA laser in Britain (Chambers et al. 1998)
produced a spot that was five times the diffraction limit yet still contained substantial
internal structure in addition to a prepulse. The laser facility of that same era at
the Center for Ultrafast Optical Sciences (CUOS) at the University of Michigan
produced a diffraction-limited spot. It could put high irradiance on target without
ever producing a plasma layer whose thickness exceeded a skin depth. (The skin
depth is the penetration distance of the evanescent laser pulse into a medium past a
sharp, reflecting interface. It is the inverse of the imaginary value of the wavenumber
in the region where the light cannot penetrate. For a sharp, plasma interface at a very
high density, the skin depth is c=!pe.)

To produce a very thin, plasma layer imposes three requirements on the laser
system. First, the irradiance of the laser light that independently makes its way
through the laser optics to the target and that arrives nanoseconds before the main
pulse, must be kept below 108 W/cm2, to avoid producing vapor or plasma in front
of the target (Combis et al. 1991; Lindley et al. 1993; Sauerbrey et al. 1994). Such
“prepulses” are often produced by amplified spontaneous emission (ASE) from
laser amplifiers, or by leakage through Pockels cells, and can easily be several tens
of nanoseconds in extent. ASE prepulses have proven useful for the purpose of
maximizing the production of hot electrons (Kmetec et al. 1992) or X-rays (Rousse
et al. 1994), but they are harmful if one’s goal is to obtain very clear evidence
regarding laser interactions with solid matter.

Second, the irradiance of any “pedestal” on the main laser pulse itself must be
kept below 1012 W/cm2 to avoid plasma production that is too early. Such pedestals
are typically a few ps to a few hundred ps in duration. They are often caused by
effects within the laser system that alter the frequency spectrum of the laser light,
such as group velocity dispersion in the laser glass or gain-bandwidth narrowing.
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Early short-pulse glass lasers typically had a pedestal of order 10�3 times the
maximum irradiance. Later, with the advent of Ti:sapphire oscillators, this was
reduced to less than 10�5. The laser at CUOS in 1992 had a measured pedestal of
2�10�6 times the maximum irradiance, next improved to 10�8 times the maximum
infrared irradiance (Nantel et al. 1998). Doubling the frequency of this pulse kept
the pedestal below 108 W/cm2, even as IL approached 1020 W/cm2. In contrast, the
highest-energy, ultrafast, glass lasers of that era had pedestals above 1012 W/cm2

for many ps. More recently, advances in technology such as self-generated plasma
mirrors (Dromey et al. 2004; Doumy et al. 2004; Bulanov et al. 2007) have enabled
even higher contrast between the pedestal and the main pulse.

The third requirement on the laser system is that the main laser pulse must rise
steeply enough at low irradiance. Once IL exceeds about 1012 W=cm2, plasma forms
at the surface of the solid and begins to expand. We give IL because the onset of
preplasma depends primarily on the power delivered. (This does not rule out small
effects that depend on wavelength and/or absorption, which we ignore here.) The
rate of critical-surface expansion scales as the sound speed, which is proportional
to T1=2e , where Te is the electron temperature. It reaches of order 100 nm/ps at IL �
1015 W=cm2. Once IL�

2
� exceeds 1015 W �m2=cm2, the ponderomotive pressure

of the reflecting light wave becomes large enough to stop the plasma expansion
(Liu and Umstadter 1992). At higher energy fluxes, the ponderomotive pressure
compresses the plasma and pushes the critical density layer back toward the solid
material. A sufficiently intense pulse can first steepen an existing preplasma, so
that the local density scale length, L=�, becomes quite small, and can then push
the critical surface inward, decreasing D. We distinguish between L, the local scale
length of the density profile at the critical density, and D, the distance from critical
density to solid density. L and D are simply connected for a free expansion but may
be quite different in plasmas that have expanded and then been compressed. In the
end, the only way to retain smooth, thin, planar plasma is to limit the initial plasma
expansion so as to keep both L and D small at all times.

The CUOS laser of the early 1990s accomplished this by doubling the frequency
of a very clean, Gaussian laser pulse of 400 fs FWHM. The doubling efficiency
was saturated at the highest energy flux, so that the FWHM of the converted pulse
was also about 400 fs. However, at lower energy flux on the rising edge, the energy
flux of the second harmonic, proportional to the square of the first-harmonic energy
flux, rose quite steeply. The second-harmonic energy flux, at 527 nm wavelength,
increased from 1012 to 1019 W=cm2 (16 e-foldings) in 500 fs. Confirmation that this
laser system produced negligible preplasma was provided by studies of the high-
density plasma using X-ray spectroscopy (Jiang et al. 1995). The increase in IL

from 1012 W=cm2 to 1015 W=cm2 took only 180 fs, which allowed the plasma to
expand only about 10 nm. This is less than a skin depth for solid density (17 nm at
1023 cm�3). After that, the light pressure prevented the plasma layer from expanding
further.

Figure 13.6 compares the nominal profiles of the pulses of our three reference
laser systems. A laser system with a clean, Gaussian pulse of 1 ps FWHM, having
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Fig. 13.6 Reference laser
pulses of lasers in the early
1990s. A schematic CUOS
laser pulse is compared to
clean, Gaussian pulses having
FWHM of 1 and 2.5 ps. The
two longer pulses are the best
pulses that might have been
produced by the TITANIA
and Vulcan laser systems of
that era, respectively. The
longer pulses permit much
more time for plasma
formation

Table 13.2 Comparison of plasma size and excursion distances in planar experiments

I�2� Plasma size Excursion distance

Experiment (W�m2/cm2) (D=�) (xos=D)

Vulcan (1993) 3� 1015 0.2 0.04

Titania (1998) 1� 1016 0.2 0.08

CUOS (1999) 7� 1018 0.02 7

a peak IL of 1:6 � 1017 W=cm2, requires 700 fs to increase in IL from 1012 to
1015 W=cm2. This would allow a plasma expansion above 50 nm. This would have
been achieved by the TITANIA laser system if it had a clean pulse and no pedestal
or prepulses. A laser system with a clean, Gaussian pulse of 2.5 ps FWHM, having a
peak IL of 1019 W/cm2, requires 1500 fs to increase in IL from 1012 to 1015 W=cm2.
This would allow a plasma expansion above 100 nm. This would have been achieved
by the Vulcan laser system if it had no prepulse. The resulting parameters are
compared in Table 13.2.

One issue that determines when a plasma layer is thin enough to study laser–
solid interactions is whether the interaction dynamics involves the solid-density
matter or only involves the lower-density plasma near its surface. A demanding
measure of this, and one which determines whether Brunel electrons, discussed
further below, can participate in the absorption dynamics, is the ratio xos=D. Here
xos D aoc=.	r!/ D .�=2/.ao=	r/ is the excursion distance of the electrons in
the electric field of the laser. We compare this parameter in Table 13.2 for the three
reference cases.
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13.4 Absorption Mechanisms

The absorption mechanisms change as IL increases in ultrafast laser-target interac-
tions. At low enough irradiance (<1014 W/cm2), the laser cannot heat the dense
plasma very much in a short pulse, and collisional absorption of the evanescent
laser electric field dominates the interaction. Strong laser absorption is observed at
normal incidence and in s-polarization (with the laser electric field parallel to the
surface of the target) is consistent with that expected from collisions. The absorption
is enhanced in p-polarization (with the laser electric field parallel to the target
normal), for modest scale lengths L, when the evanescent electric field of the laser
light penetrating to critical density is resonantly enhanced, leading to resonance
absorption, discussed in Kruer (1988).

As IL increases above 1015 W/cm2, the plasma becomes hot enough that
collisional effects become small. Then the absorption becomes more complicated,
introducing a number of mechanisms that we will not explore here. These include
sheath inverse bremsstrahlung, the high-frequency skin effect, and the anomalous
skin effect, all of which are discussed in a common context by Rozmus et al. (1996)
and by Gibbon (1996). The simple relation between electron temperature and laser
energy flux that we derived in Chap. 9 now breaks down, as the outward convection
of hot material is no longer the important energy loss channel for the electrons.
Even so, Te scales as some power of IL that is not too far from 1=2. In this regime,
resonance absorption is still strong but the energy transfer mechanism may not be
collisional. The noncollisional absorption might be due to breaking of the laser-
driven electron–plasma waves, but there is also evidence in some simulations of
repeated “Langmuir collapse” as in Gibbon (1994). Experimentally, there is clear
evidence of resonance absorption in this regime as described in Chaker et al. (1991)
and Meyerhofer et al. (1993)

As IL increases above 1018 W=cm2, the physical excursions of the electrons
can become comparable to the thickness of the plasma layer at the surface of a
solid. In this case, the excursions of the electrons into the vacuum, accelerated
by the laser light wave, can lead to enhanced absorption when they return and
enter the solid. This effect, often called the Brunel effect as it was first identified
theoretically by Brunel (1987) and later replicated in theory and simulation by
others including Bonnaud et al. (1991) and Kato et al. (1993), can significantly
enhance the absorption for p-polarized light. Resonance absorption gives way to
vacuum excursions as IL increases and the scalelength decreases, but the transition
is complex (see Gibbon and Bell 1992). As discussed above with reference to
Table 13.2, the condition for significant absorption by vacuum excursions is xos=D >

1. (Here xos=D is the relativistic generalization of the parameter given by Brunel,
vos=!, where vos is the nonrelativistic, electron oscillation velocity in the laser
electric field.)

It is worth noting that much earlier experiments produced plasmas that were
recompressed, by the ponderomotive force, to have density profiles that were locally
very steep. Both some experiments using CO2 lasers (Bach et al. 1983; Fedosejevs
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et al. 1990) and more recent ones using 1�m lasers (Norreys et al. 1996) produced
plasmas that, probably, satisfied xos=L > 1 at the critical surface. However, in the
process of recompression these initially much-thicker plasma layers became rippled.
This precluded clean diagnosis of the interaction processes.

In this same irradiance regime the anomalous skin effect begins to become
important for normal incidence, if the plasma layer is sufficiently thin. The electrons
are heated enough that the normal skin depth becomes smaller than the electron
excursion length and the electron mean free path, leading to increased penetration
of the laser electric field into the solid. Ruhl and Mulser (1995) used Vlasov
simulations to study laser–solid interactions in this irradiance regime. They explain
the connection between the Brunel effect and the anomalous skin effect as the
natural limits of the force on the electrons through its dependence on the angle
of incidence.

The Brunel effect eventually saturates in consequence of v � B forces (Brunel
1988). As IL increases into the strongly relativistic regime, further new effects are
predicted to arise. An essential aspect of these is that the only way for net heating
of the plasma to occur is for the average hJ � Ei to be nonzero. This requires that
some physical effect shift the phase of J relative to E as they are perfectly out
of phase in the initial laser beam. Mulser et al. (2008) describe the phenomena as
anharmonic resonance. Gibbon et al. (2012) provide a general model of absorption
at very high IL that is somewhat independent of the specific details. What is of
particular interest is that the absorption, directly into energetic electrons, exceeds
50% for IL > 1020 W/cm2, as observed by Ping et al. (2008). At such high IL,
the v � B motion of the relativistic electrons in the laser field begins to produce
a significant electron velocity directed into the target (Pukhov and Meyer-ter Vehn
1996). This can lead to hole boring and collisionless shocks, discussed in Sect. 13.8.

Despite the variation in specific absorption mechanisms, all the absorption
processes involve transferring laser energy to electrons. When laser light is absorbed
at a solid surface, this produces a distribution of electrons, often approximately
Maxwellian in shape. One can write an energy flux balance equation that quali-
tatively describes the heating, as

fabsIL D nckBTeveff; (13.26)

in which fabs is the fraction of the laser energy that is absorbed, nc is the critical
density, and veff is the effective velocity at which energy flows away from the
absorption region. In the slow (ns), large-plasma regime of Chap. 9,

fabs � 1 and veff � cs / T1=2e so Te / I2=3L : (13.27)

As the temperature increases and the collisional absorption becomes smaller, one
enters a regime in which fabs / �ei=!o but veff is still of order the sound speed.
Then, since �ei / T�3=2

e , one has

Te / I1=3L in the weakly collisional regime: (13.28)
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Heating with this dependence on IL is often said to have Beg scaling, corresponding
to data and analysis in the late 1990s (Beg et al. 1997).

Beyond these regimes the excursions of the electrons begin to matter and one
finds that fabs depends more weakly on Te, bringing the increase of Te with IL up
closer to

Te / I1=2L in the excursion regime: (13.29)

As the laser irradiance increases further into the strongly relativistic regime, the
electrons are observed to have a characteristic energy of order the kinetic energy
of the electron oscillations in the laser light. This is a natural result—any process
that manages to deflect an electron, changing its velocity in the direction of the
laser electric field, will have the effect of converting some fraction of this energy
into randomized motion. So the quiver energy must set the energy scale once the
absorption loses its temperature dependence and the electrons leave at c. In the
relativistic regime, the characteristic energy of these electrons, Ehot, is

Ehot D
�q

1C a2o � 1
�

mec2: (13.30)

For simple estimates, one often describes the “temperature” of these electrons using
the relation kBTh D Ehot: Once ao is very large, one has

kBTh � aomec2 / I1=2L : (13.31)

13.5 Harmonic Generation

As IL increases above 1017 W/cm2, the interaction of the laser with the overdense tar-
get can lead to the emission of many harmonics of the laser light. This phenomenon
has utility both as a diagnostic of the interaction mechanisms and as a potential
source of coherent, short pulses of soft X-rays for other applications. Early theory on
harmonic production from solids (Bezzerides et al. 1982; Grebogi et al. 1983) was
motivated by the observation of many harmonics from long-pulse experiments using
CO2 lasers (Burnett et al. 1977; Carman et al. 1981). The important mechanism in
this regime is the oscillation of the critical surface in the electric field of the laser
light.

If the interaction geometry remains simple and planar, then the pump laser light
will be specularly reflected and any harmonics will be emitted within the cone angle
of the reflected pump light. It is well established that this requires a plasma layer
that is much less than one wavelength in extent. Thus, the angular distribution of
harmonic light is an indicator of how planar the surface is. In experiments on the
TITANIA laser system, a transition from specular to diffuse harmonic emission was
observed when the maximum energy flux of the laser pulse (of 1 ps FWHM for
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these experiments) exceeded 1:6� 1017 W/cm2. The 1 ps FWHM laser pulse shown
in Fig. 13.6 corresponds to this maximum. One should note that, with such a pulse,
the amount of preplasma produced by the leading edge of the laser pulse increases
significantly as IL increases. In experiments on the Vulcan laser system, whose
long laser pulse (illustrated in Fig. 13.6) produced much more preplasma, diffuse
harmonic emission was always observed (Norreys et al. 1996). In experiments at
Toronto (Zhao 1998), there was a transition from specular to diffuse harmonic
emission when a prepulse was introduced 1.5 ns before the main pulse. A consistent
interpretation of these data, and of much other data with lower energy fluxes and
longer pulse lengths not discussed here, is as follows. Given sufficient preplasma
production, the critical surface where the laser light reflects becomes rippled. This
is discussed, for example, by Wilks et al. (1992). Possible mechanisms include
corrugation through electron clustering, irregular lateral motion of the ions, and
Rayleigh–Taylor instabilities. This causes the laser–plasma interaction to occur over
a wide range of angles, causing the scattering and reflection of the laser light to
become diffuse. Once diffuse scattering sets in, the angular structure of the signal
becomes worthless as a diagnostic of the interaction dynamics.

Theoretical work in the 1990s, nicely reviewed by Gibbon (1997), concluded
that efficient harmonic production is possible from the interactions of sufficiently
intense laser pulses with the overdense plasma at the surface of a solid. Wilks et al.
(1993) observed odd harmonics in both 1D and 2D PIC simulations and observed
(weaker) even harmonics in the 2D case. Relativistic oscillations of the critical
surface introduce harmonic structure into the light reflected from it. One can think
of this first in terms of the driven currents that emit the reflected radiation. At all
angles of incidence, the ponderomotive force drives density oscillations with even
harmonic content, which beat with velocity oscillations at the pump frequency ! to
produce a current source with odd harmonic content. (We ignore here the case of
circularly polarized light.)

For oblique incidence, the harmonic content also depends on the polarization.
In s polarization, a current source develops with only even harmonic content. In
p polarization, the density oscillations have both odd and even harmonic content.
Those with odd harmonic content beat with velocity oscillations at ! to produce a
current source with even harmonic content. In both s and p polarizations, the even
harmonics are expected to be very weak near normal incidence and to increase as
the angle of incidence increases.

An alternative way to think through the harmonic generation process is to treat
the reflection from the critical surface as a reflection from an oscillating mirror,
as suggested by Bulanov et al. (1994). Lichters et al. (1996) have done this to
produce a cold-plasma model which accounts for the harmonic production observed
in their simulations. They note that a correct treatment of the retarded source terms
introduces substantial anharmonic content to this oscillation and that including this
effect gives quantitative agreement between the model and the PIC simulations in
some cases. (Highly resolved calculations for oblique incidence become possible
by boosting the frame of a 1D PIC calculation to the Lorentz frame in which the
electromagnetic wave appears to be normally incident.) They provide a quantitative
model involving few assumptions that can be used to calculate the predicted
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Fig. 13.7 The spectrum of
harmonic emission from
simulations by Lichters et al.
(1996), along with predictions
from their model (diamonds).
The crosses are from an ad
hoc model intended to mimic
the effects of surface plasma
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spectrum of the harmonics. They have difficulty with the magnitude of the lowest
even harmonics in oblique incidence with s polarization, as illustrated in Fig. 13.7.
They suggest that the sharpness of the plasma–solid boundary significantly affects
the production of these harmonics.

Another source of harmonic emission is also discussed by Gibbon (1996).
He argues that the particles which undergo vacuum excursions produce a very
anharmonic current source, repeating at the pump frequency, as they reenter the
solid and are strongly decelerated. Gibbon points out that for oblique incidence at
fairly large angles, such as 60ı, vacuum excursions will become the dominant source
of harmonic emission.

13.6 Relativistic Self-focusing and Induced Transparency

We now ask what effect the plasma has on the laser light. To do so we return to the
wave equation for the laser light, (13.1), and evaluate Jt D �enevx D �enecao=	r.
Converting A to ao, we obtain

 
@2

@t2
C !2pe

	r
� c2r2

!
ao D 0; (13.32)

in which !pe is the plasma frequency corresponding to the electron density ne. Upon
first glance, this may appear to be a simple equation, in which the plasma frequency
is reduced by a factor of 	r. However, since 	r depends on ao through v, it also
varies in time on the same timescale as ao does. One must work out the effects of
this when seeking a detailed solution, but one can formulate the solution in terms of
an appropriately averaged 	r, which we designate as h	ri. One obtains a modified
dispersion relation,

!2 � !2pe

h	ri � c2k2 D 0; (13.33)
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from which the phase velocity is seen to be

!

k
D c

1r
1 � !2pe

h	ri!2
D c

1q
1 � neh	rinc

: (13.34)

Two conclusions follow from these equations. First, the wave travels slower in
regions of higher ao. Since this corresponds to the center of a focused laser beam, the
phase fronts become curved and the laser beam tends to self-focus, a phenomenon
known as relativistic self-focusing. This effect is opposed by diffraction of the laser
beam, but above some threshold laser-beam power the beam does self-focus. This
threshold laser-beam power, Psf , is

Psf D 17:4 .nc=ne/ GW; (13.35)

in which nc is the critical electron density as defined in Sect. 9.1. We saw that lasers
producing relativistic high-energy-density conditions typically exceed this power. If
such a laser-beam interacts with a sufficient volume of plasma, it will self-focus.

The second conclusion is that a relativistic laser beam can penetrate to a higher
density than a nonrelativistic one. Taking (13.11) at face value, the density of
reflection, where the phase velocity goes to zero, is ne D h	rinc. Thus, the laser
can penetrate to higher density by a factor of h	ri. In detail the effect is more
complicated because of the fluctuations in 	r. Despite this, the net effect is that a
relativistic laser beam can penetrate to a higher density than a nonrelativistic beam.
This phenomenon is known as induced transparency.

13.7 Particle Acceleration

Much of the interest in relativistic laser–plasma interactions revolves around the
acceleration of particles by such lasers. It is hoped that beams of particles might
be produced for fast ignition. Beams of protons from such lasers may prove useful
for proton radiography or proton cancer therapy. Alternatively, beams of electrons
may produce 	 -rays for radiography or eventually electron beams for high-energy
physics. By interacting intense lasers or particle beams with plasmas, researchers are
working at this writing to produce advanced particle accelerators. This is possible
because one can produce much larger electric fields in plasmas than one can
between electrodes in vacuum. For these reasons, it is sensible to discuss the basic
mechanisms of particle acceleration here.
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13.7.1 Electron Acceleration Within Plasmas

The potential applications of high-energy-density plasmas and beams to electron
accelerators nearly all involve the behavior of wakes in plasmas. The mechanism
responsible for generating wakes is perhaps best understood by taking some time to
throw rocks in a lake. The rock itself pushes some water outward, generating a first
circular outgoing wave. But the rock also displaces water, in response to which the
remaining water rushes in toward the center and then rebounds outward, with the
consequence that a second circular outgoing wave is created. When one proceeds
from throwing rocks to watching boats, one can see that these two waves correspond
to the bow wave and to the trailing wake. The wakes propagate at an angle to the
path of the boat, depending on their phase speed relative to the boat. If one gets onto
the water and is able to match speeds with the wake, perhaps on a windsurfer or
in a kayak, one can ride the wake, gaining speed and extracting energy from it. At
this point one will understand the wakefield accelerator, save for a few (i.e. many)
technical details. The seminal paper on the application of wakes to acceleration in
plasmas was written by Tajima and Dawson (1979).

When one works inside a plasma, the key to producing electron acceleration
is to generate some kind of wake. (In some limits, the wake begins to look more
like an extended plasma wave.) The fundamental requirement is to create a local
source of pressure that moves through the plasma, creating a wake that moves near
the speed of light and whose electric field is large. Suppose for a moment that we
repeat the experiment with the rock, except by creating a local and brief source of
pressure, of some size �p, within a uniform cold plasma. (All realistic plasmas are
cold when compared to motions at c.) The source is brief in the sense that it moves
the electrons but causes little displacement of the ions. The local disturbance of the
plasma creates a spherical wake, potentially including structure analogous to the two
waves in the water, for the same reasons. The wake propagates because the electron
density oscillates in response to a displacement, and because the displacement is
local. We know from Sect. 2.4.1 that the electrons will oscillate in response to
a charge separation at the electron plasma frequency, !pe. Since the perturbation
moves a distance �p in one plasma cycle, the velocity of this wake is

vp D !pe=kp; (13.36)

where kp D 2=�p. If it happens that vp � c and that the wake is strong enough to
trap some electrons and carry them along, then our imaginary spherical wake would
accelerate these electrons to relativistic velocities.

The simplest application of this idea to real systems is to create a packet of
photons or electrons of very-high energy density (and thus high pressure), whose
characteristic length is close to c=!pe, as this will most effectively excite a plasma
wake for which vp � c. As this high-pressure packet traverses the plasma, it
creates a strong plasma wake. The particles in such a wake can be trapped by it and
substantially accelerated. The intense field produced immediately behind the high-
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pressure packet can be particularly effective at producing a beam of accelerated
particles having a narrow energy spread and low divergence.

More complicated applications of the wakefield idea abound, because they
require less-demanding experimental hardware. A laser beam above the threshold
for relativistic self-focusing will tend to focus to produce a small region with
very intense fields. When one or more extended laser beams resonantly drives an
extended, intense plasma wave with k � !pe=c the resulting electric field will tend
to self-modulate on the scale of !pe=c through the action of an instability (exactly
how depends on details). This will drive in turn a series of wakes in the plasma and
can accelerate particles. When two laser beams are used to create such a plasma
wave by beating, in a process identical to the beating involved in stimulated Raman
scattering (Chap. 9), the accelerator is known as a beat-wave accelerator. In the beat-
wave accelerator and some of the other approaches, one cannot expect the plasma
wake to trap cold particles and instead must inject particles that are then accelerated
to higher energy. Overall, there is a veritable zoo of possibilities with an alphabet-
soup of acronyms describing various different approaches to the goal of creating
plasma wakes to accelerate electrons. We will leave the exploration of this zoo to
those who develop a specialized interest.

Much of the interest in the complicated mechanisms just mentioned has been
superceded by the discovery of the so-called “bubble regime” by Pukhov and Meyer-
ter Vehn (2002). This was an important conceptual development for wakefield
accelerators. The limiting idea is that an intense enough, tightly focused pulse of
laser light can push the electrons out of a small volume of plasma, creating a “bub-
ble”. As the bubble moves through the plasma, it naturally accelerates electrons so as
to produce a beam having a narrow spread in energy. One readily sees these effects
in PIC simulations (see Fig. 13.8). Several groups actively pursued this approach,

Fig. 13.8 Spatial map of
electron density associated
with bubble-regime wakefield
acceleration, as calculated by
a Particle In Cell code. The
bubble follows the laser
pulse, which is moving to the
right here. The movement of
the bubble creates a group of
accelerated electrons that are
well-collimated and have a
small spread in energy.
Adapted from Geissler et al.
(2006); used with permission
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and three of them simultaneously produced results, published in the same issue of
Nature (Mangles et al. 2004; Geddes et al. 2004; Faure et al. 2004) Actual bubble-
regime accelerators do not manage to expel all the electrons from the focal volume.
Even so, they work very well to produce electron beams having energies of dozens
to hundreds of MeV. Such accelerators are in routine use now in many laboratories
around the world. How far in energy they can be pushed remains to be seen.

To determine the potential capabilities of wakefield accelerators, one would like
to know the possible electron energy gain. We evaluate this next, following Tajima
and Dawson (1979). The maximum energy gain will occur when the wake becomes
so large that it breaks. This occurs when the electron excursion distance during a
plasma period, xos, reaches kpxos � 1. We observe this oscillation in the lab frame,
where

xos D eEw=.me!
2
pe/: (13.37)

Here Ew is the electric field in the wake, related to the potential ˚ by jEwj � kp˚ .
This gives

e˚ D me!
2
pe=k2p � mec2 (13.38)

in the lab frame.
The energy gain of the electron is most simply evaluated in the moving frame

of the plasma wake, where the electron oscillates in a stationary potential well.
Referring to the volume of Landau and Lifshitz (1987) on the theory of fields for the
relativistic transformations, we find the depth of the potential well in this moving
frame, ˚.w/, in terms of the lab-frame quantities, as

e˚.w/ D 	re˚ � 	rmec2; (13.39)

in which

	r D 1=
q
1 � v2p=c2: (13.40)

Thus 	r is the relativistic factor corresponding to the motion of the plasma wake. We
also take ˇ � vp=c. The electron has its maximum energy in the lab frame just when
it has the maximum energy in the frame of the wake, where the energy is 	rmec2.
To find the corresponding laboratory-frame energy, Elab, we Lorentz transform the
energy back into the lab frame, finding

Elab D 	rŒ	rmec2 C ˇc.	rˇmec/� D 	2r mec2.1C ˇ2/ � 2	2r mec2: (13.41)

It is helpful to know the relativistic factor 	max of the accelerated electron, seen in
the lab frame, that has this much energy. This is evidently
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	max D 2	2r : (13.42)

For the specific case of using a light pulse to create the pressure, the optimum
light pulse will have a group velocity, vg, that equals vp. As we discussed in Chap. 9,

vg D c

s
1 � !2pe

!2
; (13.43)

from which one can infer that

	max D 2!2=!2pe: (13.44)

Thus, for example if one uses laser light of wavelength 1�m to drive a wake in a
plasma of density 1017 cm�3, one finds 	max D 2 � 104 and Elab D 10GeV. There
are reasons this is not trivial, though. The required laser pulse duration of =!pe

is 180 fs. The length over which a uniform plasma must be provided so that this
acceleration can occur, `a is

`a � Elab=jeEwj D 2c!2=!3pe; (13.45)

which would be 34 cm. Sustaining a uniform plasma and a focused laser pulse over
this distance would be a severe challenge. But if one raises the plasma density (i.e.,
increases !pe) to make the distance shorter, the laser pulse length soon approaches
one laser cycle. Clever technique will be needed to achieve energies of tens of GeV
or more using lasers.

Among other alternatives to lasers, one can use an electron bunch to create the
pressure, in which case the plasma wake will accelerate some members of this bunch
to higher energy. At this writing, the energy of a �30 GeV electron beam has been
more than doubled by this technique (Corde et al. 2016). In this application, the
optimum plasma density is determined by the length of the electron bunch, `B, which
should be

`B D c=!pe (13.46)

for the reasons discussed above. To keep the electron bunch focused as it propagates
requires a balance between beam divergence and self-focusing in the plasma. This
sets a relation between the plasma density and the beam size at the plasma entrance,
rbo,

!2pe D 2	Bc2�2B=r4bo; (13.47)

in which the relativistic factor for the bunch is 	B and the emittance of the bunch
(related to divergence, and having units of distance times angle) is �B. Thus, the
electron bunch must be carefully shaped for optimum acceleration. It remains true
in this case that 	max D 2	2r and that eEw � mec!pe, so the acceleration length is



592 13 Relativistic High-Energy-Density Systems

`a � 	maxc=!pe D 2	2r c=!pe: (13.48)

One can see that keeping `a from growing while increasing 	max requires increasing
!pe. This in turn requires shortening the bunch and making it smaller in diameter.
At this writing, this is also an active area of research.

13.7.2 Ion Acceleration

There are several mechanisms that can produce ion acceleration in targets irradiated
by relativistic lasers. We discuss some of them here.

13.7.2.1 Acceleration by Surface Potentials on Solid Targets

The wakefield and beat-wave processes just discussed might perhaps be developed
into next-generation particle accelerators. Accelerators place demanding constraints
on the dispersion of the accelerated particles in energy and in angle. Some other
applications, such as proton radiography, may not be so demanding in these respects.
Beams of protons (and other ions) are typically observed when relativistic laser
beams strike solid targets. One way that they arise is now known as Target Normal
Sheath Acceleration, abbreviated as TNSA. The mechanism of electrostatic ion
acceleration in the plasma sheath at a target surface is easy to understand. The
laser interacts with the electrons, and it removes many of them from the target. The
result is that the target becomes positively charged, expelling ions from its surface.
Because the surface is planar, the ions are expelled along the target normal. Because
the laser produces plasma on the front surface of the target and produces electrons
that easily penetrate a target that is not too thick, it is not uncommon to see beams
of ions that emerge from both surfaces.

We can analyze this type of acceleration by building on our analysis of the self-
similar, isothermal rarefaction in Sect. 4.4.1 and following the discussion of Mora
(2003). Assuming the electrons to be Maxwellian, we can write their distribution
function, as a function of energy E, as

fe D neo

kBTe
e�E=.kBTe/; (13.49)

normalized so the integral over all energies gives their density neo. The sheath
plasma expanding from a surface acts as a potential well for electrons. One sets
the scale for the plasma potential, ˚ , so that ˚ D 0 at the target surface and ˚ < 0

throughout the expanding plasma. Only those electrons with an energy above the
local potential energy in which they are trapped, �e˚ , can reach a given location.
The density at that location is then
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ne D
Z 1

�e˚

neo

kBTe
e�E=.kBTe/dE D neoe.e˚/=.kBTe/; (13.50)

in which the initial electron density at the target surface is neo and one thus has

e˚ D kBTe ln.ne=neo/: (13.51)

This equation is valid so long as electron collisions are fast enough to sustain a
Maxwellian distribution, and this remains true even in ultrafast experiments. So we
will assume here that the expansion is isothermal, at least while the most energetic
ions are produced before the expanded plasma cools significantly.

In a planar, isothermal rarefaction the density is exponential in space. We
previously derived the self-similar solution for the ions, finding

� D �o exp

�
� x

cst
� 1

�
; (13.52)

in which cs is as usual the sound speed. In an ultrafast experiment, the ions have little
time to heat so cs D p

ZkBTe=mi for ion mass mi. The derivation of this equation
assumed quasineutrality of the plasma, so � D neAmp=Z. One can easily show that
the electric field, Ess, corresponding to the self-similar solution, is constant and is
given by

eEss D kBTe=.cst/: (13.53)

However, in an ultrafast experiment the self-similar model eventually breaks
down because the assumption of quasineutrality becomes invalid. Charge separation
can always occur on the scale of a Debye length, �D. Once �D exceeds the local scale
length of the ion density profile, cst, the self-similar model breaks down. Then the
electrons are able to stay ahead of the ions, which creates an expansion front and
pulls the ions along. This roughly occurs when

�D D �Do

p
neo=ne D �Do exp

�
1

2

�
1C x

cst

��
; (13.54)

in which the Debye length at neo is �Do. From the self-similar rarefaction, this occurs
at x D .cst/.2 ln.!pit/ � 1/, where !pi is the ion plasma frequency at neo, equal top
4neoZe2=mi. For fully ionized, solid-density Be, one has !pi � 3�1014 rad/s, so

!pit � 100 in a few hundred fs. In this case the electric field at the ion front, Efront,
is estimated to be 2Ess, due to the surplus of electrons at larger x. Simulations of the
plasma expansion have shown that to excellent accuracy

eEfront D !pi

cs

2kBTeq
5:44C !2pit

2

: (13.55)
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One can integrate (13.55) (which D midvi=dt) to find the ion velocity vi and the
maximum ion energy, Emax. These are

vi D cs
�
ln.2!2pit

2/ � 1� ; (13.56)

and

Emax D 2ZkBTe

h
ln.!pit

p
2=2:72/

i2
: (13.57)

For !pit � 100, this gives Emax � 40ZkBTe. In the strongly relativistic regime, where
kBTe � aomec2, this implies Emax � 20Zao MeV. This implies that ion accelerations
to many MeV are plausible by sheath acceleration even for modest values of ao.
This process is most likely to be important on the front side of all targets and on the
rear side of solid targets that are thick enough that the explosion processes discussed
below are not dominant.

13.7.2.2 Acceleration by a Laser Piston

As the laser energy flux increases beyond the levels that drive collisionless shocks,
the analysis discussed below in Sect. 13.8 would predict from momentum balance
that the laser can produce relativistic ions. In detail, however, the laser pulses push
on the electrons and they in turn create an electric field that accelerates the ions.
When the electrons are able to accelerate the ions to relativistic velocities during the
laser pulse, the system has entered the laser piston regime, discussed by Esirkepov
et al. (2004). The requirements for this regime can be calculated in simple limits as
follows.

We suppose that the laser beam pushes all of the electrons completely out of the
initial target, which is a thin layer of thickness d. For simplicity suppose that d is
much less than the width of the laser spot, which implies that the electric field is
independent of exactly how far the electrons have been pushed. The electric field is
produced by both the electron layer and the ion layer, each of which has the same
charge. From the Poisson equation one can show that the electric field experienced
by the ions closest to the electrons is then

Ejj D 162eneod; (13.58)

which is in cgs units. In SI units the coefficient that is 162 would be 4 . The
relativistically correct ion energy is

Ei D
q

m2
i c4 C p2i =.2mi/ D

q
m2

i c4 C .eEjjct/2; (13.59)

in which the rightmost expression is specific to ions that acquire energy
while moving through constant electric field at speed c (which is clearly an
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approximation for early times). The approximate time at which the kinetic energy
of the ions reaches their rest mass, thus making them relativistic, can be found from
this to be

trel D mic2

eEjj
D mic2

162e2neod
D Z.c=d/

4!2pi

: (13.60)

If we hope to avoid complications not present in this model, this acceleration
should happen within a laser cycle, so that !otrel � 2 . We would like to know how
intense a laser is required to accomplish this. We find this by recognizing that the
electric field in the laser, EL, must be larger than Ejj and using (13.60) to solve for
d. We find this implies that the target thickness should be

d � Zc!o

82!2pi

D c

82!o

!2o
!2pe

mi

me
D c

82!o

nc

neo

mi

me
; (13.61)

which will typically be some fraction of a laser wavelength. Using this result
in (13.58), EL 
 Ejj, and ao D eEL=.me!oc/, we find

ao D 1

2

mi

me
; (13.62)

which for protons is an IL�
2
� of �1:2 � 1023 W �m2/cm2. A major challenge in

practice for this and similar schemes is to have the target stay thin enough until ao

reaches the necessary value.

13.7.2.3 Acceleration by Coulomb Explosions

A third important acceleration mechanism, also responsible for high-energy ion
production and even for ion beams, is known as a Coulomb explosion. Coulomb
explosions, created by the irradiation of molecules with photons or particle beams,
have been used in chemistry since at least the 1970s. We will see shortly why it took
longer to produce them using lasers. With relativistic lasers, they are generally used
with gas clusters, which form when a supersonic nozzle releases gas into vacuum
under appropriate conditions. They provide a way to absorb a very large fraction of
the laser energy, producing a plasma far hotter than one could by irradiating ordinary
gas (Ditmire et al. 1997). Our analysis draws in part on Zweiback et al. (2002).

First consider a spherical distribution of ions at constant density ni, from which
the electrons have been magically removed. One can integrate the Poisson equation
to find the electric field at location of any ion at radius r inside the cluster, in cgs
units, as

E D 4niZer; (13.63)
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then solve E D �r˚ to find the potential ˚ as

˚ D 2niZe

��
8

3

�
r2o C .r2o � r2/

�
for r < ro and

˚ D 2niZe

�
8

3

�
r3o
r

for r > ro;

(13.64)

in which as usual ni is the ion density, Z is the ionic charge, and e is the charge of
an electron. In addition, the initial radius of the sphere is ro and we have chosen ˚
to be zero as r ! 1.

The dynamics of such an ion cloud is simple. All the ions are accelerated
outward, with the outermost ions being accelerated most greatly. As r increases
for each ion, the acceleration decreases. So no interior ion overtakes any outer ion.
As a result, each ion at radius r ends up converting the electrostatic potential energy
created by the charge at radii< r into kinetic energy. The maximum ion energy Emax

is obtained when an ion at the outer edge of the sphere has been accelerated until
the remaining potential is negligible. Then the maximum ion energy is

Emax D 8

3
2niZ

2e2r2o: (13.65)

The derivation of the corresponding, normalized, ion energy distribution function
f .E〉/ D .1=N/dN=dE〉 is left as homework. It is

f .Ei/ D 3

2

pEi

E3=2max

for Ei < Emax and

D 0 for Ei > Emax:

(13.66)

For ro D 10 �m, which is a plausible laser-beam spot, Emax evaluates to
0:76ni=.10

18 cm�3/ MeV for Z D 1. Thus, MeV energies might plausibly be
obtained from gasses and much larger energies could be obtained from (thin) solids,
if in fact such explosions can be produced. We now consider some aspects of this.

To create a Coulomb explosion, the laser must strip the electrons from the ions
and expel them from the cloud. The laser will have to turn on very quickly and reach
sufficient irradiance. Two timescales matter. These are the explosion time itself and
the sonic expansion of the cloud. Let us consider these in reverse order. The sound
speed here again is cs D p

ZkBTe=mi, so the sonic disassembly time is

�sonic D ro=cs D
q

r2omi=.ZkBTe/: (13.67)
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If we crudely estimate kBTe D aomec2 from (13.31), then we find

�sonic D 140

vuut
 

Ar2�
Zao

!
fs ; (13.68)

in which r� is ro in �m.
The explosion time can be found by solving the equation of motion for an ion

at the outer surface of the cloud. Because the charge within the cloud is fixed and
remains within the radius of the ion, one can relate the ion velocity to the potential
energy. One has, for the ion velocity vi,

1

2
miv

2
i D Emax

�
1 � ro

r

	
; (13.69)

which can be written as

�
vi

vmax

�2
D 1 � ro

r
: (13.70)

This allows the equation of motion,

d

dt

�
vi

vmax

�
D ZeE

vmax
D Emax

mirovmax

� ro

r

	2
; (13.71)

to be written as

d

dt

�
vi

vmax

�
D vmax

2ro

�
1 � v2i

v2max

�2
: (13.72)

By integrating this equation to find when the ion energy reaches half of Emax, we
can obtain a reasonable value for the duration of the explosion, �exp, which is

�exp D 3 ps

p
A

Z
p

n18
; (13.73)

in which n18 is the ion density in units of 1018 ions per cm3. Note that this turns out
to be independent of the radius of the cloud. At the densities associated with solids
or with clusters in gasses, of order 1023 ions per cm3, this time is of order 10 fs.

The third requirement is that the laser must be able to expel the electrons. The
electrons are affected by the ponderomotive force produced by the laser light,
discussed in Sect. 9.1. The nonrelativistic expression for this force can be written
as the gradient of a ponderomotive potential, defined by U D mehv2osi=2, where the
brackets denote an average that introduces a factor of 2. One finds that this potential
contributes to the total energy of the electrons and thus can balance other sources
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of potential energy, such as the Coulomb potential associated with a charged cloud.
The relativistically correct ponderomotive potential can be written

U D mec2
�q

1C a2o � 1
�
: (13.74)

Setting this equal to the maximum Coulomb potential, which is Emax, we find

ao > 1:2
p

n18
p
2C 1:5n18 (13.75)

to have enough ponderomotive potential to completely remove the electrons. If
instead the ponderomotive potential is only large enough to remove some of the
electrons, the cloud of ions will still explode. However, it will not produce the
maximum possible ion energies.

In summary, to obtain a Coulomb explosion the laser pulse must rise quickly
enough to avoid thermal expansion. This time decreases as the laser energy flux
increases or the laser spot (or the target cloud, if it is smaller) shrinks. The laser pulse
must also rise quickly enough to avoid a premature explosion before the electrons
are expelled and must be of long enough duration for the explosion to occur. This
duration decreases as density increases, reaching femtoseconds for solid densities.
Finally, the laser pulse must be powerful enough to expel the electrons, and the
required irradiance increases roughly as the square of the ion density.

13.8 Hole Drilling and Collisionless Shocks

When the laser energy flux onto a high-density target plasma (having ne > nc)
becomes large enough, the ponderomotive pressure no longer merely keeps the
density profile steep, but actually drills a hole into the plasma, pushing the ions
ahead of it. Under circumstances we will discuss, this can drive a collisionless shock
into the plasma. The shock reflects plasma ions, but often will not be relativistic. As
a result the reflected ions are given roughly twice the velocity of the shock (in the
laboratory frame). This is another mechanism, in addition to sheath acceleration
and Coulomb explosions, that can produce energetic ions in ultrafast laser–plasma
interactions.

The phenomenon of hole drilling by relativistic lasers was first discussed by
Wilks et al. (1992). One can understand the basic behavior by considering the
momentum exchange between the laser beam and the plasma ions. The electrons, of
course, carry negligible momentum because of their small mass. The momentum of
each photon is „k, so that the total incident momentum flux is „k � IL=.„!/ D IL=c
and the total momentum flux delivered to the plasma by the laser is .1 C �/IL=c,
where the fraction of the laser power reflected is �. This must be balanced by the
momentum flux of the ions. If the ions that have already been swept up move into
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the target at vi, then the ion flux being swept up is nivi and the momentum flux being
delivered to the newly-swept-up ions is miniv

2
i . Thus,

�vi

c

	2 D IL.1C �/

nimic3
; (13.76)

or if we formulate this in terms of ao, using also (9.13),

�vi

c

	2 D a2o.1C �/

mic3
nc

ni

1:37 � 1018
1:1 � 1021 D 2:7 � 10�4a2o.1C �/

nc

neo

Z

A
; (13.77)

where the electron density in the target is neo and the critical density for the
laser, from (9.13) is nc. This equation applies to the regime of non-relativistic ion
velocity once ao is large enough that other pressures are negligible. It implies that
a picosecond-timescale laser having ao � 30 can drill a hole into a critical-density
target that is 50 �m deep. This may prove important in the context of fast ignition
(see Chap. 11).

We can compare this ion velocity to the sound speed as follows. For large ao, the
laser-heated electron temperature Th is given by kBTh � aomec2, as discussed above.
Thus, the sound speed is
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A
: (13.78)

Thus, the ions penetrate the plasma with a Mach number given by

M2 D
�
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This in turn gives a threshold value of ao to make this Mach number greater than 1,
as

ao 

�

2

1C �

�
neo

nc
: (13.80)

Thus, lasers will drive supersonic ion fluxes into critical-density plasmas beginning
at ao � 1 and into solid-density plasmas beginning at ao � 100.

In the context of hydrodynamics, we would conclude that a shock must form
once M > 1. However, collisions are far too weak to produce a shock in such a
target, so if one is to form it must be by means of collisionless dynamics. This
does occur, as follows (for a further description, see the papers by Forslund and
Shonk (1970a,b) and Silva et al. (2004)). Interpenetrating plasmas are unstable to
an instability known as the two-stream instability once the interpenetration velocity
exceeds the thermal velocity of one of the species. This instability can resonate
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between any two species in the plasma, so that there is an ion–ion and an ion–
electron two-stream instability. Both these instabilities have a growth rate of some
fraction of the ion–plasma frequency, given by !2pi D 4niZ2e2=mi (in cgs units).
This means that they grow to a large amplitude rapidly on the timescale on which
the ions move. They are so-called electrostatic instabilities, producing longitudinal
electric fields but no magnetic fields.

These instabilities lead to a shock of sorts, as follows. The electrostatic waves
become quite large and trap electrons locally where the ions begin to interpenetrate.
This takes a time of order 5 � 2=!pi, as has been confirmed by PIC simulations.
The trapped population of electrons prevents further electrons from crossing the
interaction zone. As a result, the ions that do cross this zone establish a positive
potential and are reflected. The system reaches a steady state. In the shock frame,
one would say that the ions coming in from upstream are in large part elastically
reflected once they cross the trapped-electron region, while the downstream ions are
stationary, being held in place by the ram pressure associated with the reflected ions
on one side and the momentum flux delivered by the laser on the other side. In the
laboratory frame, one would say that the laser pushes ions into the target, that at
their leading edge a group of trapped electrons is produced, and that the resulting
positive potential barrier strikes the ions beyond it and sends them ahead of the
shock at twice the shock velocity. The density of the ions downstream of the shock,
which is effectively compressed from both sides, ends up somewhat larger than the
density of the ions ahead of the shock.

Figure 13.9 shows the results of a simulation of such a shock. Like most displays
of PIC results, the dots on this plot correspond to the location of a given particle in
z velocity and in z position. The initial location of the target was from 500 to 640
distance units. One can see sheath-accelerated particles at the two ends of the target.
The shock is at about 550 distance units and is followed by structure that we will
not concern ourselves with here. The shock-reflected ions are the highest-energy
particles, seen streaming ahead of the shock with momenta above 0:15mpc.

Fig. 13.9 Particle velocities
from a PIC simulation of a
collisionless shock. A laser
pulse having ao D 16 has
been incident on a plasma
initially having ne D 10nc for
a time of 1024=!o from Silva
et al. (2004)
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Since few ions join the ions behind the shock, the “piston” velocity at which the
laser pulse pushes the ions ahead of it equals the shock velocity. One thus has a
reflected-ion velocity, vref, given by
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which we can also write as
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Even for M not much larger than 1, this can easily reach a few tenths of the speed
of light. Under the right conditions, with a solid-density target and a very large ao,
even a shock with M � 2 might drive relativistic reflected ions.

It would seem from the above equations that relativistic ions would be straight-
forward to produce by sufficiently increasing M. This, however, does not work
in practice because the ability of the fluctuations produced by the two-stream
instability to trap electrons is limited, and as a result ions above a certain energy (in
the shock frame) cannot be reflected. The limiting Mach number, known as a critical
Mach number, is M � 3. Above this Mach number fluctuations are still driven and
the interpenetrating ion beams are affected, but there is no longer a shock. Faster
ions cannot then be driven by shocks, but they can be driven in the “laser piston”
regime, discussed in Sect. 13.7.2.2.

The mechanism of laser-driven collisionless shocks is most effective and most
important in comparatively thin targets. This better enables the laser to keep the
electrons heated throughout the target so that the shock remains below the critical
Mach number and in addition allows the ions to move through the target in time
to be further accelerated by the sheath on its rear surface. At this writing, recent
experiments have observed 20 MeV beams of protons produced by reflection from
such shocks (Haberberger et al. 2012).

A different type of “shock” is produced during any realistic Coulomb explosion
of more than a small, isolated cluster. This develops as follows (Kaplan et al. 2003).
The density profile of the ions is never entirely uniform, and in addition the electron
expulsion may not be complete at the outer edges of the initial ion cloud. This has
the consequence that the force on the ions reaches a maximum within the cloud, and
that some ions within the cloud are accelerated more strongly than those on its outer
edge. As a result, some ions overtake others. If the explosion truly involves cold ions
and no electrons, then the Mach number of this interpenetration will be too large to
drive the type of shock described above. (Such shocks might develop if the ions were
warm enough or some laser-heated electrons were present, to sufficiently increase
the sound speed.) But even in the absence of instabilities or other ion interactions,
one ends up with ions of three velocities overlapping in a certain regions. These are
the slow ions and two groups of faster ions. The two groups of fast ions originate
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either just inside or just outside the initial radius of the fastest (most strongly
accelerated) ions. This leads the ion density to increase in the region where the
overlap occurs. In addition, there is a large concentration of ions per unit velocity
at the two ends of this region, where in each case two of these groups merge. The
resulting structure is often referred to as a shock shell.

13.9 Other Phenomena

We have already seen that a host of phenomena can be produced when a laser beam
irradiates a target at a relativistic energy flux. We discuss several more here.

Magnetic Field Generation also results from laser-solid dynamics. The beams
of electrons produced by the laser carry substantial currents. As a result, they drive
substantial magnetic fields. This is easier than it may seem. For example, suppose
one wants to produce a 1 GGauss field. From (10.128), supposing that one drives an
electron current by sending a beam of electrons, at c, through a circle of diameter
10 �m. The density of this beam must be only �1015 cm�3. One can achieve this
by accelerating one electron in 108 to � c. Measuring the field, however, is a severe
challenge. At his writing, it is believed that GGauss fields have been produced.

Currents can be driven either into the target or along the surface. Ruhl and Mulser
(1995) identified the production of a surface magnetic field in their calculations,
arising from the ponderomotive force, which generates charge separation and
surface currents for oblique incidence. These in turn produce a dc magnetic field,
which was found in the simulations to vary strongly with irradiance. This field,
which can approach 100 MG, causes dramatic variations in the absorption with IL

and angle of incidence (see their Fig. 6) Wilks et al. (1992) also observed a dc
magnetic field in (fully relativistic and electromagnetic) 2D PIC simulations for
normal incidence, at intensities larger than those considered by Ruhl and Mulser
(1995). They attribute it to electron heating at the light–plasma interface. In addition,
other magnetic-field generation mechanisms come into play at relativistic intensities
(Bychenkov and Tikhonchuk 1996; Sudan 1993).

Betatron radiation may become an important X-ray source, as an offshoot of
wakefield acceleration. Rousse et al. (2004) first demonstrated that a beam of X-
ray radiation can be generated by focusing a high-intensity laser pulse into a gas jet,
under the usual conditions to produce wakefield acceleration. Within the ion channel
produced by the wake, the fields accelerate and wiggle an ultrashort and relativistic
electron bunch. The accelerated electrons undergo betatron oscillations, generating a
femtosecond pulse of radiation, emitted in a narrow cone angle. The X-ray energies
can be in the keV range or higher. This discovery has led to an explosion of research
into the production and use of betatron X-rays, which continues at this writing.

Positron production is of potential interest in astrophysical contexts. It requires
more than 1028 W/cm2 to produce electron–positron pairs directly from vacuum.
However, when the laser light interacts with solid targets, it becomes possible to
produce pairs at much lower irradiance. This is discussed, for example, by Liang
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et al. (1998). This first requires the production of energetic electrons, with the
characteristic energy Ehot from (13.20). The threshold electron energy for pair
production by interaction with a nucleus is 2mc2, and the cross-section scales as
the square of the nuclear charge, Z2nuc. The threshold laser energy flux for pair
production in steady state is about 1020 W/cm2. For a dynamic, ultrafast interaction,
Liang et al. (1998) find a comparable threshold value. At this writing, positron
production has been observed (Gahn et al. 2000; Chen et al. 2009, 2010). It remains
to be seen whether one can produce a plasma whose energy density is dominated by
the pairs and whether a laser–target system can become a practical positron source.

Relativistic laser beams can also produce nuclear reactions within a target. The
first step is the production of electrons having energies of many MeV. For example,
when a beam having an energy flux above 1020 W/cm2 and a total energy of 50
J, with a substantial prepulse, was used by Cowan et al. (2000) to irradiate a Au
target, a distribution of electrons was produced with energies up to 100 MeV. These
electrons in turn produced bremsstrahlung photons with energies of tens of MeV
by interaction with the Au nuclei. These photons exceeded the energy threshold of
�10 MeV for photonuclear reactions in the Au and in Cu located near the target.
This caused transmutation of these elements.

Other physics with high-energy beams also can be explored, beyond the use
of electron bunches to drive wakefield acceleration in a plasma (Joshi et al. 2002).
One can use a tailored plasma to focus, defocus, or steer the beam. One can cause
the beam to undulate in the transverse direction in the plasma. On the one hand, this
happens naturally if the parameters are such that the beam repeatedly self-focuses
and due to the natural tilt of the beam with respect to its propagation direction. On
the other hand, one could imagine more active steps to create waves in the plasma
that undulate the beams. This would produce tunable, forward-directed radiation
with potential applications.

Beyond the above, the collisions involved in high-energy (as distinct from high-
energy-density) physics create temporary, relativistic environments of an extremely
high energy density. While much of the behavior might be best described in
terms of particle physics, one does encounter concepts such as the “quark–gluon
plasma” that have much in common with various plasma systems. In addition,
some of these systems may have applications to astrophysics (Chen 2003). This
potentially includes cosmic acceleration experiments, the spectroscopy of heavy
elements, experiments related to event horizons, and experiments with the dynamics
of relativistic jets.

The area of relativistic high-energy-density experiments has been developing
very rapidly, in recent years, at the time of this writing. One can look forward to
exciting further ideas and discoveries in the coming years.
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Homework Problems

13.1 Design a pulse stretcher. Suppose you have a laser beam with an 800 nm
central wavelength and a bandwidth of 20 nm (corresponding to a 50 fs laser pulse).
Use two identical gratings, recalling that for the first diffracted order the scattered
wavelength � is given by � D d.sin˛ C sinˇ/, where d is the line spacing
on the grating and ˛ and ˇ are angles of incidence and reflection relative to the
grating normal. Use two identical lenses, recalling that the object distance, o, image
distance, i, and focal length f are related by o�1 +i�1 D f �1. Note that the initial
grating must be less than one focal length from the lens to obtain stretching.

13.2 Assuming that the electron motion is due to a plane wave with a single
frequency and that the electron movement is small compared to the wavelength
of the light wave, solve the equations in Sect. 13.2 to find the electron trajectory.
Determine how it changes as the electron velocity increases (while remaining � c).

13.3 Prove that the definitions (13.15) and (13.16) are equivalent.

13.4 Solve (13.25) to see the electron behavior for a range of values of the initial
phase (i.e., change  to various other values, for fixed ao D 100 and ı.0/ D 0:01.
Comment on the variations in the behavior, in comparison to that seen in Fig. 13.3.

13.5 Find the time required to accelerate the electron to �30 GeV in the example
used in discussing (13.43) through (13.45).

13.6 Suppose one has a laser beam that can be focused to 1020 W/cm2 in a 10
�m diameter spot. Would one obtain higher-energy electrons from tunnel ionization
(as in Sect. 13.2) or from using the laser for wakefield acceleration, discussed in
Sect. 13.7.1?

13.7 Solve for the potential of a spherical cloud of ions having uniform density, and
for the energy distribution function of the ions produced by a Coulomb explosion of
this cloud.

13.8 Derive the relativistic version of the theory of Sect. 13.8 and find the relativis-
tically correct revision to (13.82).
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Appendix A
Constants, Acronyms, and Standard Variables

See Tables A.1, A.2 and A.3.

Table A.1 Table of constants

Useful

Name Symbol cgs value alternative SI mks value

Bohr radius ao 5:29� 10�9 cm 0.529 Å 5:29� 10�11 m

Speed of light c 3� 1010 cm/s 3� 108 m/s

Electronic charge e 4:8� 10�10 statcoul 1:6� 10�19 Coul

Planck constant h 6:63� 10�27 erg s 6:63� 10�34 J s

Boltzmann constant kB 1:6� 10�12 erg/eV 1:6� 10�16 1:38� 10�23 J/K

J/keV

Electron rest mass me 9:11� 10�28 g 9:11� 10�31 kg

Proton mass mp 1:67� 10�24 g 1836me 1:67� 10�27 kg

Stefan-Boltzmann 
 5:67� 10�5

ergs/(cm2 s deg4)
1:03� 105
W/(cm2 eV4)

5:67� 10�8 W m�2 K�4
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Table A.2 Table of
acronyms

Acronym Represents

ASE Amplified spontaneous emission

CPA Chirped pulse amplification

DPP Distributed phase plate

DPR Distributed polarization rotator

ICF Inertial confinement fusion

LTE Local thermodynamic equilibrium

NIF National Ignition Facility

NLTE Nonlocal thermodynamic equilibrium

RT Rayleigh Taylor

KH Kelvin Helmholtz

RM Richtmyer Meshkov

RPP Random phase plate

SBS Stimulated Brillouin scattering

SN Supernova

SRS Stimulated Raman scattering

SSD Smoothing by spectral dispersion

expŒ� Equivalent to eŒ�
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Table A.3 Table of standard variables

Name Symbol

Atomic weight (average) A

Vector potential A
Atwood number An

Area of capsule Ac

Area of laser spots AL

Area of walls of hohlraum Aw

Magnetic field B
Thermal intensity B.T/

Thermal spectral intensity B�.T/

Isentropic sound speed cs

Specific heat at const vol cV

Small vortex diameter d

Element of area dA
Critical to solid density distance D

Electron charge e

Electric field E
Spectral kinetic energy E.k/

Thermal energy density EBB

Energy released by fusion Efus

Hydrogen ionization energy EH

Electric field of laser beam EL

Total radiation energy density ER

Energy in Marshak wave Ew

Spectral radiation energy density E�
Energy difference between ionization states j and k Ejk

Electron total energy Ee

Electron rest mass energy Eo

Ion total energy Ei

Thermal flux FBB

Electron free energy Fe

Electromagnetic force density FEM

Lorentz force FNL

Radiative energy flux FR

Total radiation flux FR

Photon flux F	
Spectral radiation flux F�
Eddington factor f� D p�=E�
Distribution function f .v/

“Gravitational” acceleration g

Laser energy flux IL

Total intensity IR

Laser energy flux in units of 10xx W/cm2 Ixx

Spectral intensity I�

(continued)
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Table A.3 (continued)

Name Symbol

Current density J
Richardson number Jr

Total mean intensity JR

Transverse current density Jt

Mean spectral intensity J�
Riemann invariants JC or J�

Wave number k

Wave vector k
Coefficients in Maxwell’s equations k1, k2, k3
Scale length of a profile L

Eddy diameter `

Compton mean free path `C

Mach number M

Upstream Mach number Mu

Internal Mach number Mint

Fusion fuel mass mf

Mass ablation rate Pm
Shock normal n
Electron density ne

Ion density ni

Critical density nc

Scalar fluid pressure p

Total scalar pressure Qp
Electron momentum pe

Fermi-degenerate pressure pF

Scalar radiation pressure pR

General pressure tensor P
Ablation pressure Pabl

Power threshold for relativistic self-focusing Psf

Turbulent energy dissipation Pt

Radiation spectral pressure tensor P�
Thermal heat flux Q
Radiation strength parameter Q

Spitzer–Harm heat flux QSH

Free-streaming heat flux QFS

Internal energy R

Gas constant p=.�T/ R

Ion sphere radius Ro

Radiation strength parameter Rr

Poynting flux S
Specific entropy s

Specific entropy of electrons se

Source of quantity Q SQ

Spectral source function S�

(continued)
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Table A.3 (continued)

Name Symbol

Time t

Temperature T

Immediate post-shock temperature T2 or Ts

Fermi-degenerate temperature Td

Electron temperature Te

Effective temperature Teff

Ion temperature Ti

Temperature corresponding to a radiation flux Tmin;Teff

Energetic electron temperature Thot

Precursor temperature Tp

Radiation temperature TR

Immediate postshock plasma (mainly electron) temperature Ts

Hohlraum wall temperature Tw

Fluid velocity u
Zeroth-order fluid velocity U

Characteristic velocity for scaling arguments U

First-order components of fluid velocity u1 D .u; v;w/

Kolmogorov velocity scale uk

Particle velocity v

Velocity difference between frames of reference v

Phase velocity vp

Oscillating velocity of electron in light wave vos

Electron thermal velocity vth

Rocket velocity (or capsule velocity) V

Exhaust velocity Vex

Vertical component of velocity w

Vortex rotational velocity w

Eddy rotational velocity we

Marshak wave scaling variable W

Magnetic Energy density WB

Electric energy density WE

Space x

Marshak wave penetration depth xM

Fusion yield Y

Ionic charge (average) Z

Albedo ˛

Various angles ˛

Fraction of incoming photons ionized ˛i

Various angles ˇ

Relativistic velocity (v/c) ˇ

Various angles �

Coeff of thermal diffusivity �

Electron momentum �e

(continued)
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Table A.3 (continued)

Name Symbol

Jet cooling parameter �j

Rosseland-mean opacity �R

Spectral total opacity ��

Specific internal energy �

Total specific internal energy density Q�
Downstream emissivity �d

Specific internal electron energy �e

Fermi energy �F

Specific internal ion energy �ii

Specific kinetic ion energy �ik

Upstream emissivity �u

Efficiency of ideal rocket �R

Various angles �

Fusion burn fraction �

Phase of a wave �

Phase experienced by an electron �e

Scalar electric potential ˚

Polytropic index 	

Polytropic index for acoustic waves 	s

Polytropic index for heat conduction 	h

Relativistic 	 	r

Instability growth rate 	o

Strong coupling parameter �

Flux of quantity Q �Q

various angles and fractions �

X-ray conversion efficiency �

Kolmogorov length scale �k

Spectral emissivity ��

Spectral scattering emissivity ��sc

Spectral thermal emissivity ��th

Absorption opacity �

Total coefficient of heat conduction Q�
Opacity of thin layer using cooling function �astro

Thermal bremsstrahlung absorption coefficient �b

EM wave absorption coefficient �EM

Specific Planck mean opacity �m

Planck mean opacity �P

Radiative coefficient of heat conduction �rad

Thermal coefficient of heat conduction �th

Spectral absorption opacity ��

Wavelength of a wave �

Vortex characteristic scale �

Taylor microscale �T

Debye length �D

Electron Debye length �De

(continued)
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Table A.3 (continued)

Name Symbol

Ion Debye length �Di

Mean free path �mfp

Wavelength in microns ��

Astrophysical cooling function �

Chemical potential �

Classical chemical potential �c

Vortex characteristic scale �

Atomic mass per charge (A=Z) �e

Electron–ion collision rate �ei

Optically thin cooling rate �

Kinematic viscosity �

Radiation frequency �

Extinction rate �e

Cooling rate normalization for thin layer ��

rad

Cooling rate more general �1

Cooling rate using cooling function �astro

Radiation cooling rate for thin layer �rad

Kinematic photon viscosity �rad

Scaling variable ne=T3=2e �

Degeneracy parameter �

Mass density �

Charge density �c

Density of Q �Q

Scattering opacity 
s

Spectral scattering opacity 
�

Viscosity stress tensor � �

Kolmogorov time scale �k

Optical depth at frequency � ��

Optical depth �

Wave frequency !

Laser light frequency !o

Normalized frequency !n

Electron plasma frequency !pe

Ion plasma frequency !pi

Scattered light frequency !s

Irradiance conversion by hohlraum �

General similarity variable �

Gravitational potential �



Solutions

Problems of Chap. 2

2.1 One approach to deriving the Euler equations is to identify the density, flux,
and sources of mass, momentum, and energy and then to use (2.5). Do this for a
polytropic gas and then simplify the results to obtain (2.1) through (2.3).

Solution and/or Comments The work of this problem is about the process. The
end result is:

@�

@t
C r � �u D 0; (A.1)

�

�
@u
@t

C u � ru
�

D �rp; and (A.2)

@p

@t
C u � rp D �	pr � u; (A.3)

where u; �, and p are the velocity, density, and pressure, respectively.

2.2 Linearize the Euler equations to derive (2.7) and (2.8). Find appropriate divisors
to make the physical variables in these equations nondimensional. Then derive the
equivalent of (2.9) and an equation for a normalized velocity variable. Comment on
the result. (Hint: this is a wave problem not a global-scaling problem, so what you
are looking for is not U, L, and etc. as used in that part of the chapter.)

Solution and/or Comments This problem is about the challenge of finding
a physically meaningful non-dimensionalization. For normalized density Q� and
normalized velocity Qu D u=c, the end result is:
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@2

@t2
Q� � c2r2 Qrho D 0; and (A.4)

@2

@t2
Qu � c2r2 Qu D 0: (A.5)

2.3 Take the actual, mathematical Fourier transform of (2.9) to find (2.10). Comment
on the connection of the result to the substitution used in the text.

Solution and/or Comments This problem is intended to promote thinking about
the physical meaning of Fourier transforms. The end result is:

!2 � c2s k2 D 0; (A.6)

2.4 Substitute, for the density in (2.9), the actual, mathematical inverse Fourier
transform of the spectral density Q�.k; !/. Show how the result is related to (2.10).

Solution and/or Comments This problem is intended to promote thinking about
the physical meaning of Fourier transforms. One finds

Q�a.k; !/ D Q�a.k/ı.! � csk/; (A.7)

confirming (2.10).

2.5 The Euler equations apply to an ideal gas with � D p=Œ�.	 � 1/�, so they should
imply (2.14). Demonstrate this by deriving (2.14) from (2.1), (2.2), and (2.4).

Solution and/or Comments This problem is intended to develop facility with the
manipulation of fundamental fluid equations. The result is:

Dp

Dt
� c2s

D�

Dt
D 0

2.6 Begin to explore the behavior of longitudinal waves in a charged fluid.
Specifically, derive (2.46) from the equations for number and momentum for an
electron fluid.

Solution and/or Comments This problem is intended to develop facility with the
manipulation of fluid PDEs and experience with the challenge that the electron fluid
supports both longitudinal and transverse waves. The result is:

@2ne1

@t2
D neoe

me
r � E1 C 1

me
r2pe1: (A.8)

2.7 Collisions do affect electron plasma waves. To see how, derive a replacement
for (2.48), keeping an appropriate version of the drag term at the end of (2.43).
Comment on the results.
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Solution and/or Comments This problem is intended to develop facility with the
manipulation of fluid PDEs and a first exposure to equations for damped waves.

Problems of Chap. 3

3.1 Inertial fusion designs typically involve the compression of DT fuel to about
1000 times the liquid density of 0.25 g cm�3. Assuming that this compression is
isentropic and that the fuel remains at absolute zero, determine the energy per gram
required to compress this fuel. Compare this to the energy per gram required to
isentropically compress the fuel to this same density, assuming the fuel is an ideal
gas whose final temperature is to be the ignition temperature of 5 keV.

Solution and/or Comments Pay careful attention to the need to evaluate the
internal energy for each case. One finds � D 8:5 � 106 J/g for Fermi-degenerate
compression and � D 5:7 � 108 J/g for ideal-gas compression, which is 68 times
larger.

3.2 Generalize the derivation of the Debye length in Sect. 3.2 to a plasma with an
arbitrary number of ion species, each of which may have a distinct temperature.

Solution and/or Comments The result, in Gaussian cgs units, is

��2
D D 4e2

 
ne

kBTe
C
X
˛

n˛Z2˛
kBT˛

!
: (A.9)

3.3 Examine the behavior of the integrals for Fermions. Argue conceptually that
the contribution of the denominator in (3.29) at large �=.kBTe/ is a step function.
Evaluate this integral numerically to determine how rapidly it becomes a step
function as �=.kBTe/ increases.

Solution and/or Comments This problem is intended to add some insight into
the behavior of the integrals for Fermions. One way to accomplish the numerical
demonstration is as follows, using definitions in the Chapter. Transform variables
so that w D Ee=.kBT/ and a D �=.kBT/, drop the leading constants, and divide the
integral into two pieces to have

I1 D
Z a

0

p
wdw

expŒw � a�C 1
and I2 D

Z 1

a

p
wdw

expŒw � a�C 1
: (A.10)

As the integral of ŒexpŒw � a�C 1��1 approaches a step function, I1 will approach

I3 D
Z a

0

p
wdw D 2a3=2=3: (A.11)
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Fig. A.1 The ratios I1=I3 and
I2=I3 are shown against
a D �=.kBT/

Plotting the ratios I1=I3 and I2=I3 gives Fig. A.1. One can see that the integral
behaves nearly as a step function by a D 10 and is not distinguishable from it
by a D 1000.

3.4 Examine the limiting behavior of the internal energy of Fermi degenerate
electrons. Show, in the limit as Te ! 0, that ne�e D .3=5/ne�F.

Solution and/or Comments This problem is intended to add some insight into the
behavior of the integrals for Fermions. The result is that ne�e D .3=5/ne�F, in the
limit as Te ! 0.

3.5 What is the relation of heat capacity and entropy? Derive (3.38) and (3.40) and
discuss their differences.

Solution and/or Comments The equations to be derived are

CV D @

@Te
.ne�e/

ˇ̌̌
ˇ
ne

D 3

2
nekB

�
5

2
F3=2�

3=2 C Te
@

@Te

�
�

kBTe

��
; and (A.12)

S

V
D 2

3

@

@Te
.ne�e/

ˇ̌
ˇ̌
�;V

D 5

2
nekB

�
2

3

F3=2.
�

kBTe
/

F1=2.
�

kBTe
/

� 2

5

�

kBTe

�
; (A.13)

but the real point of the problem is to think about the meaning of the chemical
potential and how this affects the evaluate of the same partial derivative done while
holding different variables constant.

3.6 Make plots comparing Zbal from (3.49) with the estimate 20
p

Te as a function
of Te, for ion densities of 1019, 1021, and 1023 cm�3. Discuss the results.

Solution and/or Comments The point of this problem is to gain experience with
the limitations of the simple model that has Zbal � 0:63

p
Te(eV). This model is fine

for doing simple stupid derivations that find the main trends across large variations.
However, the author has noticed that students often tend to use it to think about
actual data, where it is far too inaccurate. For specific applications, one should at
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Fig. A.2 The ratios �E=Ei are shown against ion density, with the upper, black curves corre-
sponding to Zi D 1 while the lower, gray curves are for Zi D 10. In each set of curves, in order of
increasingly sparse dashing, the models are Stewart-Pyatt, More, Ecker-Kroll, Isolated Ion Sphere,
and Griem

minimum solve the Saha equation, and it is really better to apply the Thomas-Fermi
model presented in Sect. 3.4.3.

3.7 Carry out the evaluation of the average charge, Z, in (3.53) and compare the
result to Zbal, for Te D 1 keV, Zn D 30, and ni D 1021 cm�3.

Solution and/or Comments The point of this problem is to work through the more
accurate evaluation of Z discussed in the text and show that the simple estimate
(Zbal is remarkably accurate. One finds Zbal D 25:182 for the given parameters and
Z D 24:655, which is only a difference of 2%.

3.8 Plot the ratio of �E to the ionization energy versus ion density for the various
models described in Sect. 3.4.4. Discuss the results.

Solution and/or Comments The point of this problem is to gain some experience
with the sensitivity of the pressure ionization to the model used. You will generate
a plot like that shown in Fig. A.2. Note that the outlier, which is the model given in
Griem, is not actually used by anyone.

3.9 The value of Ri used in Sect. 3.4.6 ignores the internal energy in excited states
(as well as the energy lost by radiation during ionization, which would properly have
to be treated by more general equations). Again assuming hydrogenic ions, estimate
what fraction of the internal energy is present in excited states, and how this varies
with Z.

Solution and/or Comments One can approach this problem in several ways, and
part of the purpose of the problem is to stretch thinking about relative probabilities.
There are ways to address this based on material in the text and ways based on either
general or specific understanding of statistical physics.
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3.10 Complete the derivation of the polytropic index for heat conduction.
Derive (3.143) from relations (3.130)–(3.134).

Solution and/or Comments The point of this problem is to provide some experi-
ence with the manipulations of thermodynamic variables often needed in the study
of fluids, gasses, and plasmas. The result is

.	h � 1/�1 D �cV

�
@T

@p

�
�

: (A.14)

Problems of Chap. 4

4.1 Add a gravitational force density and gravitational potential energy to (4.2)
and (4.3) and derive the modified jump conditions.

Solution and/or Comments The result here may surprise you.

4.2 Suppose that during the shock transition significant energy is lost by radiation.
Write down the modified jump conditions.

Solution and/or Comments The point of this problem is to delve more deeply
into the physical meaning of the jump conditions. One needs a physical analysis
to justify the result that the jump conditions relating to mass and momentum are
unchanged, while the one related to energy becomes

�1u1

�
�1 C u21

2

�
C p1u1 D �2u2

�
�2 C u22

2

�
C p2u2 C FR; (A.15)

where �2 > �1 and FR > 0 is the radiation energy flux emitted from the region of
the shock transition.

4.3 Determine from energy arguments how to generalize (4.20) for a plasma having
two ion species.

Solution and/or Comments One must find a physical principle that enables one
to relate the immediate heating of each species by the shock transition to the
final temperature after all the species have reached some equilibrium. The shock
transition is extremely abrupt, so ionization during the transition is not likely to be
significant.

Defining fj as the ratio of the mass density of each species to the total mass
density �, one will find

kBT2 D 2mpu2s
.1C Z2/

�
1P
fj=Aj

�X
fj
.	2j � 1/
.	2j C 1/2

: (A.16)
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One can see that this has the correct limit for a single species. In the limit that the
values of 	2j are the same and D 	 , this becomes

kBT2 D 2mpu2s
.1C Z2/

.	 � 1/
.	 C 1/2

1P
.fj=Aj/

D 2hAimpu2s
.1C Z2/

.	 � 1/
.	 C 1/2

; (A.17)

defining a specific type of averaged atomic weight, hAi.
Note that fj is the fraction of mass, not number density. So for two ion species

(and ignoring the negligible contribution of the electrons), one finds

f1 D fa1A1
fa1A1 C fa2A2

; (A.18)

where the number fraction (the more commonly known quantity) is fa. For C1H1,
one finds hAi D 7, while for Xe9H1 (10% H in Xe), one finds hAi D 118.

4.4 For 	1 D 	2, derive the equivalent of (4.18) and (4.20). Express the result in
physically clear parameters, so the relation among the terms is evident. Check your
result by finding it as a limit of (4.19) and by finding (4.20) as a limit from it. Using
a computational mathematics program is suggested.

Solution and/or Comments One will find

p2 DD 2

.	 C 1/
�1u

2
s

�
1C .	 � 1/p1

2�1u2s

�
; (A.19)

which is (4.18), and

kBT2 D Amp
p2
�2

D Ampu2s
.1C Z/

2.	 � 1/
.	 C 1/2

(A.20)

�
"
1C .	2 � 6	 C 1/

2.	 � 1/
p1
�1u22

C
�

p1
�1u22

�2#
;

which, in the strong-shock limit, becomes (4.20).

4.5 Find an expression for the entropy production by a shock wave (4.24) as the
Mach number approaches 1 from above.

Solution and/or Comments It is fairly straightforward to show that

lim
M!1

�s D cV ln .1/ D 0

4.6 Derive the jump conditions for oblique shocks, (4.28)–(4.31).

Solution and/or Comments One finds, starting with the basic equations in conser-
vative form,
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�1un1 D �2un2; (A.21)

�1un1u1 C p1 D �2un2u2 C p2; which implies in part (A.22)

u?1 D u?2; and (A.23)

�
�1un1

�
�1 C u2n1

2

�
C p1un1

�
D
�
�2un2

�
�2 C u2n2

2

�
C p2un2

�
: (A.24)

These are the desired jump conditions.

4.7 Derive the relations of the angles for oblique shocks, (4.34) and (4.35).

Solution and/or Comments The point of this problem is to spend time thinking in
more detail about oblique-shock behavior. The results are

cos D cos�2 Œcos�1 C sin�1tan�2� and (A.25)

cos D Œcos�1 C sin�1tan�1.�2=�1/�p
1C tan2�1.�2=�1/2

: (A.26)

4.8 Derive (4.42) relating the speeds in different frames of reference. This requires
thinking about which frame of reference one is working in, a key element in all such
problems.

Solution and/or Comments The result you will derive,

u2 � usR D u0
2 D us12�1=�2; (A.27)

and similar equations, are the key to solving any problem with multiple interfaces
moving at different speed. Students often find it challenging to understand this issue,
which is key to more than one problem below and occurs often in applications.

4.9 Determine the equations and derive the behavior of the simpler case in which a
shock is incident on a stationary wall. Let state 0 be the state of the unshocked fluid,
state 1 be that of the once-shocked fluid, and state 2 be the state of the reshocked
fluid produced when the shock reflects from the wall.

Solution and/or Comments This problem required careful attention to numbers
of equations and numbers of variables, so as to end up with a closed system, and
thinking correctly within the relevant inertial frames. The known properties of the
incoming shock and the unshocked matter imply the upstream Mach number of the
incoming shock, M1. The flow Mach number of the post-shock flow, M1f D u1=c1,
where c1 is the sound speed in the once-shocked matter, is related to M1 by
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M1f D u1
c1

D 2.M2
1 � 1/q

2C M2
1.	 � 1/

q
1C 	.2M2

1 � 1/
: (A.28)

The upstream Mach number for the second shock is

M2 D .1=4/
h
M1f .	 C 1/C

q
16C M2

1f .	 C 1/2
i

(A.29)

Figure A.3 shows the results for the fluid parameters.

4.10 Derive the differential equations for self-similar motions of fluids, (4.64)–
(4.66). Identify the requirements for quantity in the final curved brackets in the third
of these equations to vanish.

Solution and/or Comments For the definitions

u D 1

2

R

t
U .�/ ; � D �0˝ .�/ ; and p D

�
1

2

R

t

�2
�0P .�/ ; (A.30)

one obtains

0 D P�0
�0

R
PR˝ .�/C �0

0R

�0
U .�/˝ .�/C ŒU .�/ � ��˝ 0 .�/ (A.31)

C˝ .�/U0 .�/C sU .�/˝ .�/

�

0 D�0
0R

�0
P .�/C R RR

PR2 U .�/˝ .�/C ŒU .�/ � ��U0 .�/˝ .�/C P0 .�/ (A.32)

Fig. A.3 M2; us2=c1; �2=�1; and M1f are shown vs M1, for 	 D 5=3
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0 D P�0
�0

R
PR .1 � 	/P .�/C �0

0R

�0
U .�/ .1 � 	/P .�/C 2

R RR
PR2 P .�/ (A.33)

C ŒU .�/ � ��
�

P0 .�/ � 	P .�/
˝ 0 .�/
˝ .�/

�
:

As to the requirement for the quantity in curved brackets to vanish, mathematically
this is

P0 .�/
P .�/

D 	
˝ 0 .�/
˝ .�/

; (A.34)

and one also must explain what that means.

4.11 Show that the conservation of mass in the planar isothermal rarefaction in fact
requires r 
 �cst in (4.72) and (4.73).

Solution and/or Comments The density profile of the isothermal rarefaction is

� D �oe�.1C�/; (A.35)

where � D r=.cot/. By assuming that the minimum value of � is some parameter
a, one shows that mass conservation requires a D �1 and thus that the head of the
rarefaction wave moves into the dense matter at co.

4.12 Plot the minimum density and pressure in the planar adiabatic rarefaction as
a function of Up: Discuss the meaning of the plots. Reasonable normalizations are
recommended.

4.13 Sketch the CC and C� characteristics defined in Sect. 4.4.3 in a fluid flowing
uniformly with velocity u.

4.14 Show that the analysis of blast waves that preserves energy conservation
produces ˛ D 1=2 for cylindrical blast waves and ˛ D 2=3 for planar blast waves.

Solution and/or Comments The result is that ˛ D 1=2 for cylindrical blast waves
and ˛ D 2=3 for planar blast waves.

4.15 Find the coefficients ˛ for blast waves treated as cylindrical and planar,
momentum-conserving snowplows.

Solution and/or Comments The result is that ˛ D 1=3 for both cases.

4.16 Use a computational mathematics program to integrate the relevant equations
to find and plot the profiles, and to evaluate Q; of (4.123) for a cylindrical blast
wave. Apply this to find the behavior of a lightning channel produced by a deposited
energy of 1010 ergs/cm.

Solution and/or Comments The result is that Q D 0:876 and R D 1930
p

t cm/s.
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4.17 Assuming that a strong shock reaches an interface beyond which the density
(�4) is 0.1 times the density of the shocked material behind the interface (�1), solve
for the profiles of the fluid parameters in the rarefaction that results.

Solution and/or Comments Defining the incoming flow, the rarefaction, the
shocked, lower-density matter, and the unshocked matter as regions 1, 2, 3, and
4, respectively, and using these numbers as subscripts to assign a given variable
to a given region, one also defines Mach-like numbers M1 D u1=c1;M2 D u2=c1;
and M3 D u3=c1. For strong shocks and 	 D 5=3;M1 D p

9=5. One also finds
M3 D 1:64 and the interface location r23 D 0:736c1t. In addition, one finds

M2 D M1 C 2

	 C 1
Œ1C � � M1� for � � 0:736; (A.36)

p2 D p1

�
1 � 	 � 1

2
.M2 � M1/

�2	=.	�1/
; and p3 D

�
	 C 1

2	

�
�4

�1
p1M

2
3:

(A.37)

The densities are

�2 D �1

�
1 � 	 � 1

2
.M2 � M1/

�2=.	�1/
; and �3 D

�
	 C 1

	 � 1
�
�4: (A.38)

Figure A.4 shows the resulting profiles for this case (	 D 5=3).

t

u/c1

/

p/p1

Region =      1          2                        3                  4

Fig. A.4 Profiles of the indicated parameters for the shock-initiated adiabatic rarefaction against
a low-density medium
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4.18 Assuming that 	1 D 	3 (or not, if you wish), derive (4.128) from (4.44)–
(4.52) by letting p3 approach p1 as the definition of the transition to a rarefaction.
Hint: This one is not easy. Taking a limit will be necessary and the approach to the
solution will matter.

4.19 An entertaining aspect of the problem of reshocks in rarefactions is that it
is one case where the traditional model in which shocks are driven by moving
pistons does not produce correct qualitative behavior. Consider a rarefaction as it
approaches a piston that is moving forward at a constant velocity. What will happen?

4.20 To obtain the behavior of oblique shocks at interfaces, one must evaluate
the equations in cylindrical polar coordinates. Beginning with the first two Euler
equations, carry out this evaluation.

Solution and/or Comments One ends up with

0 D @�

@t
C 1

r

@

@r
.rur/C 1

r

@u�
@�

C @uz

@r
; (A.39)
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@�
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@ur
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� u2�
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!
D �@p

@r
; (A.40)
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�
@u�
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@u�
@r
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@u�
@�

C uz
@u�
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� u�ur

r

�
D � @p

@�
; and (A.41)

�

�
@uz

@t
C ur

@uz

@r
C u�

r

@uz

@�
C uz

@uz

@z

�
D �@p

@z
: (A.42)

These simplify considerably for the oblique shock problem, in a well-chosen frame.

4.21 Equation (4.133) implies that a property of uniform flow is that ur D �@u�=@�
in any cylindrical polar coordinate system. Landau and Lifshitz use a geometric
argument to demonstrate this. Instead, demonstrate this using a vectorial argument.
(Hint: Begin by taking dot products of unit vectors along r and � with an arbitrary
velocity vector.)

Problems of Chap. 5

5.1 Consider a system with water above oil as described in Sect. 5.1.1. Suppose
there is an small, sinusoidal ripple on the surface. Find the vertical profile of the
force density between the lower and upper boundaries of the ripple for a region of
denser fluid and for a region of less-dense fluid. Discuss the comparison of the two
fluids and the shape of the force density profile.
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5.2 The final relation in (5.37) is significant for our specific applications, in which
one needs to integrate, across an interface, equations that contain discontinuous
quantities along with derivatives of discontinuous quantities. By treating the delta
function and the step function as limits of appropriate functions (see a mathematical
methods book), prove this relation.

5.3 Find the solution for the velocity profiles and the growth rate for the RT
instability for two uniform, constant density fluids that are confined by two planar
surfaces each a distance d from the interface, which is accelerated at constant g.

Solution and/or Comments Define the situation with the more-dense fluid on top
as fluid 1 and the less-dense fluid below as fluid 2. These fluids are bounded at the
interface z D 0. One finds:

w1 D w0 sinh Œk .z � d/�

w2 D �w0 sinh Œk .z C d/�

and the final growth rate as

n D p
kg
r
�1 � �2
�1 C �2

tanh .kd/ D p
Ankg

p
tanh .kd/ (A.43)

5.4 The discussion above (5.55) shows that Qn D .n=
p

kg/
pQk. This would suggest

that it might make more sense to separate the meaning of the axes more cleanly
by using Qı D .n=

p
kg/ and Qk D Œ.k2�/=

p
gk�2=3 as the two variables. Recast this

equation in terms of these new variables, solve it, and plot the real roots from Qk D 0

to 2. Discuss the results and compare them to n D p
Angk.

Solution and/or Comments The dispersion relation, after also defining S D s=k D
1C Qı=Qk3=2, becomes

0 D A C A2.S � 1/3 Qı3 � .S � 1/S.S C 1/2 Qı3; (A.44)

which produces Fig. A.5.

5.5 In the derivation of the dispersion relation for the Rayleigh-Taylor instability
with viscosity, some steps were skipped. Derive (5.56) and (5.57) from (5.50).
Comment on the nature of the terms that have been dropped.

Solution and/or Comments The results are

n D
p

Ankg C k4�2 � k2� and (A.45)

Qn D
q

An Qk C Qk4 � Qk2: (A.46)
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v v

Fig. A.5 The left panel shows the real part of the roots of the dispersion relation. One is always
growing and a second one grows weakly at high viscosity. The right panel shows the imaginary
part of the roots of the dispersion relation, which correspond to wave propagation. The root with
the largest real part has no imaginary part. The comparison to n D p

Angk is instructive

5.6 Explore the global RT mode in arbitrary directions. Find the plane-wave
solutions in x; y and z to (5.60) and discuss their behavior.

Solution and/or Comments One finds

n D


1C cos2 �

�
h
.1C cos2 �/2 C 1

L2
cos2 �

i
r

g

L
� i

1

2L
cos �

r
g

L
; (A.47)

where cos � D kz=k.

5.7 Consider an exponential density profile that decreases in the direction Oz that
opposes that of the acceleration, g, as � D �oe�z=L, and thus is the opposite of the
case analyzed in Sect. 5.2.3. Apply the RT instability analysis to find n for this case.
Discuss the results.

Solution and/or Comments One finds, for the rightward propagating root,

n D �i

s
g4k2L2

1C 4k2L2
: (A.48)

5.8 Carry out the calculation described in Sect. 5.3 and find (5.78). Then find the
limits when (a) kp ! 0 and kxL 	 1 and (b) when An D 0 and Lp D 0. Compare
these with previous results in the chapter.

5.9 Work out the linear theory of the Rayleigh-Taylor instability to find an
expression for the growth rate for the case of an exponential density gradient that
extends for a finite distance between two layers of constant density.
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Solution and/or Comments One finds

n D p
gk

r
4kL

1C 4k2L2
; (A.49)

5.10 This problem relates to the derivation of the mode-coupling results. By
operating on (5.95) and (5.97), create two scalar differential equations that can
be subtracted to eliminate terms involving p. Compare the resulting differential
equation to (5.21) and discuss.

5.11 If we take the point of view that the modulations of interest in Kelvin-
Helmholtz instabilities are proportional to eint, then we would insist on finding
negative imaginary n in order to have growth of the modulations, as opposed
to damping, in time. However, this should give us pause because the complex
representation is only a mathematical convenience while the physical quantities are
real. Considering the real, physical quantities, what is the significance of finding
positive or negative imaginary n? (The chapter in Jackson that introduces waves
may be of some help regarding the connection of real physical quantities and a
complex representation.)

Solution and/or Comments This important problem does not readily lend itself
to saying there is a “solution”, without short-circuiting the thinking it aspires to
stimulate. The author encourages instructors to assign this one.

5.12 Suppose ˇ is small enough that terms involving ˇ in (5.140) can be dropped.
Determine whether the two boundaries seen in Fig. 5.11 ever meet, completely
eliminating the instability.

Solution and/or Comments One finds that there are four roots describing oscillat-
ing waves, except over the range of instability where two of them change to purely
growing or damped roots. These growing roots do disappear above some value of �.

5.13 Analyze the shock conditions for a small-amplitude ripple and show that the
change in the Oz component of u due to the ripple, relative to the Oz component
of u produced by a planar shock, is second order in the ripple amplitude [i.e.,
generalize (5.143)].

Solution and/or Comments One finds the Oz component of the post-shock velocity
to be, for strong shocks,

Un2 D � 	 � 1
	 C 1

U1 � U1a
2
0k
2 sin2.kx/:

5.14 Delve into the origins of the response to a rippled shock wave. Develop (5.159)
and (5.160) from the equations in Chap. 2.
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Solution and/or Comments The results are

@u
@t

C u � ru D �1
�

rp C 2�r � s; and (A.50)

1

2

@u2

@t
C u � r

�
u2

2

�
D �1

�
u � rp C 2�r � .u � s/ � 2�.s � �s/: (A.51)

5.15 Explore further the effects of a rippled shock wave. Solve (5.146)
through (5.148) to find the ratio of ˛; �, and � to ˇ. Plot the results for various
values of 	 and comment on what you observe.

5.16 Evaluate the small-angle limit of the equations for a shock at an oblique,
rippled interface with a density decrease, and produce a plot similar to Fig. 5.19 for
this case.

5.17 Consider the qualitative behavior of the postshock interface when there is a
rarefaction but � < 0. Redraw Fig. 5.20 for this case. Discuss the evolution of the
interface.

5.18 Work out the steady state, mean flow equations from the Reynolds decompo-
sition. Derive (5.162) through (5.164). Comment on the meaning of each term.

Solution and/or Comments The results are

�.U � r/U D �1
�

rP C 2�r � S � r � .�ww/ ; (A.52)

U � r
�

U2

2

�
D r �

��P

�
U C 2�U � S � ww � U

�

� 2�.S � �S/C ww � �S
; (A.53)

and

U � r
�

w2

2

�
D �r �

�
1

�
wıp � 2�w � ıs C 1

2
w2w

�

� ww � �S � 2�ıs � �ıs
: (A.54)

5.19 To be more precise about the frozen-in property of vorticity, one should
recognize that what moves with the fluid is the vorticity passing through a surface S.
Prove this by taking the time derivative of the integral of ! � dS over a surface S that
moves with the fluid and may change its shape in time. Relate the result to (5.169).
Hint: The key here is the evaluation of the partial derivative in time of the surface as
a contour integral involving the edge of the surface.
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5.20 Obtain the various equations describing the behavior of vorticity, (5.168)
through (5.170), from the momentum equation. Discuss the point of each one.

Solution and/or Comments You will obtain these equations:

@u
@t

D �r
�

p

�
C u2

2

�
C u � ! � �r � !; (A.55)

@!

@t
D r � .u � !/C �r2!; and (A.56)

@!

@t
C u � r! D ! � s C �r2! : (A.57)

Problems of Chap. 6

6.1 Integrate the thermal intensity B� over 2 steradians to find the total radiation
power per unit area from a surface at temperature T:

Solution and/or Comments The correct result is 
T4.

6.2 Using the particle treatment of the radiation, derive an expression for the total
radiation momentum density, and show that it equals FR=c2.

Solution and/or Comments One will show that the spectral momentum density is
I�=c, so the total radiation momentum density is

Z
4

Z 1

0

I�
c2

d�nd˝ D FR

c2
: (A.58)

6.3 Derive the relation between radiation pressure and energy, (6.14).

Solution and/or Comments The point of this problem is to gain some experience
with fundamental quantities describing radiation. By reworking the derivation of p� ,
and applying the definition of E� , one will find p� D E�=3.

6.4 Graduate students frequently struggle with units, and in particular with the
problem posed here. First, integrate B� , (6.18), symbolically, over frequency to
obtain (6.19). Second, evaluate the coefficients in the integral independently for cgs
and mks units, and show that you obtain equivalent results. Third, convert (6.18) to
have units of energy per unit area per unit time per unit solid angle per unit photon
energy. Integrate this new expression over photon energy and show that you obtain
the same result. You would be well-advised to do all of this within a computational
mathematics program, either with excellent comments your work file, or with an
independent document (in LaTeX at the time of writing this) that describes the
calculations and their results.
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Solution and/or Comments The author encourages instructors to assign this
problem, as problems with such conversions is the source of many headaches for
graduate students and their advisors. Scientists need the ability to do this kind of
conversion for themselves, and to also do the calculations that enable them to check
their work.

6.5 From the uncertainty principle, the spectral width in frequency, ��, of an
emission line is roughly the inverse of the decay time. For a typical decay time
of 1 ns, find the normalized spectral width ��=�, for emission lines in the visible
and in the soft X-ray with a photon energy of 100 eV. Discuss the significance of
this result.

Solution and/or Comments About 10�6 for the visible photon and 10�8 for the
soft X-ray one.

6.6 Derive the radiative transfer equation for a spherically symmetric system, (6.43).

Solution and/or Comments In a standard spherical coordinate system one needs
three variables (r; �; �) to specify the location of a point on the ray and in addition
two variables (a polar angle� and an azimuthal angle ˚) to specify the direction of
the ray with respect to the local radial direction. In a spherically symmetric system,
such as a star treated as a symmetric object, the location is fully specified by r. At
any specific point, the radiation intensity varies with direction, but it is symmetric
about the local radius vector. As a result, one needs a single angle, �, to specify the
local direction of the ray. Defining � D cos�. The result of the derivation is

�
1

c

@

@t
C @

@s

�
I�.x; t;n; �/ D

�
1

c

@

@t
C �

@

@r
C .1 � �2/

r

@

@�

�
I�.r; t; �; �/:

(A.59)

6.7 Take moments of the radiation transfer equation to derive the equations for
radiation energy density and radiation pressure, (6.58) and (6.60).

Solution and/or Comments The results are

@ER

@t
C r � FR D 4

Z 1

0

�� .B� � J�/ d� � 4� .B � JR/ and (A.60)

1

c2
@F�
@t

C r � P� D 1

c

Z
4

.�� � ��I�/nd˝: (A.61)

6.8 Demonstrate that �d�d˝ is Lorentz invariant, i.e. (6.77).

6.9 Given relations (6.78) through (6.80), show that the radiation transfer equation
is relativistically invariant.

6.10 Derive the relativistic transformations of opacity and emissivity (6.83)
and (6.84), and the implied radiative transfer equation, (6.85). Discuss the limits
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on v=c for this specific description if the emission and absorption are dominated by
(a) continuum emission or (b) line emission.

6.11 Rework the relativistic equation for radiative energy density (6.88) into the
form of a conservation equation. Discuss the meaning of the terms that result.

Problems of Chap. 7

7.1 Carry out the calculations of radiation and material energy fluxes and pressures
and compare the behavior of pure hydrogen as opposed to C1H1 (used in Fig. 7.1).

Solution and/or Comments One obtains Fig. A.6.

7.2 Derive the dispersion relation for isothermal acoustic waves from the Euler
equations. That is, demand constant temperature and see what happens.

Solution and/or Comments The result is !2 D c2i k2, where ci is the isothermal
sound speed whose meaning was identified during the derivation (the answer should
elucidate this).

7.3 Figure 7.4 shows the wave properties as ! varies for fixed �. Consider how the
wave properties vary with � for ˇ D 1 and fixed !=.�ec2s=c2/. Plot the normalized
phase velocity and damping length for 0:01 � � � 10 and discuss the results.

7.4 There should be a sensible connection between the present calculation and the
optically thick one as the system becomes optically thick. For the limit in which
� 	 k, seek to reconcile (7.26) and (7.42).

Fig. A.6 Solid curves show where PR equals the material pressure, and dashed curves show where
FR equals the material energy flux. The gray curves are for Xe and the black curves are for CH
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Solution and/or Comments One will have shown that each of this equations has
an element that represent a damping rate, and that in each case this damping rate
has its origins in �r � FR=.�cV/.

7.5 We did not explore the angular variation in the contributions to (7.37). One
might imagine that the largest contributions could come at grazing angles, where �
is very small and the optical depth along a line of sight becomes large. The model
used here would be less realistic if most of the emission came at grazing angles,
because real systems will have layers that are not truly planar and certainly are not
infinite in extent. Use a computational mathematics program to derive (7.37). Then
modify the calculation to explore how large the contribution is from such grazing
angles. Conclude whether or not the results above might be reasonable estimates for
real layers.

Solution and/or Comments Plotting (7.37), we see in the left panel of Fig. A.7 that
the intensity is very strongly peaked at highly oblique angles for optically thin cases,
as one would intuitively expect. Performing the integral of IR but excluding angles
for which� is below some minimum value of�, corresponding to a maximum value
of � , yields the right panel of Fig. A.7.

7.6 It is curious that (7.41) and (7.43) do not depend on ˇ, so that these waves seem
not to care whether the system is fully ionized. Beginning with (7.39), derive (7.43)
and discuss why there is no ˇ dependence.

Solution and/or Comments The result is

� i!

�
�!2 C 	spo

�o
k2
�

D ��
�
�!2 C po

�o
k2
�
: (A.62)

7.7 Beginning with �.@�=@t/ D r � .�radrT/ derive (7.64).

Solution and/or Comments The result is

� �

2

df

d�
D d2f nC1

d�2
: (A.63)

μ μ

Fig. A.7 Left panel: Radiation intensity vs polar angle produced by layers of varying optical
depth. Right panel: FR corresponding to the integral over all angles above a given value of �
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Fig. A.8 Progress of various
waves in gold foam, for the
specified parameters

7.8 Work through the constant-flux model for Marshak waves, providing all the
missing mathematical steps. Then plot the positions vs. time of the radiation wave
and of a disturbance (in the radiation-heated material) moving at Mach 1 or Mach
5, for a wave in Au foam with To D 200 eV, � D 0:1 g/cm�3, and Z D 40. Discuss
the results.

Solution and/or Comments Figure A.8 shows the results.

7.9 For the constant-energy, radiation-diffusion wave, show that (7.87) is a solution
to (7.86). Clearly annotated work with a computational mathematics program is
preferred.

7.10 Consider a gold container shaped so that a planar approximation is reasonable,
having planar walls spaced 1 mm apart in vacuum. Assume � D 20 g/cm3 and
treat cV D 1012 ergs/(g eV) as constant. Use other parameters from Chap. 6
as appropriate. Suppose 100 kJ/cm2 is the initial energy content of the vacuum
between the walls and that the initial wall temperature is negligible. Assume that
the gold material does not move. Apply the self-similar model of the constant-
energy radiation diffusion wave to this system, on the assumption that the two walls
are touching but contain the specified energy. In doing so, approximate �o from
Fig. 7.14. From zero to 10 ns, find the position of the heat front and the temperature
of the surface as a function of time. Realizing that the walls are in equilibrium
with the temperature of the radiation in the vacuum, plot the ratio of the energy
content of the walls to the energy content of the vacuum. Discuss the meaning of
this result from the standpoint of the accuracy of an intermediate asymptotic model
(see Sect. 4.3).

Solution and/or Comments One obtains the plots shown in Fig. A.9

7.11 Develop the equivalent of (7.90) describing the radius of a spherically
symmetric, constant-energy, radiation-diffusion wave.



638 Solutions

μ

Fig. A.9 Left panel: Central temperature and 100 times the penetration depth in �m for the
diffusion wave. Right panel: Areal energy density in the walls and the vacuum, showing the first
10 ps

Problems of Chap. 8

8.1 Demonstrate that the material energy flux coming into a radiative shock does
not decrease when lateral losses decrease the upstream energy flux, by considering
a system having a planar flow of material within a cylinder of some diameter and of
finite length yet losing radiation both radially and axially, and integrating over the
cylinder.

8.2 Derive (8.6), relating the radiation flux to the material properties, and discuss
the origin and significance of each term.

Solution and/or Comments The result is

FR � Fo D �ou3s
2

"
2	

	 � 1
�o

�
� 	 C 1

	 � 1
�
�o

�

�2
� 1 � po

�ou2s

2	

	 � 1
�
1 � �o

�

�#
:

(A.64)

8.3 Working with the Planck description of blackbody radiation, find and plot the
fraction of photons that are ionizing as a function of temperature. You will need a
computational mathematics program to generate the plot.

Solution and/or Comments Figure A.10 shows the result.

8.4 Evaluate the net radiation flux .FR � Fo/ for an optically thin precursor using a
radiative-transfer calculation similar to that done in (8.20) and (8.24).

8.5 Explore further the behavior of radiative shocks that are optically thin
upstream and thick downstream. Beginning with (8.4)–(8.6), derive the final inverse
compression (8.30) under the assumptions of the present section.

Solution and/or Comments The result is

�o

�f
D
sp

1C 8Q � 1
4Q

: (A.65)
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Fig. A.10 Showing the
fraction of the photons that
are ionizing as a function of
the ratio of Te to the
ionization energy, for a
Planckian whose temperature
equals Te

Fig. A.11 Showing profiles
of temperature in diffusive
radiative precursors for the
indicated values of n

γ

8.6 Determine whether the equation for energy flow in a radiative precursor, (8.19),
admits a self-similar solution, assuming a diffusive model for FR.

8.7 Examine the behavior of diffusive precursors. Solve (8.41) numerically, for
several relevant values of n. Comment on the results.

Solution and/or Comments Figure A.11 shows the result for the three indicated
values of n.

8.8 We saw in Sect. 7.3 that Marshak waves are inherently unsteady, yet in
Sect. 8.2.1 we analyzed them using steady jump conditions. Develop a condition for
the validity of the use of steady jump conditions for Marshak waves, and determine
when this is realistic.

Solution and/or Comments One can see from Fig. 7.10 that the radiation flux does
not deviate from a constant value by more than a few percent over the entire Marshak
structure, for the realistic value n D 4:5, so once any given element of matter has
passed through the front of the wave and moved a fraction ˛ � few percent of xo,
the matter encounters nearly steady conditions in space. One shows that the flux
entering the wave decreases as 1/(2t), and that the time required to traverse ˛xo is
˛2t, so that the time taken to traverse the wave front is always smaller than the rate
of decay of the radiation flux by the factor ˛.
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8.9 Consider a truly radiation-dominated case, so p can be neglected in (8.50)
and (8.51). Solve these equations for pR and �. Find the dependence of the postshock
T on the shock velocity, and compare it to the dependence of a non-radiative shock.

Solution and/or Comments One finds

pR D 

6�ou2s � pRo

�
=7 (A.66)

� D 7�o
�ou2s

�ou2s C 8pRo
(A.67)

T D
sp

3c

2
p



�
6�ou2s � pRo

7

�1=4
(A.68)

8.10 Express p and pR as reasonable functions of T and solve (8.50) and (8.51) to
find T and � in the postshock state. This may be a numerical solution, for which
you should make reasonable choices about the parameters and show a few cases.
Provide at least one graph based on these equations as part of the analysis.

Problems of Chap. 9

9.1 Derive the general electromagnetic wave equation (9.3) from Maxwell’s
equations.

Solution and/or Comments The result, in terms of the vector potential in the
Coulomb gauge is

r � r � A D �1
c2
@2A
@t2

C 4J
c

� 1

c

@r˚
@t

: (A.69)

9.2 Derive an equation for the conservation of charge from (9.3).

Solution and/or Comments The result, for charge density �c, is

0 D @�c

@t
C r � J (A.70)

9.3 Using the equation of motion for the electron fluid in the fields of an
electromagnetic wave in a plasma of constant density, determine the time-averaged
distribution of energy among the electric field, the magnetic field, and the kinetic
energy of the electrons. Discuss how this varies with density.
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Solution and/or Comments The solutions are

electron energy
ne

nc

k2o OA2
16

; electric-field energy
k2o OA2
16

; (A.71)

and magnetic-field energy
k2o OA2
16

�
1 � ne

nc

�
; (A.72)

for parameters defined in the standards ways of the chapter and OA being the
amplitude of the vector potential.

9.4 Derive the wave equation for scattering of laser light from density fluctua-
tions (9.20).

Solution and/or Comments The result is

�
@2

@t2
C !2pe � c2r2

�
As D �!2pe

ınp

neo
AL: (A.73)

9.5 Derive (9.22) for the longitudinal plasma velocity. Calculate the energy density
of the laser light wave and show how this is related to the source term on the right-
hand side.

Solution and/or Comments The derived equation and the relation to the energy
density of the laser light wave, ELW , is

@vp

@t
� e

me
r˚ C rpe

neme
D �r v

2
os

2
D � 1

ncme
rELW ; (A.74)

for laser light wave frequency !L.

9.6 Develop an energy equation for the electron fluid including a Spitzer–Harm heat
flux, and show that it is a diffusion equation.

Solution and/or Comments The gas-energy equation for the electron fluid
becomes

3

2

D

Dt
.kBTe/ � kBTe

me

Dne

Dt
D 64

3

ne

me�ei

@.kBTe/
2

@z2
: (A.75)

When ne is constant and the velocity is zero, this is a nonlinear diffusion equation.

9.7 Determine the range of electron velocities that contribute significantly to the
heat flux, by plotting the first-order contribution to the argument of the heat-flux
integral (9.28).

Solution and/or Comments Figure A.12 shows the plot.
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Fig. A.12 Showing the
contribution to the heat flux,
in the Spitzer-Harm model, as
a function of normalized
speed
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Fig. A.13 Energy fluxes
sustaining the indicated
power flows

9.8 Find the approximate expression for the ablation efficiency �R of a rocket, to
second order in the quantity ma=mo. Plot the corresponding rocket efficiency and
the value of (9.52). Discuss the comparison.

9.9 Examine the energy distribution of the dynamics at the surface of a laser-
irradiated, mid-Z target, where in the upper rarefaction the plasma temperature is
T . Model this region as a material at T and at a density of 1 g/cm3, growing at the
sound speed. Assume the pressure throughout the dense material, up to the shock
driven inward, equals that at 1 g/cm3, and assume the shock is driven into matter
whose initial solid density is 10 g/cm3. Evaluate and plot, as a function of T , the
energy fluxes that are radiated outward, that sustain the shock wave driven into the
solid material, that sustain the growing region near 1 g/cm3. Discuss the results.

Solution and/or Comments Figure A.13 shows the resulting plots.

9.10 Assume that a hohlraum of 1 mm radius is heated for 1 ns at a temperature
of 200 eV. Estimate the pressure produced at the center of the hohlraum when
the plasma expanding from the gold walls reaches the axis. (Note: this is not an
application of (9.63). Instead, you will need to think about the rarefaction produced
during the heating pulse.)
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Problems of Chap. 10

10.1 Find the sizes and directions of the orbits of protons and electrons. Explain
from fundamental laws of electromagnetics why their direction is as it is. Show
pictorially why the E � B drift moves particles in the same direction.

10.2 The MHD equations assume charge neutrality, yet MHD plasmas may contain
electric fields. Explore this seeming contradiction by, first, evaluating the electric
field and relative charge imbalance for a steady electric field in an isothermal
plasma having a density gradient (so that eneE D �rpe), for reasonable choices
of parameters. Compare this to the electric field produced in an electron plasma
oscillation for which the amplitude of the electron-density fluctuations is 10%.
Express the magnitude of the electric force as eV/�m.

Solution and/or Comments Expressing the electric field as a force (eE), and
choosing Te D 1 keV, L D 10�m, ni D 1021 cm�3, k D 2 � 104, one finds
eE D 1:6 � 10�6 ergs/cm = 1.1 eV/�m for the field established on a 10 �m ramp,
and eE D 1:8 � 10�4 ergs/cm = 100 eV/�m by the density fluctuation.

10.3 Begin with (10.48)–(10.50), keeping the resistivity. Derive the dispersion
relation for damped Alfvén waves, starting with the assumptions that k is parallel
to B and that u is purely transverse. (You should find this much simpler than the
general case just discussed.) For reasonable choices of plasma parameters, plot the
ratio of damping rate to real frequency as a function of electron temperature.

Solution and/or Comments The dispersion relation is

!

kvA
D 1q

1 � i c�
4

k
vA

� 1C i
c2�

8

k

vA
D 1C i

�ei

2!2pe

c2k

vA
: (A.76)

10.4 Begin with (10.48)–(10.50), assuming small resistivity. Derive the dispersion
relation for cross-field sound waves, starting with the assumptions that k is
perpendicular to B and parallel to u. (You should find this much simpler than the
general case just discussed.)

Solution and/or Comments The dispersion relation is

!2 D .c2s C v2A/k
2: (A.77)

10.5 Show that when the field evolves as (10.73) describes, the quantity B� Oq remains
zero to the first-order accuracy of the present model.

10.6 While one can vary the properties of a Z-pinch load from one experiment to the
next, one can modify the pulsed-power device itself on a somewhat longer timescale.
Such devices are typically characterized by the number of Volt-Seconds they can
produce, and operate so that V� D constant. First, consider and then explain why
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Fig. A.14 Effect of
variations in assumptions on
burn fraction

Volt-Seconds is a reasonable way to characterize a pulsed-power device. Second,
using the scaling relations developed in Sect. 10.10.1, discuss how to optimize the
stagnation power for a device with V� D constant.

10.7 Revisit the derivation at the beginning of Sect. 10.10. Consider two infinitely
wide, plane parallel conductors carrying opposing currents. Find the force per unit
area between them and express it in terms of the magnetic field magnitude. Discuss
how the force per unit area compares to the energy density of the magnetic field.

Solution and/or Comments Suppose the currents flow in the ˙Ox direction and
that the plates are separated in Oy. Describe the current amplitude as I` amps/m for
distance along the plate in Oz. One finds the force per unit area, FA, to be

FA D �oI2`
2
; (A.78)

and that it tends to bring the plates together. The total magnetic field is B D �oI`=2,
so the energy density of the magnetic field is

B2

�o
D �oI2`

4
: (A.79)

Problems of Chap. 11

11.1 Plot the burn fraction versus �r. Discuss the impact of the assumptions made
in deriving the burn fraction on this curve, and on the size of a system designed to
produce a certain quantity of fusion energy.

Solution and/or Comments One can find a plot like that shown in Fig. A.14, in
which one will know which assumptions were varied and be able to discuss the
meaning and significance for ICF of the variations.
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Fig. A.15 Ratio of boson pressure to classical pressure for pure D at 0.1 g/cm�3

11.2 Evaluate the classical pressure and the boson pressure for deuterium as a
function of temperature. For pure deuterium at a density of 0.1 g/cm3, plot the ratio
of the pressure for deuterium treated as bosons to that for deuterium treated as a
classical gas, as a function of temperature. Discuss the comparison.

Solution and/or Comments Figure A.15 shows the result.

11.3 For DT fuel, derive the classical relation between entropy and pressure
(normalized by the Fermi pressure of the electrons).

Solution and/or Comments The result is

stot D kB

2:5mp

h
ln .�/3 C 18:5

i
D kB

2:5mp

"
ln

�
ptot

5pF

�3
C 18:5

#
(A.80)

11.4 Suppose that one could apply a pressure p for a time t, using some energy
source. With this source, we could accelerate some amount of mass per unit area,
�o�r, to vimp D 300 km/s. Define a fusion capsule using the reflected pressure due
to sunlight for 12 h as the pressure source. Approximate sunlight as light with a
wavelength of 580 nm and an energy flux of 1 kW/m2. How long would such a
capsule take to implode?

11.5 Derive the spectrally averaged absorption coefficient for bremsstrahlung in
DT. Compare your value and the one below with the value found in the NRL plasma
formulary.

Solution and/or Comments The coefficient is

�IB cm�1 D 1:7 � 10�38 ln�n2i Z3

T3=2e T3=2s

; (A.81)
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Fig. A.16 Energy comparison for a fuel mass of 3 mg and a hot-spot �R of 0.3 g/cm2. Left:
Internal energies in kJ of the cold, compressed fuel and hot spot. Right: Ratio of hot-spot to fuel

in which ni is cgs, the electron temperature Te is in eV, and the temperature of the
photon spectrum is Ts, also in eV.

11.6 Evaluate the appropriate integral of the radiative transfer equation over solid
angle to obtain FR from a spherical volume of optically thin, spatially uniform
DT. Find the value of the characteristic distance. Compare your result to the result
in (11.36), which assumes that the integral over solid angle of the distance across the
fuel gives Rh. Extra credit: generalize this calculation to include arbitrary optical
depth and discuss the results.

Solution and/or Comments One finds

FR D 4

3

T4�Rh; (A.82)

for spectrally averaged absorption opacity �, so the integral gives .4=3/Rh.

11.7 The Lawson criterion is generally written as n� > 1014 s/cm3, with density n
and energy confinement time � . Find a way to relate this to (11.38) and comment on
the comparison.

11.8 Because the density in a central hot spot is less than that of the cold fuel, a
larger fraction of the total energy must be expended to heat it than was estimated
above. Revisit the discussion above of the relative energy content of the fuel and the
hot spot, and develop an expression for the scaling of the hot-spot energy content
with hot-spot density. Find the result as an absolute energy and as a fraction of the
energy used to compress the cold fuel.

Solution and/or Comments Figure A.16 shows the energies and their ratio.

11.9 Using the equations of this Sect. 11.3.2 and others as necessary, build yourself
a computational model of a fusion target that ignites from a central hot spot. Use
it to explore target designs for the National Ignition Facility, using fuel masses of
1 mg or less, a fuel �Rc of 1.5 or less, and other parameters of your choice. Make
some relevant plots and comment on what you find.
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11.10 Evaluate the amount of Rayleigh Taylor growth for the sunlight-driven fusion
system of the problem11.4.

Problems of Chap. 12

12.1 Show that the Euler equations are in fact invariant under the transformations
described in Sect. 12.1.

Solution and/or Comments They are.

12.2 Design a diverging experiment to address the coupling of two structured,
unstable interfaces that are affected by a blast wave. Beyond the basic requirements
for hydrodynamic scaling, identify other specific parameters that are important to
the dynamics. (Hint: review blast-wave propagation and shock stability as part of
your work.)

Solution and/or Comments The point of this problem is to have you think through
the various elements of such a system, and identify the important parameters for
yourself. For instructors, this is a good exercise, integrating material from multiple
chapters, but is more involved than many of the homework problems.

12.3 Determine why tcc as defined in Sect. 12.3 is the relevant timescale for the
crushing of a cloud.

Solution and/or Comments The point of this problem is to have you think about
the details of cloud-crushing dynamics in order to identify the parameters necessary
for specific scaling and thereby to draw this conclusion. The purpose is to prepare
you to be able to do similar analysis of novel systems.

12.4 Suppose that an astrophysical blast wave of interest is produced by a supernova
explosion that is a known distance R from a clump of some radius rcl. Determine
the properties of an experimental blast wave and the duration of the experiment that
would be required to model the shock–clump interaction in this system.

Solution and/or Comments The point of this problem is to consider both aspects
of the specific scaling of this system in designing an experiment. The duration of
the experiment will be the sum of the time it takes the blast wave to reach the
clump plus the number of cloud-crushing times required, which must be of order
10. On the assumption that the experimental system behaves like a spherical blast
wave, the half-width of the pressure impulse from the blast wave, �, is a fixed
fraction of the distance traveled. To have the specific parameter, �=rcl, be the same
in both systems, one would require the distance from the initiating location of the
experimental blast wave, D and the size of the experimental clump, d, to be related
to the astrophysical parameters as D=d D R=rcl. The experimental blast wave is not
likely to be strictly spherical. Planar systems have similar behavior but may not be
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self-similar or strictly planar, so this first estimate is a good start but simulations
could refine the design.

12.5 An approach that has been used to form hydrodynamic jets is to create an
adiabatic rarefaction by allowing a shock wave to emerge from a material into an
evacuated tube and then to emerge from this tube into an “ambient medium”, at a
lower density. Using the simple scaling results from this book, develop a design for
a similar experiment to produce a radiative jet.

Solution and/or Comments This problem synthesizes material from multiple
chapters, but such a simple model also requires some simplifying assumptions to
be tractable. Analysis in terms of key dimensionless parameters is very helpful.

12.6 Magnetized jets must have a ratio of plasma pressure to magnetic field pressure
(usually called ˇ in plasma physics) no larger than about 1. For a low-Z plasma
with a density of 0.1 g/cm3 and a temperature of 10 eV, determine how large a
magnetic field would be required to satisfy this constraint. How does this compare
with the magnetic field of order 1 MGauss that is typically produced in laser–
plasma interactions and that might be produced by very clever field-compression
experiments?

Solution and/or Comments For A � 2.1C Z/, one finds B � 0:98 MG, so such
conditions represent an extreme upper limit on creating ˇ � 1. In fact the density is
too high, as the temperature is too low to be good for much.

Problems of Chap. 13

13.1 Design a pulse stretcher. Suppose you have a laser beam with an 800 nm central
wavelength and a bandwidth of 20 nm (corresponding to a 50 fs laser pulse). Use two
identical gratings, recalling that for the first diffracted order the scattered wavelength
� is given by � D d.sin˛ C sinˇ/, where d is the line spacing on the grating and
˛ and ˇ are angles of incidence and reflection relative to the grating normal. Use
two identical lenses, recalling that the object distance, o, image distance, i, and focal
length f are related by o�1 +i�1 D f �1. Note that the initial grating must be less than
one focal length from the lens to obtain stretching.

Solution and/or Comments Hardware design is not so different from experiment
design. One must consider a number of interacting factors in order to develop a
viable solution.

13.2 Assuming that the electron motion is due to a plane wave with a single
frequency and that the electron movement is small compared to the wavelength
of the light wave, solve the equations in Sect. 13.2 to find the electron trajectory.
Determine how it changes as the electron velocity increases (while remaining � c).
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Fig. A.17 Trajectories of
x=� and z� for ao D 0:1 and
0.5

Solution and/or Comments Assuming the EjjOx and kjjOz, one finds, for reasonable
choices of phase,

x.t/ D �ao
cos.!ot/

2
and z.t/ D ��a2o

sin.!t/

8
: (A.83)

Figure A.17 shows the trajectories for two values of ao. The motion in Oz increases
as ao does. The next order in x motion is cubic in ao.

13.3 Prove that the definitions (13.15) and (13.16) are equivalent.

Solution and/or Comments The purpose of this problem is to have you reacquaint
yourself with some of the basics of relativistic motion, by manipulating some of the
common variables.
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13.4 Solve (13.25) to see the electron behavior for a range of values of the initial
phase (i.e., change  to various other values, for fixed ao D 100 and ı.0/ D 0:01.
Comment on the variations in the behavior, in comparison to that seen in Fig. 13.3.

13.5 Find the time required to accelerate the electron to �30 GeV in the example
used in discussing (13.43) through (13.45).

13.6 Suppose one has a laser beam that can be focused to 1020 W/cm2 in a 10
�m diameter spot. Would one obtain higher-energy electrons from tunnel ionization
(as in Sect. 13.2) or from using the laser for wakefield acceleration, discussed in
Sect. 13.7.1?

Solution and/or Comments The energy from tunnel ionization for these condi-
tions is �4 MeV, based on Fig. 13.4 For wakefield acceleration, obtains a maximum
energy near 100 MeV, requiring an electron density near 1019 cm�3 and a length
just over 300 �m.

13.7 Solve for the potential of a spherical cloud of ions having uniform density, and
for the energy distribution function of the ions produced by a Coulomb explosion of
this cloud.

Solution and/or Comments The derivation will give potential

˚ D 2niZe

��
8

3

�
r2o C .r2o � r2/

�
for r < ro and

˚ D 2niZe

�
8

3

�
r3o
r

for r > ro;

(A.84)

maximum energy

Emax D 8

3
2niZ

2e2r2o; (A.85)

and distribution function

f .Ei/ D 3

2

pEi

E3=2max

for Ei < Emax and

D 0 for Ei > Emax:

(A.86)

13.8 Derive the relativistic version of the theory of Sect. 13.8 and find the
relativistically correct revision to (13.82).
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A
ablation efficiency, 416
ablation pressure, 405, 410–416, 424, 425, 430,

488, 496, 497, 508, 512, 516–518, 568
ablator, 10–12, 373, 488, 497, 498, 515, 516,

519
absorption, of laser light, 33, 48, 391–397, 404,

412–414, 418, 579, 582–584, 602
absorption, of radiation, 13, 32–34, 256, 263,

265, 267–271, 283, 284, 288, 290, 291,
294, 313, 318, 322, 325, 341, 344, 345,
347, 368, 373, 374, 393, 417, 422, 502,
541

absorptive precursor, 335
acceleration, by collisionless shocks, 598–602
acceleration, by Coulomb explosions, 595–598
acceleration, by surface potentials on solid

targets, 592–594
acceleration, laser piston regime, 594–595
acceleration, of fluids and interfaces, 144, 149,

184, 187–189, 211, 221, 222, 229, 237,
295, 413, 415, 452, 456, 472, 473, 478,
488, 497, 498, 513, 515

acceleration, wakefield, 588–592
acoustic wave steepening, 25
adaptive optics, 388
adiabatic index, 22, 150
advanced fuels, 11, 485
albedo, 418, 423
areal mass density, 487
atomic processes, electron-impact ionization,

15, 265, 278
atomic processes, photoionization, 16, 264,

279–280, 476
atomic processes, radiative recombination, 265

atomic processes, three-body recombination,
265

atomic transitions, bound–bound, 263
atomic transitions, bound–free, 264
atomic transitions, free–free, 264
attenuation, of radiation, 266

B
beat-wave accelerator, 589
betatron radiation, 602
Biermann battery, 443–444
binding energy, 1, 78, 84, 483, 484
blackbody radiation, 33, 34, 56, 57, 262, 350,

382, 422, 476, 538, 568, 638
blackbody spectrum, 421
blast wave, planar, 144, 156
blast waves, 159–162, 168–170, 172, 173, 187,

188, 337, 338, 515, 526, 533, 534, 536,
543–545, 561, 562, 647

blast waves, at interfaces, 168–169
blast waves, energy conservation, 157–159
blast waves, Sedov-Taylor, 159–162
Bohm-Gross dispersion relation, 40
Boltzmann equation, 22, 45, 257, 408, 560
Boltzmann number, 34, 547–549
bound-free transition, 376
boundary conditions, 142, 144, 161, 191, 192,

194, 195, 198, 203, 211, 223, 325, 333,
347, 370, 373, 379, 381, 455, 526

bremsstrahlung, 34, 264–266, 291, 321, 322,
345, 420, 502, 522, 582, 603, 645

Brunel effect, 582, 583
Brunel electrons, 581
buoyancy, 185–188, 191, 208–210, 227, 229,

241
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C
capsule implosion, 12, 58, 113, 426, 488, 491,

495–500, 502, 504, 506, 509, 514, 517,
518

catastrophic cooling, 348
characteristics, 151, 153–155, 179, 626
chemical potential, 64–66, 77, 90–92, 95, 493,

615
chirped laser pulse, 570
chirped pulse amplification, 6, 569
cloud-crushing interactions, 543–544
collision rate, 41–43, 61, 406, 407, 424
collision rate, electron-ion, 42, 395, 560
collisional-radiative models, 272–283
comoving frame, 295, 303, 313, 316
computer simulation, approaches, 46–48
conservation equations, 22, 26, 31, 51, 117,

119, 126, 206, 304, 305, 319, 323, 341,
342, 361, 371, 374, 415

continuum, 74, 76, 264, 265
continuum lowering, 74
convective instability, 206
cooling function, astrophysical, 268, 269, 290,

316, 347, 348, 552
cooling layer, 314, 337, 338, 346, 349, 352,

353, 356–359
cooling parameter for radiative jets, 554
corona, 105, 404, 413, 414
coronal equilibrium, 70
Coulomb explosion, 595, 596, 598, 601, 604,

650
Coulomb forces and effects, 8, 9, 52, 55, 58,

63, 70, 83, 89, 105, 123, 274, 367, 484,
595

Coulomb logarithm, 33, 42, 445, 537, 561
Courant condition, 46
critical density, 394–396, 404, 519, 520, 580,

582, 583, 599
critical surface, 394, 396, 413, 580, 583–585

D
Debye length, 48, 60–63, 74, 80, 593
Debye sphere, 62
decay instabilities, 403, 519, 520
degeneracy parameter, 67
degeneracy temperature, 59, 64, 493
degeneracy, effect on ionization, 95
density collapse, 348, 349
Density Functional Theory, 103
direct drive, 10
direct laser irradiation, 386–415
discretized, 46
double ablation front, 418

downstream frame, 163, 164
driver, 10, 519
drivers, alternative, 512–513
DT fuel, properties of, 491–495
dyadic notation, 19, 152, 260, 295
dynamo, plasma, 467
dynamos, 467–470

E
eddies, 243, 244, 247, 551
Eddington factor, 261, 262
electromagnetic waves, propagation and

absorption, 391–396
electron Debye length, 60
electron heat transport, 404–410
electron-ion coupling in shocks, 367–369
electrons, statistical theory of, 63–68
emission coefficient, spectral, 266
emissivity, spectral, 265, 266, 284
energy equation, 22, 23, 26, 32, 35, 51, 52, 121,

249, 308, 342, 375, 379, 441, 442, 457,
548, 555

energy equation, for nonequilibrium radiation,
305

entropy, 24–26, 56, 64, 66, 67, 90, 100, 113,
126–128, 151, 174, 175, 179, 184, 206,
483, 492–497, 507, 509, 515, 519, 521,
612, 620, 623, 645

entropy mode, 183, 184, 206
equation of motion (see also momentum

equation), 22, 431, 436, 438, 439, 472,
473, 571, 597, 640

equation of motion, MHD, 441
equation, conservation of mechanical energy,

244, 303, 304
equation, conservation of momentum, 23, 26,

29, 35, 38, 175, 185, 188, 189, 206, 207,
215, 220, 248, 253, 260, 303, 308, 310,
316, 319, 358, 392, 440, 442, 447, 453,
454, 457, 548, 555, 556, 633

equation, conservation of total energy, 30, 303
equation, energy, 22, 23, 26, 32, 35, 51, 52,

121, 249, 308, 342, 375, 379, 441, 442,
457, 548, 555

equation, gas-energy, 26, 31, 304, 319, 323,
361

equation, gas-energy non-equilibrium, 305
equation, radiative transfer, 283
equations of state, 12, 51–54
equations of state, astrophysics, 109–112
equations of state, Coulomb effects , 83–84
equations of state, degenerate, strongly coupled

regime, 102–104
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equations of state, Fermi-degenerate, 58–59
equations of state, high-energy-density, 85–99
equations of state, polytropic, 54–56
equations of state, QEOS, 76, 79, 495
equations of state, radiation-dominated, 56–58
equations of state, simple, 54–59
equations of state, summary overview, 105–106
equations of state, tabular, 106–108
equations of state—from Helmholtz Free

Energy, 89–99
equations, conservative form, 22, 23, 26, 117,

118, 339, 457
equations, general single-fluid, 29–31
equations, Maxwell, 26–28
equations, multi-fluid, 37, 38, 44, 149, 465, 466
equations, single-fluid radiation

hydrodynamics, 303–305
equilibration zone, 334, 367, 368
Euler equations, 22–26
Eulerian, 47, 48
excited states, 69, 70, 75, 113, 263, 267, 621
excited states, Saha distribution, 278
expansion heat fronts, 373–376, 417, 419, 420,

425
experimental astrophysics, 9, 12, 169, 413,

525–561
explicit scheme, computational, 46

F
fast ignitor, 491
Fermi degenerate, 7, 59, 60, 62–64, 73, 74, 85,

98, 103, 105, 488, 494, 505, 533
Fermi energy, 7, 58, 59, 64, 92, 97, 488, 492,

509, 519, 614
filamentation, 403, 511, 518
firehose instability, 459–461
flux limiter, 306, 408
flux-limited heat transport, 408, 412
flux-limited transport, 409
flyer plate, plasma, 162, 165
flyer plates, 13, 120, 131, 135–139, 166, 470,

478
flyer plates, magnetically driven, 478
free electron, 58, 69, 76, 77, 83, 264
free-streaming heat flux, 408
free-streaming limit, radiation, 261
frozen in, magnetic field, 249, 444, 446, 455,

461, 464, 469, 477
frozen in, vorticity, 215
fusion, heavy-ion, 513
fusion, MagLIF, 512

G
gas-energy equation, 26, 31, 304, 319, 323, 361
gas-energy equation, non-equilibrium, 305
gated, instrumentation, 398, 553
Gaussian beam, 388
grad B drift, 438
grid, computational, 47
ground state, 69, 263, 265
gyro–orbit, particle, 437–439

H
halfraum, 423
harmonic generation, 584–586
heat capacity, 66, 90, 96, 113, 620
heat flux, thermal, carried by electrons, 32, 51,

52, 405, 406, 408, 409, 412, 441, 442,
501

heat fronts, 324, 330, 348, 369–381, 409, 425
heat transport, diffusive, 32, 308, 309, 407, 412
heat transport, thermal, kinematic coefficient,

32
Helmholtz free energy, 90
hohlraums, 10, 11, 270, 271, 322, 422–432,

476, 513, 517, 518, 642
hohlraums, asymmetry, 426–427
hohlraums, crossed-beam effects, 431
hohlraums, plasma filling, 427–429
hohlraums, plasma pressure, 430
hohlraums, problems, 426–431
hole drilling, 598
hot electrons, 410, 427, 579
hot-spot ignition, 491, 501
Hugoniot, 111, 112, 119, 120, 135
hydrogenic model, of atoms or ions, 69, 70, 80,

82, 84, 94, 275, 299, 306, 326

I
ideal plasma, 2, 3, 7–9, 21, 38, 51, 62, 85
ignition, self, 491
ignition, spark, 510–512
ignition, central hot spot, 504–509
ignition, fast, 11, 491, 503, 510, 511, 570, 579,

587, 599
ignition, requirements, 500–504
ignition, shock, 11, 491, 512
ignition, spark, 491, 495, 512
image relaying, 387
impedance matching, 137, 139
implicit scheme, computational, 46
implosion efficiency, 488
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implosion velocity, 473, 488, 489, 491, 508,
516, 517

impulsive loading problem, 144, 156
in-flight aspect ratio, 499, 514, 516, 521
indirect drive, 10
induced transparency, 587
inertial confinement fusion, 5, 7, 9–12, 127,

382, 443, 459, 483–522, 610
inertial fusion, capsule, 187, 205, 214, 424,

498, 504, 511–513, 521, 645
inertial fusion, compression, 57, 67, 113, 126,

619
inertial fusion, Rayleigh–Taylor instabilities,

187, 204, 214, 514–516
inertial fusion, symmetry, 517–518
inertial range, 248, 529
instabilities, hydrodynamic, 17, 183–251, 377,

416, 533, 541
instabilities, laser–plasma, 385, 427, 518–520
instability, two-stream, 403, 419, 459, 464, 559
intermediate asymptotic behavior, 140
inverse bremsstrahlung, 264, 291, 417, 421,

537
inverse bremsstrahlung, emissivity, 268
inverse compression, 339–342, 346, 353, 354,

359, 366, 382, 638
inviscid, 215
ion Debye length, 60
ion–sphere model, 74–76
ionization balance, 68, 70
ionization front, 326, 330, 338, 348, 376–381,

410
ionization potential, 74
ionization potential depression, 74, 75, 79–83,

106, 264
ionization potential depression, Ecker-Kroll

model, 80
ionization potential depression, Steward-Pyatt

model, 81
ionization, collisional, 70, 275–278
ionizing plasmas, 68–74, 105, 310, 367
ionizing radiation wave, 326–327
ions, fully stripped, 68, 74, 86–105, 107
isobaric, 502–504
isochoric, 502, 503, 510
isoelectronic sequences, 270

J
jets, magnetic tower, 557
jets, radiative, 549–554
jump conditions, 118–120, 122, 179, 369, 372,

374, 457, 622

K
Kelvin–Helmholtz instability, 218–229
Kelvin–Helmholtz instability, distributed shear

layer, 225–226
Kelvin–Helmholtz instability, fundamental

equations, 219–222
Kelvin–Helmholtz instability, sharp boundary,

223–224
Kelvin–Helmholtz instability, with transition

region, 226–229
Kolmogorov cascade, 251
Kolmogorov scales, 244
Kolmogorov spectrum, 248

L
lab (laboratory) frame, 117, 120, 125, 132, 134,

136, 138, 149, 163, 164, 238, 375, 415,
590, 598, 600

Lagrangian, 47, 48, 163, 167
laser scattering, 211, 397, 429
laser spot, 388–390, 402, 406, 421, 423, 424,

426, 569, 578, 594, 598
laser–plasma instabilities, 397–403
lasers, absorption, 391–397
lasers, high-energy, 5, 6, 12, 386–391
lasers, ultrafast, 6, 569–570
lift, 218–219
linearization, 21, 23–25, 39, 40, 184, 189, 206,

211, 221, 309, 310, 316, 393, 397, 399,
449, 453, 460

local thermodynamic equilibrium (LTE), 89,
267, 270, 272, 290, 291, 302, 337, 356,
358, 364

longitudinal vector, 39, 40, 49, 206, 392, 393,
399, 431, 451, 600, 618, 641

Lorentz force, 27, 30, 38, 45, 436, 439
Lundquist number, 462

M
Mach number, critical, 601
Mach number, downstream, 325, 326, 372
Mach number, internal, 15, 32, 381, 551, 554
Mach number, upstream, 120, 121, 129, 130
magnetic drive, 478
magnetic Reynolds number, 36, 445, 448, 556,

560
magnetic-field generation, 602
magnetohydrodynamics, 440–447
Marshak waves, 322–327, 329, 360–362, 369,

371, 376, 420, 424
Marshak waves, as heat fronts, 371–373, 417,

420
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Maxwellian distribution, 42, 45, 59, 262, 275,
286, 405, 486, 593

mean intensity, 258
mean spectral intensity, 258
mechanical-energy equation, 244, 303, 304
metallic hydrogen, 53
MHD equations, 44, 440–447
MHD, Hall, 446–447
MHD, ideal, 444–446
MHD, resistive, 444–446
mixing transition, 248, 527, 537
mode coupling, 211, 212, 215–217, 220
Molecular Dynamics calculations, 103
momentum equation (see also equation of

motion), 23, 26, 29, 35, 38, 175, 185,
188, 189, 206, 207, 215, 220, 248, 253,
260, 303, 308, 310, 316, 319, 358, 392,
440, 442, 447, 453, 454, 457, 548, 555,
556, 633

momentum exchange, 38, 41, 42, 598

N
Nernst effect, 446–447
non-LTE models, 272–283
nonlinear diffusion, 322, 329
nonlocal transport, 409, 414, 547
nuclear reactions, 603

O
old supernova remnants, 348
opacity, 13, 257, 266–271, 285, 288, 291, 301,

314, 316, 319, 321, 322, 326, 345, 378
opacity, absorption, 266, 268, 288, 291, 301,

371
opacity, Planck mean, 267, 268, 288, 289, 305,

312, 345, 502
opacity, Rosseland mean, 290, 364
opacity, spectral absorption, 266
opacity, spectral scattering, 266
opacity, spectral total, 266
opacity, total, 284
optical depth, 173, 285–287, 290, 299, 301,

314, 315, 318, 331, 333, 336, 338, 343,
346–348, 350–352, 355, 357, 363, 364,
522, 538, 546–548, 636, 646

optical depth, in radiative shocks, 336, 338,
340, 342, 343, 345, 348, 350, 352, 356,
357, 366

optically thick, 89, 285, 299, 309, 312, 318,
325, 336–338, 340, 342, 346, 349, 356,
358, 359, 366, 418, 420, 502, 546,
548

optically thin, 285, 288, 301, 302, 313–318,
336, 338, 341, 343, 345, 347–350, 352,
353, 382, 502, 522, 546, 547, 551, 553,
638, 646

P
parametric decay instability, 403
particle acceleration, 587–598
particle-in-cell models, 48, 585, 600, 602
partition functions, 73, 90–93
Peclet number, 33, 145, 537
Peclet number, radiation, 34, 538
photoionization fronts, 373, 376–381
photoionized plasmas, 15
plane wave decomposition, 24, 39, 190, 230,

261, 571, 573, 604, 648
plasma ˇ, 451, 465, 528, 555, 557, 562, 648
plasma coupling constant, 63
plasma potential, 74, 149, 592
plasma theory, kinetic, 44–45
plasma theory, multi-fluid, 37–43
plasma theory, traditional, 60–63
point explosion problem, 159, 160
polytrope, 22
polytropic gas, 22, 24, 25, 32, 39, 48, 51, 59,

121, 122, 125, 129, 130, 153–156, 158,
177, 208, 233, 304, 336, 339, 340, 342,
441, 537, 617

polytropic index, 22, 57, 99, 106, 121, 122,
131, 528

polytropic indices, generalized, 99–102, 306
ponderomotive force, 400, 403, 413, 431, 582,

585, 597, 602
positron production, 602
potential flow, 215
precursor, radiative, 335, 339, 343
precursor, transmissive, 335, 345
preheat, 402, 409, 410, 515, 519
pressure ionization, 82, 83, 85, 105, 106, 112
propagating burn, 487, 491
proper frame, 292
pulsed power, 138, 435, 470, 474, 476, 478,

490, 558
pump strength, 571, 575

R
radiation diffusion wave, constant-energy,

327–330
radiation diffusion, multigroup, 306
radiation diffusion, nonequilibrium, 305
radiation energy density, 56, 258, 303
radiation energy density, spectral, 259



656 Index

radiation energy flux, 15, 259, 501
radiation energy flux, spectral, 259
radiation hydrodynamic, equations, 302–308
radiation hydrodynamics, 299–330, 333–382
radiation intensity, 258, 261, 266, 283, 288,

292, 312, 350, 351
radiation intensity, spectral, 257, 262
radiation intensity, total thermal, 262
radiation pressure tensor, spectral, 260
radiation pressure tensor, total, 262
radiation pressure, scalar, 9, 22, 30, 33, 55–57,

188, 255, 260–262, 289, 296, 299–301,
303, 304, 306, 308, 313, 316, 322, 328,
335, 339, 340, 350, 366, 537, 548, 633,
634

radiation pressure, scalar spectral, 260
radiation transfer, 255–296
radiation transfer equation, 283–285
radiation transfer equation, direct solutions,

285–287
radiation transfer equation, solutions in the

diffusion regime, 289–291
radiation transfer equation, solutions in the

transport regime, 287–289
radiation transfer, diffusive, 309, 322, 328, 361,

362
radiation transfer, nonequilibrium, 305–306
radiation transfer, relativistic considerations,

292–296
radiation wave, diffusive, 322–330
radiation wave, ionizing, 324, 326
radiation wave, subsonic, 326
radiation wave, supersonic, 325
radiation, line, 263
radiation-dominated, 33, 54, 57, 58, 112, 300,

301, 336, 354, 357, 358, 366, 382,
640

radiative acoustic waves, optically thick,
309–311

radiative acoustic waves, optically thin, 316
radiative jets, density parameter, 551
radiative plasma structures, 321
radiative precursors, diffusive, 360–363
radiative shocks, 333–367
radiative shocks, fluid dynamics, 339–343
radiative shocks, optically thick shocks–

radiative-flux regime, 356–365
radiative shocks, optically thin, 345–348
radiative shocks, radiation-dominated optically

thick, 366–367
radiative shocks, radiative precursors, 343–345,

350–352
radiative shocks, regimes, 333–338
radiative shocks, supercritical, 348, 357

radiative shocks, thick downstream/thin
upstream, 348–355

radiative thermal cooling instability, 318–321
Rankine-Hugoniot relations, 119
rarefaction, 417
rarefaction fan, 155, 234
rarefaction shock, 119
rarefaction waves, 145
rarefaction waves, planar adiabatic, 147–150,

153–156
rarefaction waves, planar isothermal, 145–147
rarefaction, centered, 155, 163, 174, 235
rarefactions, at interfaces, 169–173
Rayleigh Taylor, bubble, 185–187, 209–211,

302, 510, 541
Rayleigh Taylor, spike, 187, 218, 244, 541, 542
Rayleigh–Taylor instability, 184–217
Rayleigh–Taylor instability, effects of

viscosity, 198–202
Rayleigh–Taylor instability, feedthrough, 515
Rayleigh–Taylor instability, global mode,

203–205
Rayleigh–Taylor instability, linear theory,

188–196
Rayleigh–Taylor instability, two uniform

fluids, 196–197
Rayleigh–Taylor instability, with density

gradients, 203–205
Rayleigh–Taylor state, buoyancy-drag models,

209–211
Rayleigh–Taylor state, mode coupling,

211–217
Rayleigh-Taylor instability, magnetic, 452–457
recombination, dielectronic, 70, 280–283
recombination, radiative, 70, 280–283
recombination, three-body, 70, 275–278
reconnection, magnetic, 461–467
refraction, 394, 396
relativistic effects, 16
relativistic electron motion, 570–578
relativistic high-energy-density systems,

567–603
relativistic laser beam, 568, 587, 592
relativistic self-focusing, 403, 587, 589
release, of shocked surface, 145
reshock, 167, 417
resonance absorption, 396, 582
reverse shock, 168–171, 173
Reynolds decomposition, 245
Reynolds number, magnetic, 447–449
Reynolds number, viscous, 35, 47, 242–244,

448, 527, 537
Richtmyer–Meshkov instability, 235–241
Riemann invariants, 150, 152, 153
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rocket efficiency, 488, 519
Rosseland heat flux, 290
Ryutov number, 14, 530, 537, 556

S
s-polarization, 582
Saha equation, 70, 73, 91, 93, 105, 276
scaling analysis of equations, 31–36, 141, 160,

161, 246, 445, 528, 547, 555
scaling, hydrodynamic, 527–544
scaling, in similarity solutions, 141, 161
scaling, in turbulence, 241–251
scaling, MHD, 555–559
scaling, radiation hydrodynamic, 545–549
scaling, Ryutov, 526, 529, 530, 538, 543, 546,

547, 551, 554, 556, 557, 559
scaling, specific, 559–561
self-focusing, relativistic, 586–587
self-similar hydrodynamics, 139–145
self-similar systems, 17, 139–147, 159–161,

169, 171, 211, 322, 326, 330, 361, 426,
592, 593

shear layer, 34, 218–220, 224, 225, 244, 251
sheath acceleration, 594, 598
shock breakout, 145, 533
shock frame, 117, 118, 121, 125, 128, 132, 138,

159, 230, 231, 339, 366, 368, 375, 376,
600, 601

shock polar, 130
shock reverberation, 130, 134, 167, 500, 504
shock shell, 602
shock timing, 497, 504
shock velocity, 117, 119, 121, 123, 125, 133,

134, 138, 139, 158–160, 163, 233, 234,
239, 301, 334, 337, 339, 340, 343, 348,
354–356, 359–361, 382, 600, 601,
640

shock wave, strong, 117, 122–127, 130, 150,
158, 162, 164, 166, 172, 180, 234, 238,
502, 531, 543, 627

shock wave, subcritical, 357, 358
shock wave, supercritical, 357
shock waves, 3, 12, 15, 26, 28, 36, 67, 111,

115–139, 150, 165, 166, 183, 229, 232,
235, 251, 314, 326, 333, 369, 390, 409,
435, 448, 458, 459, 492, 516, 530, 545,
559, 560

shock waves, at interfaces, 130–136
shock waves, at rippled interfaces, 233–235
shock waves, collisionless, 459
shock waves, entropy changes, 126–128
shock waves, jump conditions, 117–119
shock waves, MHD, 457–459

shock waves, oblique, 128–130, 174, 175, 230,
457

shock waves, oblique at interfaces, 174–178
shock waves, overtaking, 165–166, 325, 330,

372, 497
shock waves, reshocks in rarefactions, 166–168
shock waves, shock Hugoniot, 119–120
shock waves, stability, 230–233
similarity solution, 17, 323
similarity transformations, 141
single-particle motions, 436–440
skin depth, 463–467, 560, 579, 580, 583
skin effect, anomalous, 582, 583
skin effect, high-frequency, 582
SN 1987A, 169, 171–173, 333, 532, 534–536
spatial filters, 387, 388
specific heat, 19, 25, 32, 55, 86, 99, 100, 307,

308, 326
specific volume, 119, 121, 295
speckles, laser, 389–391
stimulated Brillouin scattering, 403, 518, 520
stimulated Raman scattering, 399, 401–403,

427, 429, 518, 520, 589
strain rate tensor, 245, 250
stress tensor, 245
stress tensor, viscous, 30, 34
strong-coupling parameter, 8, 63
supernovae, 14, 33, 54, 169, 188, 203, 300,

338, 385, 526, 527, 532, 543
supernovae, experiments on, 532–543
superstable, 233
suprathermal electrons, 401, 410, 466, 519
surface waves, 188, 191, 192, 221, 453, 515
synchrotron emission, 264, 321

T
tail, on electron distribution, 45, 58, 267
tamper, 424
target normal sheath acceleration, 592
target, laser, 6, 10, 18, 45, 130, 145, 385, 387,

388, 390, 391, 395, 401, 406, 408, 409,
412, 414–419, 421–424, 426–429, 431,
515–519, 535, 554, 567, 570, 578, 579,
582–584, 592, 594, 598–603

targets, mid-Z, 417–419
themal intensity, 365
thermal cooling instability, radiation, 318
thermal instability, 321
thermal intensity, 258, 267, 296, 633
thermal radiation, 262
thermal radiation intensity, spectral, 262
thermal wave, 311
Thomas–Fermi model, 76–79
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Thomson scattering, 398, 537, 553
three-temperature models, 36–37, 308
total-energy equation, 30, 303
transverse vector, 392, 393, 397, 399, 451, 480,

571, 643
turbulence, 18, 34, 35, 183, 184, 241–251, 397,

414, 444, 448, 449, 464, 465, 467–469,
527, 532, 543, 560

turbulent cascade, 251
two-plasmon decay, 402, 403, 520

U
ultrafast lasers, 6, 16, 386, 511, 568–570

V
viscosity, 14, 23, 25, 31, 34, 35, 47, 52, 119,

185, 188–190, 192–194, 196–203, 212,
215, 220, 242–249, 251, 252, 302, 303,
336, 337, 340, 342, 363, 455, 459, 527,
537, 557, 629

viscosity, dynamic, 34
viscosity, kinematic, 34, 35, 189, 225, 243, 448
vortices, 243, 247–251, 469, 551
vorticity, 47, 215, 229, 242, 243, 247–251, 253,

544, 632
vorticity, frozen in, 249

W
wakefield accelerator, 588
warm dense matter, 2, 83
wave, centered, 147
waves, acoustic, 23, 25, 309–311, 316–318,

397–399, 402, 403
waves, acoustic isothermal, 311, 317, 318, 331,

635
waves, Alfvén, 449–452, 454, 458, 460, 463,

469, 472, 480, 643
waves, electron–plasma, 39–40, 399–402, 582
waves, ion acoustic, 40–41
waves, magnetosonic, 449–452

X
X-ray ablation, 418, 425–426
X-ray conversion of laser light, 419–421, 423

Y
yield, inertial fusion, 152, 477, 485, 487

Z
Z-pinches, 5, 6, 18, 105, 106, 272, 410, 435,

471–478, 481, 488, 512, 643
Zel’dovich spike, 350, 358, 363
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